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Classical methods for ODEs and PDEs
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Simulating ODEs



How do we solve ODEs numerically?

Solving the initial value problem (IVP)

ẋ(t) = F(x(t)), x(0) = x0 notation: ẋ(t) =
dx

dt
(t),

exactly, is in general impossible. We hence have to approximate t 7→ x(t) numerically.

T > 0, N ∈ N, and h = T/N. A one-step numerical method φh
F : Rd → Rd is a map

yn+1 = φh
F (yn), n = 0, ...,N − 1, (1)

such that y0 = x0 and yn ≈ x(nh), n = 1, ...,N, for any (regular enough) vector field F .

t0 t1 t2 t3 t4 t5

N=5, h=0.2

Some methods, called implicit, to define the map φh
F in (1) need to solve a (non-linear)

equation. An example is the implicit Euler method: yn+1 = yn + hF(yn+1).
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Structure-preserving methods

Some of these methods can be designed to preserve desirable properties of the solution.
The area studying them is called geometric numerical analysis, and those methods are
sometimes called structure-preserving.

Examples are methods that preserve an energy function (such as mass or momentum in a
PDE), symmetry properties, or a volume form.

These methods are often implicit. An example is provided by the implicit midpoint
method

yn+1 = yn + hF
(
yn + yn+1

2

)
,

which conserves all the quadratic energy functions.
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Pros and Cons of these methods

Runge–Kutta methods are a type of such schemes. These, and all the other options, are
extremely well studied; they have well-understood stability, convergence, and consistency
properties.

Five of their possible limitations are:
1 they are sequential: to approximate the solution at tn = nh, we need to apply them n times,

2 they do not provide the value of the solution outside of the points {t0, t1, ..., tN},

3 for some ODEs, one must use small time-steps or implicit methods to get a stable solution,

4 to preserve some underlying property, they are generally implicit,

5 when changing some parameters, we need to solve the equation again.

The question is whether we can do better than they do with the help of neural networks.
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Simulating PDEs



What about PDEs?

Let us first focus on linear stationary PDEs of the form

L(u)(x) = f (x), x ∈ Ω ⊂ Rd , u : Ω → R, f : Ω → R,

where L is a differential operator. An example could be L(u)(x) = ∂2
x1u(x) + ∂2

x2u(x),
with d = 2, f (x) = 0, and Ω = [0, 1]2. This problem needs to be solved under certain
boundary conditions.

To solve this problem, we can use a numerical method such as finite differences or finite
elements. They are both based on considering a suitable set of points {x1, ..., xN} over Ω,
defining a mesh.

The finite differences method approximates the differential operator L with a matrix
L ∈ RN×N , and turns the problem into the linear system

Lu = f, ui ≈ u(xi ), fi = f (xi ) =⇒ u(xi ) ≈ (L−1f)i .
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What about PDEs?

The finite differences method does not provide an approximation outside of the grid
points. It is also challenging to implement on non-regular grids, and hence on
complicated domains.

The finite element method (FEM) changes perspective, and approximates u by uh

belonging to a finite-dimensional space

Vh = span{ϕ1, ..., ϕN}.
Usually, one has ϕi (xj) = δij for i , j = 1, ...,N. Writing the approximate solution uh ∈ Vh

as uh =
∑N

i=1 u
h
i ϕi (x), and considering the weak formulation of the problem, we still get

a linear system
Lhu

h = f,

where, in the simplest setup, we could have

fi =

∫
Ω
f (x)ϕi (x)dx, uhi = ui .
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What about PDEs?

The FEM provides an approximate solution on every point x ∈ Ω. There is much more
rigorous analysis than the FDM, and it is very efficiently implemented by several scientific
computing libraries.

Both approaches (FD and FE) extend to time-dependent problems ∂tu + Lu = f , where
one has to solve a linear ODE rather than a linear system:

d

dt
u = −Lu+ f.

Both approaches have problems scaling to very high-dimensional irregular domains.
Handling non-linear terms can also be a challenge.
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What are we looking for?

There is a very active field in scientific machine learning working on building more
efficient solvers for ordinary and partial differential equations. A setup where this
becomes extremely important is for parametric ODEs/PDEs, such as

Lαu(x) = fβ(x).

In this case, a numerical method would have to solve it for each set of parameters. Can
we learn how to do it more efficiently? The same applies when the BCs are changed.

We can distinguish two main approaches:

1 Data-driven approaches, such as Neural Operators,

2 Equation-driven methods, such as Physics Informed Neural Networks.

There is a thin line between the two approaches, and a lot of hybrid strategies, together
with a lot of different nomenclature, often referring to similar ideas.
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What is a PINN and how is it trained?
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The main idea behind Physics Informed Neural Networks (PINNs)

Neural networks are flexible parametric functions which allow for approximating large
classes of functions. They should thus be able to approximate the solution of a
differential equation as well.

