
Introduction to the Mathematics of Deep Learning

Davide Murari

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

davidemurari.com/cism

dm2011@cam.ac.uk

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 1 / 40

https://davidemurari.com/cism/

Outline

1 The building blocks of neural networks

2 Activation functions

3 How do we train neural networks?

4 Vanishing gradients

5 Interpolation, Generalisation, and Extrapolation

6 Universal Approximation Theorems

7 Some of the most popular architectures

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 2 / 40

The building blocks of neural networks

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 3 / 40

What is a neural network mathematically

Neural networks are typically visualised as something like this

Mathematically, a neural network (NN) is a parametric map Nθ : Rc → Rd , usually
defined by composing L functions, called layers, as Nθ = FθL ◦ ... ◦ Fθ1 , Fθi : Rci → Rci+1 ,
c1 = c, cL+1 = d . Each component of each layer is called neuron.

The parametrisation strategy behind Nθ is defined by the so-called neural network
architecture.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 4 / 40

What is a neural network mathematically

Neural networks are typically visualised as something like this

Mathematically, a neural network (NN) is a parametric map Nθ : Rc → Rd , usually
defined by composing L functions, called layers, as Nθ = FθL ◦ ... ◦ Fθ1 , Fθi : Rci → Rci+1 ,
c1 = c, cL+1 = d . Each component of each layer is called neuron.

The parametrisation strategy behind Nθ is defined by the so-called neural network
architecture.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 4 / 40

The simplest type of layer

It is common practice to define layers by alternating affine maps with non-linear functions
applied entrywise:

Fθi (x) = Σ ◦ Ai (x), Σ(x) :=

 σ(x1)
...

σ(xci+1)

 ,

Ai : Rci → Rci+1 , Σ : Rci+1 → Rci+1 , σ : R → R.

(1)

We will use σ both for the scalar function and for the vector function.

σ is called activation function.

Depending on how Ai is defined, we can get different types of neural networks, such as
Fully Connected Networks, Convolutional Networks, Graph Neural Networks, and more.

We can modify (1) to get architectures such as ResNets, U-Nets, Transformers, and more.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 5 / 40

The simplest type of layer

It is common practice to define layers by alternating affine maps with non-linear functions
applied entrywise:

Fθi (x) = Σ ◦ Ai (x), Σ(x) :=

 σ(x1)
...

σ(xci+1)

 ,

Ai : Rci → Rci+1 , Σ : Rci+1 → Rci+1 , σ : R → R.

(1)

We will use σ both for the scalar function and for the vector function.

σ is called activation function.

Depending on how Ai is defined, we can get different types of neural networks, such as
Fully Connected Networks, Convolutional Networks, Graph Neural Networks, and more.

We can modify (1) to get architectures such as ResNets, U-Nets, Transformers, and more.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 5 / 40

The simplest type of layer

It is common practice to define layers by alternating affine maps with non-linear functions
applied entrywise:

Fθi (x) = Σ ◦ Ai (x), Σ(x) :=

 σ(x1)
...

σ(xci+1)

 ,

Ai : Rci → Rci+1 , Σ : Rci+1 → Rci+1 , σ : R → R.

(1)

We will use σ both for the scalar function and for the vector function.

σ is called activation function.

Depending on how Ai is defined, we can get different types of neural networks, such as
Fully Connected Networks, Convolutional Networks, Graph Neural Networks, and more.

We can modify (1) to get architectures such as ResNets, U-Nets, Transformers, and more.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 5 / 40

Deep VS Shallow Networks

A NN Nθ : Rd → Rc is shallow if it has a single hidden layer, so generally this means
that it can be written as

Nθ(x) = A1σ(A0x+ b), A0 ∈ Rh×d A1 ∈ Rd×h, b ∈ Rh, h ∈ N.

Nθ is deep if it is not shallow, so if it has L > 1 layers. If the layers are defined as seen
before, this means that

Nθ(x) = AL ◦ σ ◦ AL−1 ◦ ... ◦ A1 ◦ σ ◦ A0(x). (2)

If the affine layers are defined by unconstrained/dense matrices, we call Nθ in (2) a
Multi-Layer Perceptron (MLP).

