
Neural Networks as Dynamical Systems

Davide Murari

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

davidemurari.com/cism

dm2011@cam.ac.uk

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 1 / 40

https://davidemurari.com/cism/

Outline

1 ResNets Based on Dynamical Systems

2 Hamiltonian Neural Networks

3 1-Lipschitz Neural Networks
1-Lipschitz Networks for Robust Classification
1-Lipschitz Networks for Inverse Problems

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 2 / 40

ResNets Based on Dynamical Systems

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 3 / 40

What are Residual Neural Networks (ResNets)?

One of the building blocks behind several of the modern architectures, such as
Transformers, is the so-called residual layer or skip-connection.

This building block was introduced for the first time in the ResNet architecture1.

The skip-connection amounts to layers of the form

xn+1 = Fθn(xn) = xn + Fθn(xn), Fθn : Rd → Rd , θn ∈ Θ.

The term residual refers to the map Fθn = Fθn − id; we parametrise Fθn by parametrising
the residual.

ResNets have other types of layers, but the residual ones are their core. The other layers
can be used to change the input dimension, which is left unchanged by residual layers.

1Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2016, pp. 770–778.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 4 / 40

What are Residual Neural Networks (ResNets)?

One of the building blocks behind several of the modern architectures, such as
Transformers, is the so-called residual layer or skip-connection.

This building block was introduced for the first time in the ResNet architecture1.

The skip-connection amounts to layers of the form

xn+1 = Fθn(xn) = xn + Fθn(xn), Fθn : Rd → Rd , θn ∈ Θ.

The term residual refers to the map Fθn = Fθn − id; we parametrise Fθn by parametrising
the residual.

ResNets have other types of layers, but the residual ones are their core. The other layers
can be used to change the input dimension, which is left unchanged by residual layers.

1He et al., “Deep Residual Learning for Image Recognition”.
Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 4 / 40

What are Residual Neural Networks (ResNets)?

One of the building blocks behind several of the modern architectures, such as
Transformers, is the so-called residual layer or skip-connection.

This building block was introduced for the first time in the ResNet architecture1.

The skip-connection amounts to layers of the form

xn+1 = Fθn(xn) = xn + Fθn(xn), Fθn : Rd → Rd , θn ∈ Θ.

The term residual refers to the map Fθn = Fθn − id; we parametrise Fθn by parametrising
the residual.

ResNets have other types of layers, but the residual ones are their core. The other layers
can be used to change the input dimension, which is left unchanged by residual layers.

1He et al., “Deep Residual Learning for Image Recognition”.
Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 4 / 40

What are Residual Neural Networks (ResNets)?

One of the building blocks behind several of the modern architectures, such as
Transformers, is the so-called residual layer or skip-connection.

This building block was introduced for the first time in the ResNet architecture1.

The skip-connection amounts to layers of the form

xn+1 = Fθn(xn) = xn + Fθn(xn), Fθn : Rd → Rd , θn ∈ Θ.

The term residual refers to the map Fθn = Fθn − id; we parametrise Fθn by parametrising
the residual.

ResNets have other types of layers, but the residual ones are their core. The other layers
can be used to change the input dimension, which is left unchanged by residual layers.

1He et al., “Deep Residual Learning for Image Recognition”.
Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 4 / 40

Why ResNets?

Recall that to minimise the loss function L(θ) we have to use some numerical method, such as
gradient descent

θk+1 = θk − τ∇L(θk).
If ∥∇L(θk)∥2 is very large or very small, we will struggle to find a meaningful set of weights.

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Decision Boundary with a Test accuracy of 78.35%

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Decision Boundary with a Test accuracy of 50.55%

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Decision Boundary with a Test accuracy of 100.00%

0 1000 2000 3000
Training iterations

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

∥ ∥ ∥
∂
y
N

∂
y
N
−
k

∥ ∥ ∥ 2

`2 norms of the Jacobians for MLP

0 1000 2000 3000
Training iterations

10−33

10−27

10−21

10−15

10−9

10−3

103

∥ ∥ ∥
∂
y
N

∂
y
N
−
k

∥ ∥ ∥ 2

`2 norms of the Jacobians for MLP

0 1000 2000 3000
Training iterations

100

101

102

∥ ∥ ∥
∂
y
N

∂
y
N
−
k

∥ ∥ ∥ 2

`2 norms of the Jacobians for ResNet

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 5 / 40

One-Step Numerical Methods for ODEs

Let us consider a (regular enough) vector field F : Rd → Rd . Fix x0 ∈ Rd . Solving the
initial value problem (IVP)

{
ẋ(t) = F(x(t)), notation: ẋ(t) = dx

dt (t)

x(0) = x0

exactly is in general impossible. We hence have to approximate it numerically.

Fix T > 0, N ∈ N, and h = T/N. A one-step numerical method φh
F : Rd → Rd is a map

yn+1 = φh
F (yn), n = 0, ...,N − 1,

such that y0 = x0 and yn ≈ x(nh), n = 1, ...,N, for any (regular enough) vector field F .

t0 t1 t2 t3 t4 t5

N=5, h=0.2

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 6 / 40

One-Step Numerical Methods for ODEs

Let us consider a (regular enough) vector field F : Rd → Rd . Fix x0 ∈ Rd . Solving the
initial value problem (IVP)

{
ẋ(t) = F(x(t)), notation: ẋ(t) = dx

dt (t)

x(0) = x0

exactly is in general impossible. We hence have to approximate it numerically.

Fix T > 0, N ∈ N, and h = T/N. A one-step numerical method φh
F : Rd → Rd is a map

yn+1 = φh
F (yn), n = 0, ...,N − 1,

such that y0 = x0 and yn ≈ x(nh), n = 1, ...,N, for any (regular enough) vector field F .

t0 t1 t2 t3 t4 t5

N=5, h=0.2

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 6 / 40

The Explicit Euler Method

There are several one-step methods. Runge–Kutta methods are a very rich family of
them. In our lectures we will mostly need the simplest of them: the explicit Euler method.

For this method, the update map is defined as follows:

yn+1 = φh
F (yn) := yn + hF(yn), n = 0, ...,N − 1,

and it provides a first-order accurate approximation of the exact solution:
∥x(nh)− xn∥ ≤ Cnh.

Example: Let F(x) = Ax, for a matrix A ∈ Rd×d . The exact solution with initial
condition x(0) = x0 is x(t) = exp(At)x0, whereas the explicit Euler approximation is

yn+1 = yn + hAyn = (Id + hA)yn = (Id + hA)n+1y0, n = 0, ...,N − 1.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 7 / 40

The Explicit Euler Method

There are several one-step methods. Runge–Kutta methods are a very rich family of
them. In our lectures we will mostly need the simplest of them: the explicit Euler method.

For this method, the update map is defined as follows:

yn+1 = φh
F (yn) := yn + hF(yn), n = 0, ...,N − 1,

and it provides a first-order accurate approximation of the exact solution:
∥x(nh)− xn∥ ≤ Cnh.

Example: Let F(x) = Ax, for a matrix A ∈ Rd×d . The exact solution with initial
condition x(0) = x0 is x(t) = exp(At)x0, whereas the explicit Euler approximation is

yn+1 = yn + hAyn = (Id + hA)yn = (Id + hA)n+1y0, n = 0, ...,N − 1.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 7 / 40

The Explicit Euler Method

There are several one-step methods. Runge–Kutta methods are a very rich family of
them. In our lectures we will mostly need the simplest of them: the explicit Euler method.

For this method, the update map is defined as follows:

yn+1 = φh
F (yn) := yn + hF(yn), n = 0, ...,N − 1,

and it provides a first-order accurate approximation of the exact solution:
∥x(nh)− xn∥ ≤ Cnh.

Example: Let F(x) = Ax, for a matrix A ∈ Rd×d . The exact solution with initial
condition x(0) = x0 is x(t) = exp(At)x0, whereas the explicit Euler approximation is

yn+1 = yn + hAyn = (Id + hA)yn = (Id + hA)n+1y0, n = 0, ...,N − 1.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 7 / 40

ResNet Layers as Explicit Euler Steps

Why introducing the explicit Euler method in a lecture on Neural Networks?

Let’s put side by side the definition of a ResNet layer, and the explicit Euler update φh
F :

ResNet layer : xn+1 = xn + Fθ(xn), Explicit Euler : yn+1 = φh
F (yn) = yn + hF(yn).

We see that if F(x) = 1
hFθ(x) for every x ∈ Rd , then the two maps coincide.