The idea is then to consider an expressive-enough network Nθ, and train it so that it
approximately solves the differential equation at enough points in the domain.

For example, if we want to solve ∂tu = Lu over (t, x) ∈ [0,T ]× Ω, Ω ⊂ Rd , we can
define Nθ : R× Rd → R and train it so it almost satisfies the initial/boundary conditions
and

∂tNθ(ti , xi ) ≈ L(Nθ)(ti , xi ), i = 1, ...,N, ti ∈ [0,T ], xi ∈ Ω.

The derivatives in L(Nθ) and ∂tNθ can be computed with automatic differentiation.

Remark: If we can do so, we do not need to discretise the differential operator, and we
can, in principle, also learn how the solution depends on the PDE parameters.
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A remark on terminology: Physics-Based/Inspired/Constrained NNs

Physics enters the model class / computational graph: hard constraints, symmetries,
conservation laws, or coupling to a solver.

Examples: HNN/LNN, symplectic & volume-preserving NODEs; equivariant CNNs/GNNs;
PDE-Net; differentiable solvers with learned closures; hard-constrained layers.

Training may be purely data-driven and/or include weak physics regularisers.
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Physics-informed neural networks (PINNs)

Let us start from PINNs trained to solve ODEs, and in particular, the initial value problem{
ẋ(t) = F(x(t)) ∈ Rd ,

x(0) = x0.

We introduce a parametric map Nθ (·; x0) : [0,T ] → Rd , and choose its weights so that

L(θ) := 1

C

C∑
c=1

∥∥N ′
θ (tc ; x0)−F (Nθ (tc ; x0))

∥∥2
2
+ γ ∥Nθ (0; x0)− x0∥22 → min

for some collocation points t1, . . . , tC ∈ [0,T ].

Then, t 7→ Nθ (t; x0) will solve a different IVP{
ẏ (t) = F (y (t)) + (N ′

θ (t; x0)−F (y (t))) ∈ Rd ,

y (0) = Nθ (0; x0) ∈ Rd ,

where hopefully the residual N ′
θ (t; x0)−F (y (t)) is small in some sense.
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Connection with classical numerical methods: Collocation methods

Goal: Solve ẋ(t) = F(x(t)) ∈ Rd with x(0) = x0 ∈ Rd , for t ∈ [0,∆t].

Polynomial collocation methods

Pick a set of s ∈ N collocation points
c1, ..., cs ∈ [0, 1] and define the degree s
polynomial p(·; x0) : R → Rd ,

p(t; x0) =
s∑

i=0

piφi (t),

such that

p(0; x0) = x0,

p′(ci∆t; x0) = F(p(ci∆t; x0)), i = 1, ..., s.

PINN

Pick t1, ..., ts ∈ [0,∆t] and look for
Nθ∗(·; x0) : R → Rd

Nθ∗(t; x0) =
h∑

i=1

a∗i σ(b
∗
i t + c∗i ),

such that θ∗ minimises

γ∥Nθ(0; x0)− x0∥22+
s∑

i=1

ωi

∥∥N ′
θ(ti ; x0)−F(Nθ(ti , x0))

∥∥2
2
.

Takeaway

Classical collocation: local polynomial ansatz ⇒ explicit order & stability theory.
PINNs: global, over-parameterised ansatz (NN) ⇒ optimisation-based collocation;
quadrature/collocation choices link them directly to RK methods.
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A-posteriori error estimate

Theorem: Quadrature-based a-posteriori error estimate

Let x(t) be the solution of the IVP{
ẋ (t) = F (x (t)) ∈ Rd , F ∈ Cp+1(Rd ,Rd),

x (0) = x0.

Suppose that Nθ (·; x0) : [0,∆t] → Rd is smooth and satisfies∥∥N ′
θ (tc ; x0)−F (Nθ (tc ; x0))

∥∥
2
≤ ε, c = 1, . . . ,C

for C collocation points 0 ≤ t1 < · · · < tC ≤ ∆t defining a quadrature rule of order p.
Then, there exist α, β > 0 such that

∥x (t)−Nθ (t; x0)∥2 ≤ α(∆t)p+1 + βε, t ∈ [0,∆t].
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Imposing the initial condition

We will see later that there are situations where we want to enforce the condition
Nθ (0; x0) = x0 exactly for every x0.

This can be done in several ways. Two common strategies are:

Nθ (t; x0) = x0 + f (t)Ñθ(t; x0), f (0) = 0, e.g. f (t) = t,

Nθ (t; x0) = x0 +
(
Ñθ(t; x0)− Ñθ(0; x0)

)
= Ñθ(t; x0) +

(
x0 − Ñθ(0; x0)

)
.