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 6 / 40

Deep VS Shallow Networks

A NN Nθ : Rd → Rc is shallow if it has a single hidden layer, so generally this means
that it can be written as

Nθ(x) = A1σ(A0x+ b), A0 ∈ Rh×d A1 ∈ Rd×h, b ∈ Rh, h ∈ N.

Nθ is deep if it is not shallow, so if it has L > 1 layers. If the layers are defined as seen
before, this means that

Nθ(x) = AL ◦ σ ◦ AL−1 ◦ ... ◦ A1 ◦ σ ◦ A0(x). (2)

If the affine layers are defined by unconstrained/dense matrices, we call Nθ in (2) a
Multi-Layer Perceptron (MLP).

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 6 / 40

Finding the weights of a NN

The weights θ of Nθ can be found by solving a suitable optimisation problem. This
optimisation process is called network training.

The loss function to minimise is defined thanks to the data one has available, or thanks
to properties we would like the approximation to satisfy.

After minimising the loss function, we hopefully have a good set of parameters θ∗ and we
can use Nθ∗ to make new predictions, for unseen inputs.

We now briefly describe the common loss functions used for regression tasks, and
classification tasks.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 7 / 40

Finding the weights of a NN

The weights θ of Nθ can be found by solving a suitable optimisation problem. This
optimisation process is called network training.

The loss function to minimise is defined thanks to the data one has available, or thanks
to properties we would like the approximation to satisfy.

After minimising the loss function, we hopefully have a good set of parameters θ∗ and we
can use Nθ∗ to make new predictions, for unseen inputs.

We now briefly describe the common loss functions used for regression tasks, and
classification tasks.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 7 / 40

Finding the weights of a NN

The weights θ of Nθ can be found by solving a suitable optimisation problem. This
optimisation process is called network training.

The loss function to minimise is defined thanks to the data one has available, or thanks
to properties we would like the approximation to satisfy.

After minimising the loss function, we hopefully have a good set of parameters θ∗ and we
can use Nθ∗ to make new predictions, for unseen inputs.

We now briefly describe the common loss functions used for regression tasks, and
classification tasks.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 7 / 40

Finding the weights of a NN

The weights θ of Nθ can be found by solving a suitable optimisation problem. This
optimisation process is called network training.

The loss function to minimise is defined thanks to the data one has available, or thanks
to properties we would like the approximation to satisfy.

After minimising the loss function, we hopefully have a good set of parameters θ∗ and we
can use Nθ∗ to make new predictions, for unseen inputs.

We now briefly describe the common loss functions used for regression tasks, and
classification tasks.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 7 / 40

Mean-Squared Error Loss Function for regression

Given the dataset {(xi , yi = F (xi))}Ni=1, x1, ..., xN ∈ Ω ⊂ Rd , to approximate F : Rd → Rc

over Ω with a neural network Nθ : Rd → Rc , we can minimise the Mean-Squared Error Loss
function defined as

L(θ) = 1

N

N∑
i=1

∥Nθ(xi)− yi∥22 , ∥y∥2 :=
√

y21 + ...+ y2c .

0.0 0.2 0.4 0.6 0.8 1.0

x

−1.0

−0.5

0.0

0.5

1.0

F (x1)

Nθ(x1)

F (x2)

Nθ(x2)

F (x3)

Nθ(x3)

F

Nθ

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 8 / 40

Cross-Entropy Loss Function for classification

Dataset: {(xi , yi)}Ni=1, xi ∈ Ω ⊂ Rd , and yi ∈ Y := {1, . . . ,K}. yi is the class index
(the label) of xi ; e.g. yi = 3 means xi belongs to the third class (e.g. cats).

Target function: F : Rd → Y. For convenience, define its one-hot vector
e(yi) ∈ {0, 1}K with [e(yi)]k = δyi ,k , k = 1, ...,K , i = 1, ...,N.