Important remark: There is no true dynamics behind a ResNet layer. However, we have
freedom when designing it and we could hence interpret it as a single Euler step of size
one applied to the differential equation ẋ(t) = Fθ(x(t)).

What does this analogy buy us?

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 8 / 40

ResNet Layers as Explicit Euler Steps

Why introducing the explicit Euler method in a lecture on Neural Networks?

Let’s put side by side the definition of a ResNet layer, and the explicit Euler update φh
F :

ResNet layer : xn+1 = xn + Fθ(xn), Explicit Euler : yn+1 = φh
F (yn) = yn + hF(yn).

We see that if F(x) = 1
hFθ(x) for every x ∈ Rd , then the two maps coincide.

Important remark: There is no true dynamics behind a ResNet layer. However, we have
freedom when designing it and we could hence interpret it as a single Euler step of size
one applied to the differential equation ẋ(t) = Fθ(x(t)).

What does this analogy buy us?

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 8 / 40

ResNet Layers as Explicit Euler Steps

Why introducing the explicit Euler method in a lecture on Neural Networks?

Let’s put side by side the definition of a ResNet layer, and the explicit Euler update φh
F :

ResNet layer : xn+1 = xn + Fθ(xn), Explicit Euler : yn+1 = φh
F (yn) = yn + hF(yn).

We see that if F(x) = 1
hFθ(x) for every x ∈ Rd , then the two maps coincide.

Important remark: There is no true dynamics behind a ResNet layer. However, we have
freedom when designing it and we could hence interpret it as a single Euler step of size
one applied to the differential equation ẋ(t) = Fθ(x(t)).

What does this analogy buy us?

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 8 / 40

ResNet Layers as Explicit Euler Steps

Why introducing the explicit Euler method in a lecture on Neural Networks?

Let’s put side by side the definition of a ResNet layer, and the explicit Euler update φh
F :

ResNet layer : xn+1 = xn + Fθ(xn), Explicit Euler : yn+1 = φh
F (yn) = yn + hF(yn).

We see that if F(x) = 1
hFθ(x) for every x ∈ Rd , then the two maps coincide.

Important remark: There is no true dynamics behind a ResNet layer. However, we have
freedom when designing it and we could hence interpret it as a single Euler step of size
one applied to the differential equation ẋ(t) = Fθ(x(t)).

What does this analogy buy us?

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 8 / 40

ResNets as Discrete Dynamical Systems

Having drawn this connection between dynamical systems/ODEs and ResNets, we open
up several possibilities:

1 We are not tied to the use of the explicit Euler method to design the network layers: we
could design a suitable parametric family of vector fields F = {Fθ : Rd → Rd : θ ∈ Θ} and
define ResNet-like layers as x 7→ φh

Fθ
(x) where φh

F is another one-step method (e.g.
geometric integrators davidemurari.com/graduateCourseNotes.pdf).

2 We can look into the theory of numerical analysis, differential equations, and dynamical
systems to design new ResNets that behave well, or understand the behaviour of already
existing ones.

In this lecture, we will solely focus on the second point.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 9 / 40

https://davidemurari.com/graduateCourseNotes.pdf

A Visual Understanding

Dataset of two-dimensional points {((p1i , p2i), yi)}i=1,...,N . We train a NN to classify them.

The considered NN is a ResNet based on Euler steps applied to the differential equation
{
ẋ(t) = B(t)⊤ tanh (A(t)x(t) + b(t)) , B(t),A(t) ∈ R3×3, b ∈ R3,

x(0) = [p1i , p
2
i , 0] ∈ R3.

We assume the weight functions t 7→ A(t), t 7→ B(t), t 7→ b(t) to be piecewise constant.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 10 / 40

Hamiltonian Neural Networks

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 11 / 40

Recap on the Vanishing Gradient Problem

x

y

0 500 1000 1500 2000 2500 3000

Training iterations

10−20

10−17

10−14

10−11

10−8

10−5

10−2

101

‖∂
x
k
x
`
‖ 2

Decision boundary and Jacobian norms for a 12-layer MLP

We have seen that the gradient of the loss function with respect to the network weights
satisfies

∥∇θjLn∥2 ≤ ∥JθjFθj (xj)∥2




L∏

ℓ=j+1

∥∥∥JxℓFθℓ(xℓ)
∥∥∥
2


 ∥∇xL+1Ln∥

If ∥JxFθℓ(x)∥2 ≤ ρ < 1 (e.g. Lip(σ) ≤ 1 and ∥Aℓ∥2 ≤ ρ), then ∥∇θjLn∥ ≲ ρ L−j

⇒ vanishing gradients, and we can not meaningfully update the weights.
Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 12 / 40

What is a Canonical Hamiltonian System?

The equations of motion of canonical Hamiltonian systems write

{
ẋ = J∇H(x) = XH(x) ∈ R2n

x(0) = x0
, J =

[
0n In
−In 0n

]
∈ R2n×2n.

Denoted with ϕH,t : R2n → R2n the exact flow, ϕH,t(x0) = x(t), we see that

d

dt
H(ϕH,t(x0)) = ∇H(ϕH,t(x0))

⊤J∇H(ϕH,t(x0)) = 0,

which means that the Hamiltonian is constant along the solutions.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 13 / 40

What is a Canonical Hamiltonian System?

The equations of motion of canonical Hamiltonian systems write

{
ẋ = J∇H(x) = XH(x) ∈ R2n

x(0) = x0
, J =

[
0n In
−In 0n

]
∈ R2n×2n.

Denoted with ϕH,t : R2n → R2n the exact flow, ϕH,t(x0) = x(t), we see that

d

dt
H(ϕH,t(x0)) = ∇H(ϕH,t(x0))

⊤J∇H(ϕH,t(x0)) = 0,

which means that the Hamiltonian is constant along the solutions.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 13 / 40

The Symplecticity Condition

A linear map F (x) = Ax, A ∈ R2n×2n, is symplectic if the matrix A satisfies

A⊤JA = J.

Equivalently, it means that the map F preserves the bilinear form

Ω(u, v) := u⊤Jv ⇐⇒ Ω(Au,Av) = Ω(u, v), ∀u, v ∈ R2n.

A (non-linear) continuously differentiable function F : R2n → R2n is symplectic if it
infinitesimally preserves Ω, i.e. ∂xF (x) ∈ R2n×2n is symplectic for every x:

(
∂F (x)

∂x

)⊤
J
(
∂F (x)

∂x

)
= J.

Exercise: Show that the composition of continuously differentiable symplectic maps is
symplectic.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 14 / 40

The Symplecticity Condition

A linear map F (x) = Ax, A ∈ R2n×2n, is symplectic if the matrix A satisfies

A⊤JA = J.

Equivalently, it means that the map F preserves the bilinear form

Ω(u, v) := u⊤Jv ⇐⇒ Ω(Au,Av) = Ω(u, v), ∀u, v ∈ R2n.

A (non-linear) continuously differentiable function F : R2n → R2n is symplectic if it
infinitesimally preserves Ω, i.e. ∂xF (x) ∈ R2n×2n is symplectic for every x:

(
∂F (x)

∂x

)⊤
J
(
∂F (x)

∂x

)
= J.

Exercise: Show that the composition of continuously differentiable symplectic maps is
symplectic.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 14 / 40

The Symplecticity Condition

A linear map F (x) = Ax, A ∈ R2n×2n, is symplectic if the matrix A satisfies

A⊤JA = J.

Equivalently, it means that the map F preserves the bilinear form

Ω(u, v) := u⊤Jv ⇐⇒ Ω(Au,Av) = Ω(u, v), ∀u, v ∈ R2n.

A (non-linear) continuously differentiable function F : R2n → R2n is symplectic if it
infinitesimally preserves Ω, i.e. ∂xF (x) ∈ R2n×2n is symplectic for every x:

(
∂F (x)

∂x

)⊤
J
(
∂F (x)

∂x

)
= J.

Exercise: Show that the composition of continuously differentiable symplectic maps is
symplectic.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 14 / 40

Why do we care about symplectic maps?

Let F : R2n → R2n be a continuously differentiable symplectic map, i.e.,

(
∂F (x)

∂x

)⊤
J
(
∂F (x)

∂x

)
= J.

Then we have

∥J∥2 =
∥∥∥∥∥

(
∂F (x)

∂x

)⊤
J
(
∂F (x)

∂x

)∥∥∥∥∥
2

≤
∥∥∥∥∥

(
∂F (x)

∂x

)⊤
∥∥∥∥∥
2

∥J∥2
∥∥∥∥
∂F (x)

∂x

∥∥∥∥
2

= ∥J∥2
∥∥∥∥
∂F (x)

∂x

∥∥∥∥
2

2

=⇒
∥∥∥∥
∂F (x)

∂x

∥∥∥∥
2

≥ 1.