The second approach is a particular example of a much more general theory, called the
Theory of Functional Connections, see Daniele Mortari. “The Theory of Connections:
Connecting Points”. In: Mathematics 5.4 (2017), p. 57.
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)
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Is solving a single IVP efficient?

Solving a single IVP on [0,T ] with a neural network can take long training time.

The obtained solution can not be used to solve the same ordinary differential equation
with a different initial condition.
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Figure 1: Solution comparison after reaching a loss value of 10−5. The training time is 87 seconds
(7500 epochs with 1000 new collocation points randomly sampled at each of them).
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Integration over long time intervals

It is hard to solve initial value problems over long time intervals.
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Figure 2: Solution comparison after 10000 epochs.
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Forward invariant subset of the phase space

Consider the vector field F : Rd → Rd , and introduce notation ϕt
F : Rd → Rd for the

time-t flow map of F , which for every x0 ∈ Rd satisfies{
d
dtϕ

t
F (x0) = F(ϕt

F (x0)),

ϕ0
F (x0) = x0.

Assume that there exists a set Ω ⊂ Rd such that for every x0 ∈ Ω, ϕt
F (x0) ∈ Ω for every

t ≥ 0. This set is then said to be forward invariant.

ϕn∆t+δt
F = ϕδt

F ◦ ϕ∆t
F ◦ ... ◦ ϕ∆t

F , n ∈ N, δt ∈ (0,∆t).

Thus, to approximate ϕt
F : Ω → Ω for any t ≥ 0, we only approximate it for t ∈ [0,∆t].
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PINNs for Hamiltonian ODEs



Canonical Hamiltonian System (recap)

The equations of motion of canonical Hamiltonian systems write{
d
dtϕH,t(x0) = J∇H(ϕH,t(x0)) ∈ R2n

ϕH,0(x0) = x0
, J =

[
0n In
−In 0n

]
∈ R2n×2n.

The flow ϕH,t : R2n → R2n conserves the energy:

d

dt
H(ϕH,t(x0)) = ∇H(ϕH,t(x0))

⊤J∇H(ϕH,t(x0)) = 0,

and it is symplectic: (
∂ϕH,t(x)

∂x

)⊤
J
(
∂ϕH,t(x)

∂x

)
= J.
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The SympFlow architecture1

We now build a neural network that approximates ϕH,t : Ω → Ω for a forward invariant
set Ω ⊂ R2n, and t ∈ [0,∆t], while reproducing the qualitative properties of ϕH,t .

We rely on two building blocks, which applied to (q,p) ∈ R2n write:

ϕp,t((q,p)) =

[
q

p− (∇qV (t,q)−∇qV (0,q))

]
, ϕq,t((q, p)) =

[
q+ (∇pK (t,p)−∇pK (0,p))

p

]
.

The SympFlow architecture is defined as

Nθ (t, (q0,p0)) = ϕL
p,t ◦ ϕL

q,t ◦ · · · ◦ ϕ1
p,t ◦ ϕ1

q,t((q0,p0)),

with

V i (t,q) = ℓθi
3
◦ σ ◦ ℓθi

2
◦ σ ◦ ℓθi

1

([
q
t

])
, K i (t,p) = ℓρi

3
◦ σ ◦ ℓρi

2
◦ σ ◦ ℓρi

1

([
p
t

])
ℓθi

k
(x) = Ai

kx + aik , ℓρi
k
(x) = B i

kx+ bik , k = 1, 2, 3, i = 1, ..., L.

1Priscilla Canizares et al. “Symplectic neural flows for modeling and discovery”. In: arXiv preprint
arXiv:2412.16787 (2024).
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Properties of the SympFlow

The SympFlow is symplectic for every time t ∈ R. The building blocks we compose are
exact flows of time-dependent Hamiltonian systems:

ϕi
p,t((q,p)) =

[
q

p−
(
∇qV

i (t,q)−∇qV
i (0,q)

)]
=

[
q

p−∇q

(∫ t
0 ∂sV

i (s,q)ds
)] = ϕ

Ṽ i ,t
((q,p)),

with Ṽ i (t, (q,p)) = ∂tV
i (t,q).

The SympFlow is the exact solution of a time-dependent Hamiltonian system.
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Training the SympFlow to solve ẋ = J∇H(x)

The SympFlow is based on modelling the scalar-valued potentials Ṽ i , K̃ i : R× Rn → R
with feed-forward neural networks.