Thus F would not contribute to vanishing gradients!

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 15 / 40

Hamiltonian NNs (HNNs) / Symplectic NN

A Hamiltonian or Symplectic NN is a network which is symplectic. This typically means
that all its layers are symplectic maps.

A common way to define them is by composing exact flows of Hamiltonian systems with
Hamiltonian functions

H1
θ (q,p) = Kθ(p), H2

θ (q,p) = Uθ(q).

The ODEs they define are
[
q̇
ṗ

]
=

[
∇Kθ(p)

0

]
,

[
q̇
ṗ

]
=

[
0

∇Uθ(q)

]
,

and they have solutions

ϕH1
θ ,t
(q,p) =

[
q+ t∇Kθ(p)

p

]
, ϕH2

θ ,t
(q,p) =

[
q

p− t∇Uθ(q)

]
.

Exercise: Show that ϕH1
θ ,t

and ϕH2
θ ,t

are symplectic maps.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 16 / 40

Hamiltonian NNs (HNNs) / Symplectic NN

A Hamiltonian or Symplectic NN is a network which is symplectic. This typically means
that all its layers are symplectic maps.

A common way to define them is by composing exact flows of Hamiltonian systems with
Hamiltonian functions

H1
θ (q,p) = Kθ(p), H2

θ (q,p) = Uθ(q).

The ODEs they define are
[
q̇
ṗ

]
=

[
∇Kθ(p)

0

]
,

[
q̇
ṗ

]
=

[
0

∇Uθ(q)

]
,

and they have solutions

ϕH1
θ ,t
(q,p) =

[
q+ t∇Kθ(p)

p

]
, ϕH2

θ ,t
(q,p) =

[
q

p− t∇Uθ(q)

]
.

Exercise: Show that ϕH1
θ ,t

and ϕH2
θ ,t

are symplectic maps.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 16 / 40

Example of a Hamiltonian/Symplectic NN

A common strategy is to set

Kθ(p) = u⊤γ(Ap+ a), Uθ(q) = v⊤γ(Bq+ b),

so that

∇Kθ(p) = A⊤diag(u)σ(Ap+ a), ∇Uθ(q) = B⊤diag(v)σ(Bq+ b), σ = γ′.

The Symplectic/Hamiltonian NN that we obtain then has layers of the form

Fθ2i (q,p) =

[
q+ h2iA

⊤
i diag(ui)σ(Aip+ ai)

q

]
, h2i , h2i+1 ∈ R,

Fθ2i+1
(q,p) =

[
q

p− h2i+1B
⊤
i diag(vi)σ(Biq+ bi)

]
, i = 1, ..., L.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 17 / 40

Example of a Hamiltonian/Symplectic NN

A common strategy is to set

Kθ(p) = u⊤γ(Ap+ a), Uθ(q) = v⊤γ(Bq+ b),

so that

∇Kθ(p) = A⊤diag(u)σ(Ap+ a), ∇Uθ(q) = B⊤diag(v)σ(Bq+ b), σ = γ′.

The Symplectic/Hamiltonian NN that we obtain then has layers of the form

Fθ2i (q,p) =

[
q+ h2iA

⊤
i diag(ui)σ(Aip+ ai)

q

]
, h2i , h2i+1 ∈ R,

Fθ2i+1
(q,p) =

[
q

p− h2i+1B
⊤
i diag(vi)σ(Biq+ bi)

]
, i = 1, ..., L.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 17 / 40

Gradient Stability in HNNs

x

y

12-layer HNN

0 1000 2000 3000

Training iterations

10−3

10−2

10−1

100

101

102

103

‖∂
x
k
x
`
‖ 2

x

y

12-layer ResNet

0 1000 2000 3000

Training iterations

10−3

10−2

10−1

100

101

102

103

‖∂
x
k
x
`
‖ 2

x

y

2-layer MLP

0 1000 2000 3000

Training iterations

10−3

10−2

10−1

100

101

102

103

‖∂
x
k
x
`
‖ 2

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 18 / 40

1-Lipschitz Neural Networks

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 19 / 40

Why 1-Lipschitz neural networks? ∥F (y)− F (x)∥2 ≤ ∥y − x∥2

Adversarial robustness

Constraining the Lipschitz constant leads to a reduced sensitivity to input perturbations.

Wasserstein Generative Adversarial Networks (Kantorovich-Rubinstein duality)

W1(µ, ν) = sup
f :X→R

f 1−Lipschitz

EX∼µ[f (X)]− EY∼ν [f (Y)].

Convergent fixed point iterations

If ∥f (y) − f (x)∥2 < ∥y − x∥2 for every x, y ∈ Rd , then xk+1 = f (xk) admits a unique
and attractive fixed point. If Tα(x) = (1 − α)x + αg(x), α ∈ (0, 1) and g 1-Lipschitz,
then whenever xk+1 = Tα(xk) has a fixed point, the sequence converges.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 20 / 40

Why 1-Lipschitz neural networks? ∥F (y)− F (x)∥2 ≤ ∥y − x∥2

Adversarial robustness

Constraining the Lipschitz constant leads to a reduced sensitivity to input perturbations.

Wasserstein Generative Adversarial Networks (Kantorovich-Rubinstein duality)

W1(µ, ν) = sup
f :X→R

f 1−Lipschitz

EX∼µ[f (X)]− EY∼ν [f (Y)].

Convergent fixed point iterations

If ∥f (y) − f (x)∥2 < ∥y − x∥2 for every x, y ∈ Rd , then xk+1 = f (xk) admits a unique
and attractive fixed point. If Tα(x) = (1 − α)x + αg(x), α ∈ (0, 1) and g 1-Lipschitz,
then whenever xk+1 = Tα(xk) has a fixed point, the sequence converges.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 20 / 40

Why 1-Lipschitz neural networks? ∥F (y)− F (x)∥2 ≤ ∥y − x∥2

Adversarial robustness

Constraining the Lipschitz constant leads to a reduced sensitivity to input perturbations.

Wasserstein Generative Adversarial Networks (Kantorovich-Rubinstein duality)

W1(µ, ν) = sup
f :X→R

f 1−Lipschitz

EX∼µ[f (X)]− EY∼ν [f (Y)].

Convergent fixed point iterations

If ∥f (y) − f (x)∥2 < ∥y − x∥2 for every x, y ∈ Rd , then xk+1 = f (xk) admits a unique
and attractive fixed point. If Tα(x) = (1 − α)x + αg(x), α ∈ (0, 1) and g 1-Lipschitz,
then whenever xk+1 = Tα(xk) has a fixed point, the sequence converges.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 20 / 40

1-Lipschitz MLPs

Given two Lipschitz-continuous functions F : Rh → Rc , G : Rd → Rh, with Lipschitz
constants Lip(F) and Lip(G), respectively, the composition H = F ◦ G : Rd → Rc is
Lipschitz continuous as well, with Lip(H) ≤ Lip(F)Lip(G):

∥H(y)− H(x)∥2 = ∥F (G (y))− F (G (x))∥2 ≤ Lip(F)∥G (y)− G (x)∥2
≤ Lip(F)Lip(G)∥y − x∥2, ∀x, y ∈ Rd .

We can get a 1-Lipschitz feedforward network (MLP) composing 1-Lipschitz layers:

Nθ = AL ◦ σ ◦ AL−1 ◦ ... ◦ σ ◦ A1 : Rd → Rc ,

where we need |σ(s)− σ(t)| ≤ |s − t|, and ∥Ai∥2 ≤ 1 for j = 1, ..., L. Most activation
functions, such as tanh,ReLU,LeakyReLU, sigmoid, sin are 1-Lipschitz.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 21 / 40

1-Lipschitz MLPs

Given two Lipschitz-continuous functions F : Rh → Rc , G : Rd → Rh, with Lipschitz
constants Lip(F) and Lip(G), respectively, the composition H = F ◦ G : Rd → Rc is
Lipschitz continuous as well, with Lip(H) ≤ Lip(F)Lip(G):

∥H(y)− H(x)∥2 = ∥F (G (y))− F (G (x))∥2 ≤ Lip(F)∥G (y)− G (x)∥2
≤ Lip(F)Lip(G)∥y − x∥2, ∀x, y ∈ Rd .

We can get a 1-Lipschitz feedforward network (MLP) composing 1-Lipschitz layers:

Nθ = AL ◦ σ ◦ AL−1 ◦ ... ◦ σ ◦ A1 : Rd → Rc ,

where we need |σ(s)− σ(t)| ≤ |s − t|, and ∥Ai∥2 ≤ 1 for j = 1, ..., L. Most activation
functions, such as tanh,ReLU,LeakyReLU, sigmoid, sin are 1-Lipschitz.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 21 / 40

1-Lipschitz ResNets are more challenging to obtain

For ResNets, it is more challenging, since the basic layers are of the form

Rd ∋ x 7→ x+ τFθi (x) = φτ
θi
(x) ∈ Rd , τ > 0,

and, for a generic Fθi : Rd → Rd , it is hard to get better bounds than

∥φτ
θi
(y)− φτ

θi
(x)∥2 ≤ (1 + τLip(Fθi)) ∥y − x∥2, x, y ∈ Rd .

We hence need to modify them slightly, or properly choose the residual map Fθi .

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 22 / 40

Negative gradient flows

Let V : Rd → R be a continuously differentiable convex function. We consider vector
fields of the form

F(x) = −∇V (x).

Given two solution curves, ẋ(t) = F(x(t)) and ẏ(t) = F(y(t)), we see that

d

dt
∥x(t)− y(t)∥22 = − (∇V (x(t))−∇V (y(t)))⊤ (x(t)− y(t)) ≤ 0.

Thus, the flow map ϕt
F : Rd → Rd defined by ϕt

F (x(0)) = x(t) is 1-Lipschitz.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 23 / 40

Non-expansive gradient flows

Gradient flows on Rd

Consider the scalar functiona Vθ(x) = 1⊤ReLU2(W x+ b)/2. Define

Fθ(x) = −∇Vθ(x) = −W⊤ReLU(W x+ b).

If ẋ = Fθ(x) and ẏ = Fθ(y), we have ∥y(t)− x(t)∥2 ≤ ∥y(0)− x(0)∥2 for every t ≥ 0.

aW ∈ Rh×d , b ∈ Rh, h ∈ N, θ = (W , b), and 1 ∈ Rh a vector of ones.

Euler step (1-Lipschitz)

If τ ∈ [0, 2/∥W ∥22], the explicit Euler map φτ
θ(x) = x+ τFθ(x) is 1-Lipschitz, i.e.,

∥φτ
θ(y)− φτ

θ(x)∥2 ≤ ∥y − x∥2, x, y ∈ Rd .

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 24 / 40

Non-expansive gradient flows

Gradient flows on Rd

Consider the scalar functiona Vθ(x) = 1⊤ReLU2(W x+ b)/2. Define

Fθ(x) = −∇Vθ(x) = −W⊤ReLU(W x+ b).

If ẋ = Fθ(x) and ẏ = Fθ(y), we have ∥y(t)− x(t)∥2 ≤ ∥y(0)− x(0)∥2 for every t ≥ 0.

aW ∈ Rh×d , b ∈ Rh, h ∈ N, θ = (W , b), and 1 ∈ Rh a vector of ones.

Euler step (1-Lipschitz)

If τ ∈ [0, 2/∥W ∥22], the explicit Euler map φτ
θ(x) = x+ τFθ(x) is 1-Lipschitz, i.e.,

∥φτ
θ(y)− φτ

θ(x)∥2 ≤ ∥y − x∥2, x, y ∈ Rd .

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 24 / 40

Neural networks based on gradient flows

We consider neural networks of the form

Nθ = π ◦ φθL ◦ ... ◦ φθ1 ◦ Q : Rd → Rc , φθℓ ∈ Eh,

Eh :=
{
φ : Rh → Rh

∣∣∣φ(x) = x − τW⊤ReLU(W x+ b), W ∈ Rh′×h,b ∈ Rh′ ,

h′ ∈ N, τ ∈ [0, 2/∥W ∥22]
}
,

where Q : Rd → Rh and π : Rh → Rc are affine maps.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 25 / 40

1-Lipschitz Networks for Robust Classification

The problem of robust classification

Classification problem

Let Ω ⊂ Rd be a set whose points are known to belong to C classes. Given part of their
labels, we want to label the remaining points using Nθ : Rd → RC where we set

predicted class of x = argmax
c=1,...,C

(
Nθ (x)

⊤ ec

)
.

Adversarial examples

0

1

2

3
4

5

6

7

8
9

0

1

2

3
4

5

6

7

8
9

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 26 / 40

The problem of robust classification

Classification problem

Let Ω ⊂ Rd be a set whose points are known to belong to C classes. Given part of their
labels, we want to label the remaining points using Nθ : Rd → RC where we set

predicted class of x = argmax
c=1,...,C

(
Nθ (x)

⊤ ec

)
.

Adversarial examples

0

1

2

3
4

5

6

7

8
9

0

1

2

3
4

5

6

7

8
9

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 26 / 40

How to have guaranteed robustness

Not all correct predictions are equivalent.

Let ℓ (x) = 2 be the correct label for the point x ∈ Ω.

Nθ1 (x) =
[
0.49 0.51 0

]
is not so certain as a prediction.

Nθ2 (x) =
[
0.05 0.9 0.05

]
there is a higher gap here.

Margin: MNθ
(x) := Nθ(x)

⊤eℓ(x) − max
j ̸=ℓ(x)

Nθ(x)
⊤e j .

MNθ
(x) > 0 =⇒ Nθ correctly classifies x.

MNθ
(x) >

√
2Lip(Nθ)ε =⇒ MNθ

(x+ η) > 0 ∀∥η∥2 ≤ ε.

We constrain the Lipschitz constant of Nθ (and train the network so it maximises the
margin).

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 27 / 40

How to have guaranteed robustness

Not all correct predictions are equivalent.

Let ℓ (x) = 2 be the correct label for the point x ∈ Ω.

Nθ1 (x) =
[
0.49 0.51 0

]
is not so certain as a prediction.

Nθ2 (x) =
[
0.05 0.9 0.05

]
there is a higher gap here.

Margin: MNθ
(x) := Nθ(x)

⊤eℓ(x) − max
j ̸=ℓ(x)

Nθ(x)
⊤e j .

MNθ
(x) > 0 =⇒ Nθ correctly classifies x.

MNθ
(x) >

√
2Lip(Nθ)ε =⇒ MNθ

(x+ η) > 0 ∀∥η∥2 ≤ ε.

We constrain the Lipschitz constant of Nθ (and train the network so it maximises the
margin).

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 27 / 40

How to have guaranteed robustness

Not all correct predictions are equivalent.

Let ℓ (x) = 2 be the correct label for the point x ∈ Ω.

Nθ1 (x) =
[
0.49 0.51 0

]
is not so certain as a prediction.

Nθ2 (x) =
[
0.05 0.9 0.05

]
there is a higher gap here.

Margin: MNθ
(x) := Nθ(x)

⊤eℓ(x) − max
j ̸=ℓ(x)

Nθ(x)
⊤e j .

MNθ
(x) > 0 =⇒ Nθ correctly classifies x.

MNθ
(x) >

√
2Lip(Nθ)ε =⇒ MNθ

(x+ η) > 0 ∀∥η∥2 ≤ ε.

We constrain the Lipschitz constant of Nθ (and train the network so it maximises the
margin).

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 27 / 40

Adapting Gradient Flows to Convolutional Neural Networks

Code Snippet 1: Fully-connected

A = nn.Parameter(torch.randn(h,h))

b = nn.Parameter(torch.randn(h))

tau = nn.Parameter(torch.tensor([2.]))

x = x - tau * act(x @ A.T + b) @ A

Code Snippet 2: Convolutional

A = nn.Conv2d(in_channels=h,out_channels=h,kernel_size=3,padding=1)

tau = nn.Parameter(torch.tensor([2.]))

K = A.weight

V = nn.functional.conv_transpose2d(input=act(A(x)), weight=K, padding=1)

x = x - tau * V

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 28 / 40

Robustness to adversarial attacks

ε = 0
Sneaker

ε = 0.1
Sandal

ε = 0.5
Sandal

ε = 1
Sandal

ε = 2
Sandal

ε = 20
Sandal

0.0 0.2 0.4 0.6 0.8 1.0

ε

0

20

40

60

80

R
ob

u
st

A
cc

u
ra

cy
(%

)

ResNet

Non-Expansive

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 29 / 40

1-Lipschitz Networks for Inverse Problems

The Proximal Gradient Descent Method

min
x∈Rd

(f (x) + γg(x)) , f : Rd → R, g : Rd → R ∪ {±∞}, (1)

where f is a data-fidelity term, g is a regularisation term, and γ > 0.