To train the overall model Nθ we minimise the loss function

L(θ) = 1

N

N∑
i=1

∥∥∥∥∥ d

dt
Nθ

(
t, xi0

)∣∣∣∣
t=ti

− J∇H
(
Nθ

(
ti , x

i
0

))∥∥∥∥∥
2

2

where we sample ti ∈ [0,∆t], and xi0 ∈ Ω ⊂ R2n.
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Simple Harmonic Oscillator (unsupervised)

Equations of motion

ẋ = p, ṗ = −x .
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Hénon–Heiles (unsupervised)

Equations of motion

ẋ = px , ẏ = py , ṗx = −x − 2xy , ṗy = −y − (x2 − y2).
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Figure 3: Unsupervised experiment — Hénon–Heiles: Comparison of the Poincaré sections and the
energy behaviour up to time T = 1000.
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Extension to PDEs



Extension to PDEs
∂tu(t, x) = L(u)(t, x) + f (x) ∈ R, (t, x) ∈ [0,∆t]× Ω ⊂ R× Rd ,

B(u)(t, x) = a(t, x), x ∈ ∂Ω, t ∈ [0,∆t],

u(0, x) = b(x), x ∈ Ω.

We can define a network Nθ : R× Rd → R and minimise

L(θ) = 1

N

N∑
i=1

|∂tNθ(ti , xi )− L(Nθ)(ti , xi )− f (xi )|2 +
M∑
j=1

|B(Nθ)(tj , xj)− a(tj , xj)|2︸ ︷︷ ︸
boundary condition

+
K∑

k=1

|Nθ(0, xk)− b(xk)|2︸ ︷︷ ︸
initial condition

,

where ti , tj ∈ [0,∆t], xi ∈ Ω, xj ∈ ∂Ω, xk ∈ Ω.
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How to enforce the boundary conditions

In some domains, we can easily enforce the boundary conditions following similar
principles to those seen before. For example,

Nθ(t, x) = Ñθ(t, x) + x(u1 − Ñθ(t, 1)) + (1− x)(u0 − Ñθ(t, 0)), (t, x) ∈ R× R,

satisfies Nθ(t, 0) = u0, and Nθ(t, 1) = u1 for every t ∈ R.

The same can be done for some types of Neumann boundary conditions as well, for
example

Nθ(t, x) = Ñθ(t, x) + x(u′1 − ∂xÑθ(t, 1)) + (1− x)2(u0 − Ñθ(t, 0)), (t, x) ∈ R× R,

satisfies Nθ(t, 0) = u0, and ∂xNθ(t, 1) = u′1 for every t ∈ R.
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A simple example

u′′(x) = − sin(x), u(−π) = u(π) = 0.

We consider Nθ(x) = a⊤ tanh(bx + c), a,b, c ∈ R64, and train it for 3000 epochs. In each
epoch we sample 256 new random collocation points.
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PINNs VS Finite Elements

Figure 4: Source: Grossmann et al., “Can Physics-Informed Neural Networks beat the Finite Element
Method?”
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Brief introduction to Neural Operators

Davide Murari (DAMTP) Physics Informed Neural Networks and Operator Learning 31 / 36



A paradigm shift
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A paradigm shift

The main idea behind Neural Operators is that if we want to solve the same differential
equations several times, but where we change boundary conditions, forcing terms, initial
conditions, or controls, we should approximate an operator rather than a single function.

When solving ẋ(t) = F(x(t),u(t), t) ∈ Rd where the control/input signal u ∈ C1(R,Rc)
can vary, and x(0) = x0, we want to approximate a mapping

S : C1([0,T ],Rc) → C1([0,T ],Rd),

[0,T ] ∋ t 7→ S(u)(t) = x0 +

∫ t

0
F(x(s),u(s), s)ds ∈ Rd .

The same can apply to boundary or initial conditions, which would be replaced to the
function u.

The SympFlow that we saw before is similar in spirit. The difference is that the initial
condition is a fixed vector, not a function: Nθ : Rd → C1(R,Rd).
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How are they trained?

Without even knowing how a neural operator can be parametrised, let us first see how
they can be trained.

Assume that there is some neural operator Nθ : X → Y, for a pair of function spaces X
and Y, that needs to be trained to approximate an operator S : X → Y. Assume that the
functions in X and Y take inputs in Ω ⊂ Rd , and return outputs in Ra and Rb,
respectively.

A common way to train Nθ is then to do so in a supervised manner, by minimising

L(θ) = 1

N

N∑
i=1

1

Mi

Mi∑
j=1

∥Nθ(ui )(zij)− S(ui )(zij)∥22 .
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Example: DeepONets

ẋ(t) = F(x(t), u(t), t) ∈ R, S(u)(t) := x0 +

∫ t

0
F(x(s), u(s), s)ds.

Branch Network

Trunk Network

Figure 5: Lu et al., “Learning nonlinear operators via DeepONet based on the universal approximation
theorem of operators”
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Resolution/Discretisation invariance

Figure 6: Lu et al., “Learning nonlinear operators via DeepONet based on the universal approximation
theorem of operators”

Figure 7: Kovachki et al., “Neural Operator: Learning Maps Between Function Spaces With
Applications to PDEs”
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