Example:

f (x) =
1

2
∥Kx− y∥22, g(x) =

1

2
∥x∥22 (Ridge Regression).

Assume f : Rd → R and g : Rd → R ∪ {±∞} convex, f continuously differentiable, g
continuous and proper. A method to solve (1) is the Proximal Gradient Descent Method:

xk+1 = proxγg ,τ (xk − τ∇f (xk)) , τ > 0,

proxγg ,τ (x) = argmin
z∈Rd

(
1

2τ
∥x− z∥22 + γg(z)

)
.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 30 / 40

The Proximal Gradient Descent Method

min
x∈Rd

(f (x) + γg(x)) , f : Rd → R, g : Rd → R ∪ {±∞}, (1)

where f is a data-fidelity term, g is a regularisation term, and γ > 0.
Example:

f (x) =
1

2
∥Kx− y∥22, g(x) =

1

2
∥x∥22 (Ridge Regression).

Assume f : Rd → R and g : Rd → R ∪ {±∞} convex, f continuously differentiable, g
continuous and proper. A method to solve (1) is the Proximal Gradient Descent Method:

xk+1 = proxγg ,τ (xk − τ∇f (xk)) , τ > 0,

proxγg ,τ (x) = argmin
z∈Rd

(
1

2τ
∥x− z∥22 + γg(z)

)
.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 30 / 40

The Proximal Gradient Descent Method

min
x∈Rd

(f (x) + γg(x)) , f : Rd → R, g : Rd → R ∪ {±∞}, (1)

where f is a data-fidelity term, g is a regularisation term, and γ > 0.
Example:

f (x) =
1

2
∥Kx− y∥22, g(x) =

1

2
∥x∥22 (Ridge Regression).

Assume f : Rd → R and g : Rd → R ∪ {±∞} convex, f continuously differentiable, g
continuous and proper. A method to solve (1) is the Proximal Gradient Descent Method:

xk+1 = proxγg ,τ (xk − τ∇f (xk)) , τ > 0,

proxγg ,τ (x) = argmin
z∈Rd

(
1

2τ
∥x− z∥22 + γg(z)

)
.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 30 / 40

Example: Projected Gradient Descent

Ω ⊂ Rd non-empty, closed, convex set. f : Rd → R convex and continuously differentiable.

min
x∈Ω

f (x) ⇐⇒ min
x∈Rd

f (x) + iΩ(x), iΩ(x) =

{
0, x ∈ Ω,

+∞, x /∈ Ω.

Here, we have that if iΩ =: g , the proximal operator is an orthogonal projection operator:

proxγg ,τ (x) = argmin
z∈Rd

(
1

2τ
∥x− z∥22 + γiΩ(z)

)
= argmin

z∈Ω
∥x− z∥22 = projΩ(x).

The proximal gradient method then becomes the projected gradient descent method:

xk+1 = projΩ(xk − τ∇f (xk)).

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 31 / 40

Example: Projected Gradient Descent

Ω ⊂ Rd non-empty, closed, convex set. f : Rd → R convex and continuously differentiable.

min
x∈Ω

f (x) ⇐⇒ min
x∈Rd

f (x) + iΩ(x), iΩ(x) =

{
0, x ∈ Ω,

+∞, x /∈ Ω.

Here, we have that if iΩ =: g , the proximal operator is an orthogonal projection operator:

proxγg ,τ (x) = argmin
z∈Rd

(
1

2τ
∥x− z∥22 + γiΩ(z)

)
= argmin

z∈Ω
∥x− z∥22 = projΩ(x).

The proximal gradient method then becomes the projected gradient descent method:

xk+1 = projΩ(xk − τ∇f (xk)).

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 31 / 40

Example: Projected Gradient Descent

Ω ⊂ Rd non-empty, closed, convex set. f : Rd → R convex and continuously differentiable.

min
x∈Ω

f (x) ⇐⇒ min
x∈Rd

f (x) + iΩ(x), iΩ(x) =

{
0, x ∈ Ω,

+∞, x /∈ Ω.

Here, we have that if iΩ =: g , the proximal operator is an orthogonal projection operator:

proxγg ,τ (x) = argmin
z∈Rd

(
1

2τ
∥x− z∥22 + γiΩ(z)

)
= argmin

z∈Ω
∥x− z∥22 = projΩ(x).

The proximal gradient method then becomes the projected gradient descent method:

xk+1 = projΩ(xk − τ∇f (xk)).

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 31 / 40

Example: ISTA (cfr. SINDy)

Let f (x) = 1
2∥Kx− y∥22, g(x) = ∥x∥1 =

∑d
i=1 |xi |, and γ > 0 the regularisation parameter.

The Proximal Gradient Descent then writes

xk+1 = proxγg ,τ

(
xk − τK⊤(Kx− y)

)
= Sτγ

(
xk − τK⊤(Kx− y)

)
,

(Sλ(x))i =





xi − λ, xi > λ,

0, |xi | ≤ λ,

xi + λ, xi < −λ,

λ > 0, i = 1, ..., d .

1.0 0.5 0.0 0.5 1.0
x

1

0

1
Soft-thresholding, = 0.4

1.0 0.5 0.0 0.5 1.0
x

Hard-thresholding, = 0.4

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 32 / 40

Example: ISTA (cfr. SINDy)

Let f (x) = 1
2∥Kx− y∥22, g(x) = ∥x∥1 =

∑d
i=1 |xi |, and γ > 0 the regularisation parameter.

The Proximal Gradient Descent then writes

xk+1 = proxγg ,τ

(
xk − τK⊤(Kx− y)

)
= Sτγ

(
xk − τK⊤(Kx− y)

)
,

(Sλ(x))i =





xi − λ, xi > λ,

0, |xi | ≤ λ,

xi + λ, xi < −λ,

λ > 0, i = 1, ..., d .

1.0 0.5 0.0 0.5 1.0
x

1

0

1
Soft-thresholding, = 0.4

1.0 0.5 0.0 0.5 1.0
x

Hard-thresholding, = 0.4

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 32 / 40

The Plug-and-Play Method

There are two problems with what we saw in the two previous slides:
1 It is extremely hard to define a good regulariser for any given task,
2 The proximal operator of a generic regulariser g is not easy to compute.

Solution: The Plug-and-Play method is defined by replacing proxγg ,α with a Neural Network:

Plug-and-Play: xk+1 = Nθ(xk − τ∇f (xk)), Nθ : Rd → Rd . (2)

The network Nθ is typically trained offline to denoise images:

min
θ

1

N

N∑

i=1

∥Nθ(xi + δi)− xi∥22 , δ1, ..., δN ∼ D.

Convergence guarantees

Assume f is µ-strongly convex, L-smooth, and τ ∈ (0, 2/L). Then if Nθ is 1-Lipschitz,
the iterates in (2) converge to a unique fixed point.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 33 / 40

The Plug-and-Play Method

There are two problems with what we saw in the two previous slides:
1 It is extremely hard to define a good regulariser for any given task,
2 The proximal operator of a generic regulariser g is not easy to compute.

Solution: The Plug-and-Play method is defined by replacing proxγg ,α with a Neural Network:

Plug-and-Play: xk+1 = Nθ(xk − τ∇f (xk)), Nθ : Rd → Rd . (2)

The network Nθ is typically trained offline to denoise images:

min
θ

1

N

N∑

i=1

∥Nθ(xi + δi)− xi∥22 , δ1, ..., δN ∼ D.

Convergence guarantees

Assume f is µ-strongly convex, L-smooth, and τ ∈ (0, 2/L). Then if Nθ is 1-Lipschitz,
the iterates in (2) converge to a unique fixed point.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 33 / 40

The Plug-and-Play Method

There are two problems with what we saw in the two previous slides:
1 It is extremely hard to define a good regulariser for any given task,
2 The proximal operator of a generic regulariser g is not easy to compute.

Solution: The Plug-and-Play method is defined by replacing proxγg ,α with a Neural Network:

Plug-and-Play: xk+1 = Nθ(xk − τ∇f (xk)), Nθ : Rd → Rd . (2)

The network Nθ is typically trained offline to denoise images:

min
θ

1

N

N∑

i=1

∥Nθ(xi + δi)− xi∥22 , δ1, ..., δN ∼ D.

Convergence guarantees

Assume f is µ-strongly convex, L-smooth, and τ ∈ (0, 2/L). Then if Nθ is 1-Lipschitz,
the iterates in (2) converge to a unique fixed point.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 33 / 40

Averaged maps

α-averaged map

The map T : Rd → Rd is averaged if there exists α ∈ (0, 1) and a 1-Lipschitz map
F : Rd → Rd such that T = (1 − α)id + αF . The composition of averaged maps
is again averaged. Patrick L Combettes and Isao Yamada. “Compositions and Convex
Combinations of Averaged Nonexpansive Operators”. In: Journal of Mathematical Anal-
ysis and Applications 425.1 (2015), pp. 55–70, Proposition 2.4

Let f : Rd → R be convex, continuously-differentiable, and L-smooth. Then if τ ∈
(0, 2/L) the map T (x) = x− τ∇f (x) is averaged with α = τL/2.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 34 / 40

Convergence under convexity

Convergence Theorem

Let f : Rd → R be continuously differentiable, convex, and L-smooth. Assume τ ∈
(0, 2/L). Then G = id − τ∇f is τL/2 averaged. Further assume that Nθ : Rd → Rd

is averaged. Let T = Nθ ◦ G . Assuming that Fix(T) ̸= ∅, the Plug-and-Play iterates
xk+1 = T (xk) will converge to a fixed point.

Our networks are explicit Euler steps for the gradient of f (x) = 1⊤ReLU2(Ax + b)/2, which is
convex and its gradient is

∇f (x) = A⊤ReLU(Ax + b),

which is ∥A∥22-Lipschitz. This means that the layers of our 1-Lipschitz network are averaged if
0 < τi < 2/∥Ai∥22, and hence so is the full network Nθ.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 35 / 40

Convergence under convexity

Convergence Theorem

Let f : Rd → R be continuously differentiable, convex, and L-smooth. Assume τ ∈
(0, 2/L). Then G = id − τ∇f is τL/2 averaged. Further assume that Nθ : Rd → Rd

is averaged. Let T = Nθ ◦ G . Assuming that Fix(T) ̸= ∅, the Plug-and-Play iterates
xk+1 = T (xk) will converge to a fixed point.

Our networks are explicit Euler steps for the gradient of f (x) = 1⊤ReLU2(Ax + b)/2, which is
convex and its gradient is

∇f (x) = A⊤ReLU(Ax + b),

which is ∥A∥22-Lipschitz. This means that the layers of our 1-Lipschitz network are averaged if
0 < τi < 2/∥Ai∥22, and hence so is the full network Nθ.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 35 / 40

The Network Nθ Trained as Denoiser

PSNR (Peak Signal-to-Noise Ratio)

PSNR(x̂, x∗) = 10 log10

(
maxi ,j ,k |x∗i ,j ,k |2

1
3·321·481

∑
i ,j ,k |x∗i ,j ,k − x̂i ,j ,k |2

)
.

x TV 25.8 Euler 27.6

y 16.5 DnCNN 27.1 RK4 27.5

Figure 1: Image from BSDS500 dataset, composed of 500 natural colour images of size 321× 481.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 36 / 40

What do we mean with Deblurring?

Let us consider the inverse problem of deblurring: we assume that we are given
measurements y = Kx + ε, where Kx = k ∗ x is a convolution operation representing a
motion blur.

The ill-posedness of this problem is manifested in the instability of the inverse of the
convolution; as a consequence of this, a naive inversion of the measurements will blow up
the noise in the measurements.

The data-fidelity term is

f (x) =
1

2
∥Kx− y∥22.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 37 / 40

Visualisation of the ill-posedness

Original, x Blur + noise, y = Kx + Naive inverse K 1y = x

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 38 / 40

Use in a Deblurring Task

100 101 102

Iteration number k

10−9

10−7

10−5

10−3

10−1

101

103

‖x
k
−
x̂
‖2

Convergence of the PnP iterations
x

y 15.6

x̂ 30.6

Figure 2: Using the learned Euler denoiser to solve an ill-posed inverse problem (deblurring) in a PnP
fashion, with convergence guarantee.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 39 / 40

APPENDIX

Neural ODEs

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 1 / 25

Neural ODEs: The Continuous-Depth Limit

ResNet layers can be interpreted as discretisations of parametric ODEs.

If we go to the limit as the time step goes to zero, we can recover a dynamical system

ẋ(t) = Fθ(t, x(t)), θ ∈ Θ,

where Fθ : R× Rd → Rd is parametrised by a neural network.

Figure 3: Source: Chen et al., “Neural Ordinary Differential Equations”.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 2 / 25

Neural ODEs

More explicitly, a Neural ODE is a parametric map Nθ : Rd → Rc of the form

Nθ(x0) = By(T) + b ∈ Rc ,

{
ẏ(t) = Fθ(t, y(t)), Fθ : R× Rh → Rh,

y(0) = Ax(0) + a ∈ Rh,

for an h ∈ N. Here, A ∈ Rh×d , a ∈ Rh, B ∈ Rc×h, and b ∈ Rc .

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 3 / 25

How to train them: discrete backpropagation vs. adjoint method

There are two main strategies to train Neural ODEs:

1 Discretise backpropagation, and

2 Adjoint method.

The first, corresponds to the conventional backpropagation algorithm, where the forward
pass is defined through a numerical method:

y0 = Ax0 + a

yk+1 = φhk
Fθ
(tk , yk), tk+1 = tk + hk+1, k = 0, ...,K − 1,

Nθ(x0) = ByK + b.

As long as the numerical method φ is differentiable, we can backpropagate through it and
minimise the loss function to find a good set of weights.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 4 / 25

The adjoint sensitivity method

For simplicity, fix d = c, and consider Neural ODEs of the form

Nθ(x0) = x(T) = x0 +

∫ t

0
Fθ(t, x(t))dt, A = B = Id , a = b = 0.

Let us introduce a loss function L : Rd × Rd → R+, and study the gradient
∇θL(Nθ(x0), y).

First, we introduce the so-called adjoint variable

a(t) =
∂L(x(T), y)

∂x(t)
∈ Rd .

Assuming to know x(T), we see that a(T) is known as well. What about a generic a(t)
for t ∈ [0,T)?.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 5 / 25

The adjoint sensitivity method

For any t ∈ R and ε > 0, we see that

x(t + ε) = x(t) +

∫ t+ε

t
Fθ(s, x(s))ds.

Furthermore, by the chain rule we get

dL(x(T), y)

dx(t)
=

(
dx(t + ε)

dx(t)

)⊤ dL(x(T), y)

dx(t + ε)
, i.e., a(t) =

(
dx(t + ε)

dx(t)

)⊤
a(t + ε).

This allows us to obtain that

d

dt
a(t) = lim

ε→0

a(t + ε)− a(t)

ε
= ... = −

(
∂Fθ(t, x(t))

∂x(t)

)⊤
a(t).

It follows that, for t ∈ [0,T):

a(t) = a(T)−
∫ t

T

(
∂Fθ(s, x(s))

∂x(s)

)⊤
a(s)ds.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 6 / 25

The adjoint sensitivity method

Let θ ∈ Rp. Call Jθ(t) =
∂x(t)
∂θ ∈ Rd×p, a matrix which satisfies the ODE

d

dt
Jθ(t) =

∂Fθ(t, x(t))

∂θ
+

∂Fθ(t, x(t))

∂x(t)
Jθ(t), Jθ(0) =

∂x0
∂θ

= 0d×p.

We see that

Rp ∋ ∇θL(x(T), y) = (Jθ(T))⊤a(T) = (Jθ(0))
⊤a(0) +

∫ T

0

d

dt

(
(Jθ(t))

⊤a(t)
)
dt.

The desired expression follows from the derivation below

d

dt
((Jθ(t))

⊤a(t)) = −(Jθ(t))
⊤ (∂x(t)Fθ(t, x(t))

)⊤
a(t)

+
(
∂θFθ(t, x(t))+∂x(t)Fθ(t, x(t))Jθ(t)

)⊤
a(t) = (∂θFθ(t, x(t)))

⊤ a(t).

=⇒ ∇θL(x(T), y) =

∫ T

0
(∂θFθ(t, x(t)))

⊤a(t)dt.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 7 / 25

Variations of the conventional Neural ODE

There are a lot of research papers considering alternative design strategies for Neural ODEs.
We include here a couple:

In Krzysztof M Choromanski et al. “Ode to an ODE”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 3338–3350, the authors augment the Neural ODE
with an ODE for the network weights, which hence become time-dependent:





ẋ(t) = σ(W (t)x(t)) ∈ Rd , (e.g. σ(x) = |x |)
Ẇ (t) = W (t)Ω(t,W (t)) ∈ Rd×d , Ω(t,W) ∈ Skew(d)

x(0) = x0,W (0) = W0 ∈ O(d).

In Alexander Norcliffe et al. “On Second Order Behaviour in Augmented Neural ODEs”.
In: Advances in Neural Information Processing Systems 33 (2020), pp. 5911–5921, the
authors consider second order Neural ODEs

ẍ(t) = Fθ(x(t), ẋ(t), t, θ) ∈ Rd ⇐⇒
{
ẋ(t) = v(t)

v̇(t) = Fθ(x(t), v(t), t, θ).

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 8 / 25

Variations of the conventional Neural ODE

There are a lot of research papers considering alternative design strategies for Neural ODEs.
We include here a couple:

In Choromanski et al., “Ode to an ODE”, the authors augment the Neural ODE with an
ODE for the network weights, which hence become time-dependent:





ẋ(t) = σ(W (t)x(t)) ∈ Rd , (e.g. σ(x) = |x |)
Ẇ (t) = W (t)Ω(t,W (t)) ∈ Rd×d , Ω(t,W) ∈ Skew(d)

x(0) = x0,W (0) = W0 ∈ O(d).

In Norcliffe et al., “On Second Order Behaviour in Augmented Neural ODEs”, the
authors consider second order Neural ODEs

ẍ(t) = Fθ(x(t), ẋ(t), t, θ) ∈ Rd ⇐⇒
{
ẋ(t) = v(t)

v̇(t) = Fθ(x(t), v(t), t, θ).

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 8 / 25

Implementation with PyTorch

There are several libraries that allow for the quick implementation of these models.

An example is https://github.com/rtqichen/torchdiffeq:

import numpy as np; from scipy.integrate import odeint as sp_odeint
import torch, torch.nn as nn, torch.optim as optim; from torchdiffeq import odeint_adjoint as odeint

simpleHO = lambda y, t: [y[1], -y[0]]

T = np.linspace(0., 2*np.pi, 50); Y0_np = np.random.randn(1000, 2)
Y_star_np = np.stack([sp_odeint(simpleHO, y0, T) for y0 in Y0_np], axis=1)

T_t = torch.from_numpy(T).float(); Y0 = torch.from_numpy(Y0_np).float(); Y_star = torch.from_numpy(Y_star_np).float()

class ODEFunc(nn.Module):
def __init__(self):

super().__init__()
self.net = nn.Sequential(nn.Linear(2, 32), nn.Tanh(), nn.Linear(32, 2))

def forward(self, t, y):
return self.net(y)

f = ODEFunc(); opt = optim.Adam(f.parameters(), lr=1e-2)

for _ in range(1000):
Y = odeint(f, Y0, T_t)
loss = (Y - Y_star).pow(2).mean()
opt.zero_grad(); loss.backward(); opt.step()

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 9 / 25

https://github.com/rtqichen/torchdiffeq

Simulation with irregular time-sampling

0 1 2 3 4 5 6

t

−1.0

−0.5

0.0

0.5

1.0

x
(t

)

0 1 2 3 4 5 6

t

−1.0

−0.5

0.0

0.5

1.0

v
(t

)

−1 0 1

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

v

HO (true)

Neural ODE

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 10 / 25

What do we mean by generative modelling?

A generative model is a machine learning model designed to create new data that is
similar to its training data. Generative models learn the distribution of the training data,
then apply those understandings to generate new content in response to new input data.

Figure 5: Source: https://www.youtube.com/watch?v=DDq_pIfHqLs&ab_channel=Jia-BinHuang.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 11 / 25

https://www.youtube.com/watch?v=DDq_pIfHqLs&ab_channel=Jia-BinHuang

Second application of Neural ODEs: Generative Modelling

Figure 6: Source: https://www.youtube.com/watch?v=DDq_pIfHqLs&ab_channel=Jia-BinHuang.

A way to get pθ as close as possible to the correct distribution pdata is to maximise the
log-likelihood:

argmax
θ

Ex∼pdata [log(pθ(x))] = argmin
θ

DKL(pdata||pθ), DKL(P||Q) = Ex∼P

[
log

P(x)

Q(x)

]
.

Empirically: argmin
θ

− 1

N

N∑

i=1

log(pθ(xi)), x1, ..., xN ∼ pdata, iid.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 12 / 25

https://www.youtube.com/watch?v=DDq_pIfHqLs&ab_channel=Jia-BinHuang

Generative modelling with continuous normalising flows

Consider a neural ODE
{

d
dtϕt,θ(z) = Fθ

t (ϕt,θ(z)), Fθ : [0, 1]× Rd → Rd ,

ϕ0(z) = z ,

and an easy-to-sample probability measure with density pinit. We then set x = ϕ1(z).

Continuous normalising flows define pθt = (ϕt,θ)∗pinit, t ∈ [0, 1], as

pθt (x) = (ϕt,θ)∗pinit(x) = pinit(ϕ
−1
t,θ (x))

∣∣∣det ∂x
(
ϕ−1
t,θ (x)

)∣∣∣ .

This leads to log pθ1(x) = log(pinit(ϕ
−1
1,θ(x)))−

∫ 1
0 div(Fθ

s)(ϕ
−1
s,θ(x))ds.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 13 / 25

Overview of Structure-Preserving Deep Learning

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 14 / 25

What do we mean with structure preservation?

Sometimes when approximating a target function we are not just looking for an accurate
approximation, but we care about interpretability, reliability, and qualitative compatibility
with the true function.

STOP

GREEN LIGHT

Figure 7: Misclassification of an image that could harm self-driving cars.

Such properties are achievable only by constraining the neural networks we construct so
that they behave as desired. We call the area of Deep Learning interested in constraining
neural networks structure-preserving deep learning.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 15 / 25

What do we mean with structure preservation?

Sometimes when approximating a target function we are not just looking for an accurate
approximation, but we care about interpretability, reliability, and qualitative compatibility
with the true function.

STOP

GREEN LIGHT

Figure 7: Misclassification of an image that could harm self-driving cars.

Such properties are achievable only by constraining the neural networks we construct so
that they behave as desired. We call the area of Deep Learning interested in constraining
neural networks structure-preserving deep learning.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 15 / 25

Some learning problems with a structure worth preserving

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

x ref

y ref

z ref

x + y + z ref

x

y

z

x + y + z

(a) Learning the mass preserving flow map of the
SIR model.

(b) Learning the norm-preserving flow map of the
linear advection PDE.

−2 −1 0 1 2
q1

−1.0

−0.5

0.0

0.5

1.0

p 1

Comparison of trajectories in (q1, p1) plane

Real

Predicted

Initial Condition

(c) Learning the Hamiltonian of unconstrained
systems.

First pendulum Second pendulum

(d) Learning the Hamiltonian of constrained
systems.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 16 / 25

Imposing structure over a neural network

To build networks satisfying a desired property, we can either restrict the parametrisation
Nθ or modify the loss function.

Restrict the architecture:

Nθ(x) =
Ñθ(x)∥∥∥Ñθ(x)

∥∥∥
2

∥x∥2 .

Modify the loss function:

L̃ (θ) =
1

N

N∑

i=1

∥Nθ(xi)− yi∥22 +
1

N

N∑

i=1

(∥xi∥2 − ∥Nθ(xi)∥2)2

︸ ︷︷ ︸
regulariser

.

Not all restrictions are equally effective, e.g. NR(x) = Rx, R⊤R = Id , is norm-preserving
but probably not expressive enough.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 17 / 25

Imposing structure over a neural network

To build networks satisfying a desired property, we can either restrict the parametrisation
Nθ or modify the loss function.

Restrict the architecture:

Nθ(x) =
Ñθ(x)∥∥∥Ñθ(x)

∥∥∥
2

∥x∥2 .

Modify the loss function:

L̃ (θ) =
1

N

N∑

i=1

∥Nθ(xi)− yi∥22 +
1

N

N∑

i=1

(∥xi∥2 − ∥Nθ(xi)∥2)2

︸ ︷︷ ︸
regulariser

.

Not all restrictions are equally effective, e.g. NR(x) = Rx, R⊤R = Id , is norm-preserving
but probably not expressive enough.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 17 / 25

Imposing structure over a neural network

To build networks satisfying a desired property, we can either restrict the parametrisation
Nθ or modify the loss function.

Restrict the architecture:

Nθ(x) =
Ñθ(x)∥∥∥Ñθ(x)

∥∥∥
2

∥x∥2 .

Modify the loss function:

L̃ (θ) =
1

N

N∑

i=1

∥Nθ(xi)− yi∥22 +
1

N

N∑

i=1

(∥xi∥2 − ∥Nθ(xi)∥2)2

︸ ︷︷ ︸
regulariser

.

Not all restrictions are equally effective, e.g. NR(x) = Rx, R⊤R = Id , is norm-preserving
but probably not expressive enough.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 17 / 25

Structured networks based on dynamical systems

Choose a property (closed under composition) P that the network has to satisfy, e.g.
volume preservation.

Choose a family of parametric vector fields SΘ whose solutions satisfy P, e.g.

Fθ(x) =

[
σ (A1x2 + b1)
σ (A2x1 + b2)

]
=

[
σ (A1x2 + b1)

0

]
+

[
0

σ (A2x1 + b2)

]
, x =

[
x1
x2

]
,

with x ∈ Rd , x1 ∈ Rd1 , x2 ∈ Rd2 , and d = d1 + d2.

Choose a numerical method Ψh
Fθ

that preserves the property P at a discrete level, e.g.

Ψh
Fθ
(x) =

[
x1 + hσ (A1x2 + b1) =: x̃1

x2 + hσ (A2x̃1 + b2)

]
.

The resulting network Nθ = ΨhL
FθL

◦ · · · ◦Ψh1
Fθ1

will preserve P.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 18 / 25

Structured networks based on dynamical systems

Choose a property (closed under composition) P that the network has to satisfy, e.g.
volume preservation.

Choose a family of parametric vector fields SΘ whose solutions satisfy P, e.g.

Fθ(x) =

[
σ (A1x2 + b1)
σ (A2x1 + b2)

]
=

[
σ (A1x2 + b1)

0

]
+

[
0

σ (A2x1 + b2)

]
, x =

[
x1
x2

]
,

with x ∈ Rd , x1 ∈ Rd1 , x2 ∈ Rd2 , and d = d1 + d2.

Choose a numerical method Ψh
Fθ

that preserves the property P at a discrete level, e.g.

Ψh
Fθ
(x) =

[
x1 + hσ (A1x2 + b1) =: x̃1

x2 + hσ (A2x̃1 + b2)

]
.

The resulting network Nθ = ΨhL
FθL

◦ · · · ◦Ψh1
Fθ1

will preserve P.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 18 / 25

Structured networks based on dynamical systems

Choose a property (closed under composition) P that the network has to satisfy, e.g.
volume preservation.

Choose a family of parametric vector fields SΘ whose solutions satisfy P, e.g.

Fθ(x) =

[
σ (A1x2 + b1)
σ (A2x1 + b2)

]
=

[
σ (A1x2 + b1)

0

]
+

[
0

σ (A2x1 + b2)

]
, x =

[
x1
x2

]
,

with x ∈ Rd , x1 ∈ Rd1 , x2 ∈ Rd2 , and d = d1 + d2.

Choose a numerical method Ψh
Fθ

that preserves the property P at a discrete level, e.g.

Ψh
Fθ
(x) =

[
x1 + hσ (A1x2 + b1) =: x̃1

x2 + hσ (A2x̃1 + b2)

]
.

The resulting network Nθ = ΨhL
FθL

◦ · · · ◦Ψh1
Fθ1

will preserve P.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 18 / 25

Remark on Properties not Closed Under Composition

Not all the properties a function might satisfy are closed under composition. This makes their
imposition over NNs more challenging. An example is given by the set of gradient vector fields

G =
{
F : Rd → Rd | exists V : Rd → R, F = ∇V

}
.

A way to model neural networks which are gradients is: Vθ(x) = MLPθ(x), Fθ = ∇Vθ

(hard to train in high dimensions)

Or rely on modified architectures, such as

Fθ(x) = Nθ(x)− (∂xNθ(x))
⊤x.

We will not go into further details on this property.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 19 / 25

Symplectic Numerical Methods

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 20 / 25

Symplectic numerical methods

A one-step numerical method φh : R2n → R2n is symplectic if and only if when applied
to a Hamiltonian system the map φh is symplectic, i.e.,

(
∂φh(x)

∂x

)⊤
J
(
∂φh(x)

∂x

)
= J.

Symplectic and energy preserving methods

Let ẋ = J∇H(x) be a Hamiltonian system with Hamiltonian H and no conserved quanti-
ties other than H. Let φh be a symplectic and energy-preserving method for the Hamil-
tonian system. Then φh reproduces the exact solution up to a time re-parametrisation.

Informal theorem

A symplectic method almost conserves the Hamiltonian for an exponentially long time.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 21 / 25

Symplectic numerical methods

A one-step numerical method φh : R2n → R2n is symplectic if and only if when applied
to a Hamiltonian system the map φh is symplectic, i.e.,

(
∂φh(x)

∂x

)⊤
J
(
∂φh(x)

∂x

)
= J.

Symplectic and energy preserving methods

Let ẋ = J∇H(x) be a Hamiltonian system with Hamiltonian H and no conserved quanti-
ties other than H. Let φh be a symplectic and energy-preserving method for the Hamil-
tonian system. Then φh reproduces the exact solution up to a time re-parametrisation.

Informal theorem

A symplectic method almost conserves the Hamiltonian for an exponentially long time.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 21 / 25

Symplectic numerical methods

A one-step numerical method φh : R2n → R2n is symplectic if and only if when applied
to a Hamiltonian system the map φh is symplectic, i.e.,

(
∂φh(x)

∂x

)⊤
J
(
∂φh(x)

∂x

)
= J.

Symplectic and energy preserving methods

Let ẋ = J∇H(x) be a Hamiltonian system with Hamiltonian H and no conserved quanti-
ties other than H. Let φh be a symplectic and energy-preserving method for the Hamil-
tonian system. Then φh reproduces the exact solution up to a time re-parametrisation.

Informal theorem

A symplectic method almost conserves the Hamiltonian for an exponentially long time.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 21 / 25

Example: simple harmonic oscillator

0 10 20 30 40

t

−2

−1

0

1

2

q

p

−2 0 2

q

−2

−1

0

1

2

p

0 10 20 30 40

t

10−2

10−1

100

|H
(q

(t
),
p
(t

))
−
H

(q
0
,p

0
)|

Results with Explicit Euler

0 10 20 30 40

t

−1.0

−0.5

0.0

0.5

1.0

q

p

−1 0 1

q

−1.0

−0.5

0.0

0.5

1.0

p

0 10 20 30 40

t

10−15

|H
(q

(t
),
p
(t

))
−
H

(q
0
,p

0
)|

Results with Implicit Midpoint

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 22 / 25

Additional material for 1-Lipschitz networks

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 23 / 25

ODEs with 1-Lipschitz solution and Euler maps

ẋ(t) = −W⊤ReLU(W x(t)), W =
1

2

[√
2 −

√
2√

2
√
2

]
, ReLU(s) = max{s, 0}.

0 5 10

t (τ = 1)

0.0

0.2

0.4

0.6

0.8

1.0

‖xi(t)− xj(t)‖2

‖xi(0)− xj(0)‖2

0 5 10

t (τ = 2)

0.2

0.4

0.6

0.8

1.0

‖xi(t)− xj(t)‖2

‖xi(0)− xj(0)‖2

0 5 10

t (τ = 2.5)

0.6

0.8

1.0

1.2

‖xi(t)− xj(t)‖2

‖xi(0)− xj(0)‖2

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 24 / 25

Denoising Performance

ΓEuler := P ◦ Nθ ◦ L,
L(x1, x2, x3) = (x1, x3, x3, 0, ..., 0) ∈ R64, P(x1, ..., x64) = (x1, x2, x3) ∈ R3.

y

DnCNN10(y) DnCNN50(y) DnCNN200(y)

Γ10
Euler(y) Γ50

Euler(y) Γ200
Euler(y)

Figure 9: Repeated application of the unconstrained denoiser DnCNN2 and the constrained denoiser
ΓEuler to a given input image.

2Kai Zhang et al. “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising”. In:
IEEE transactions on image processing 26.7 (2017), pp. 3142–3155.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 25 / 25

	ResNets Based on Dynamical Systems
	Hamiltonian Neural Networks
	1-Lipschitz Neural Networks
	1-Lipschitz Networks for Robust Classification
	1-Lipschitz Networks for Inverse Problems

	Appendix
	Neural ODEs
	Overview of Structure-Preserving Deep Learning
	Symplectic Numerical Methods
	Additional material for 1-Lipschitz networks

	anm2:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