Approximation strategy: We approximate F with a neural network Nθ : Rd → RK

producing logits Nθ(x) ∈ RK and class probabilities via the softmax function:

pθ(x) = softmax(Nθ(x)), [pθ(x)]k =
exp([Nθ(x)]k)∑K
j=1 exp([Nθ(x)]j)

≥ 0,
K∑

k=1

[pθ(x)]k = 1.

The (multi-class) Cross-Entropy Loss is

L(θ) = − 1

N

N∑
i=1

K∑
k=1

[e(yi)]k log[pθ(xi)]k

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 9 / 40

Cross-Entropy Loss Function for classification

Dataset: {(xi , yi)}Ni=1, xi ∈ Ω ⊂ Rd , and yi ∈ Y := {1, . . . ,K}. yi is the class index
(the label) of xi ; e.g. yi = 3 means xi belongs to the third class (e.g. cats).

Target function: F : Rd → Y. For convenience, define its one-hot vector
e(yi) ∈ {0, 1}K with [e(yi)]k = δyi ,k , k = 1, ...,K , i = 1, ...,N.

Approximation strategy: We approximate F with a neural network Nθ : Rd → RK

producing logits Nθ(x) ∈ RK and class probabilities via the softmax function:

pθ(x) = softmax(Nθ(x)), [pθ(x)]k =
exp([Nθ(x)]k)∑K
j=1 exp([Nθ(x)]j)

≥ 0,
K∑

k=1

[pθ(x)]k = 1.

The (multi-class) Cross-Entropy Loss is

L(θ) = − 1

N

N∑
i=1

K∑
k=1

[e(yi)]k log[pθ(xi)]k

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 9 / 40

Cross-Entropy Loss Function for classification

Dataset: {(xi , yi)}Ni=1, xi ∈ Ω ⊂ Rd , and yi ∈ Y := {1, . . . ,K}. yi is the class index
(the label) of xi ; e.g. yi = 3 means xi belongs to the third class (e.g. cats).

Target function: F : Rd → Y. For convenience, define its one-hot vector
e(yi) ∈ {0, 1}K with [e(yi)]k = δyi ,k , k = 1, ...,K , i = 1, ...,N.

Approximation strategy: We approximate F with a neural network Nθ : Rd → RK

producing logits Nθ(x) ∈ RK and class probabilities via the softmax function:

pθ(x) = softmax(Nθ(x)), [pθ(x)]k =
exp([Nθ(x)]k)∑K
j=1 exp([Nθ(x)]j)

≥ 0,
K∑

k=1

[pθ(x)]k = 1.

The (multi-class) Cross-Entropy Loss is

L(θ) = − 1

N

N∑
i=1

K∑
k=1

[e(yi)]k log[pθ(xi)]k

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 9 / 40

Cross-Entropy Loss Function for classification

Dataset: {(xi , yi)}Ni=1, xi ∈ Ω ⊂ Rd , and yi ∈ Y := {1, . . . ,K}. yi is the class index
(the label) of xi ; e.g. yi = 3 means xi belongs to the third class (e.g. cats).

Target function: F : Rd → Y. For convenience, define its one-hot vector
e(yi) ∈ {0, 1}K with [e(yi)]k = δyi ,k , k = 1, ...,K , i = 1, ...,N.

Approximation strategy: We approximate F with a neural network Nθ : Rd → RK

producing logits Nθ(x) ∈ RK and class probabilities via the softmax function:

pθ(x) = softmax(Nθ(x)), [pθ(x)]k =
exp([Nθ(x)]k)∑K
j=1 exp([Nθ(x)]j)

≥ 0,
K∑

k=1

[pθ(x)]k = 1.

The (multi-class) Cross-Entropy Loss is

L(θ) = − 1

N

N∑
i=1

K∑
k=1

[e(yi)]k log[pθ(xi)]k

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 9 / 40

Activation functions

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 10 / 40

Main properties of the most popular activation functions

In principle, most functions σ : R → R can be used as an activation function.

Furthermore, one could also change the activation function from neuron to neuron and
layer to layer. This is not so common, though.

Most (but not all) of the commonly used activation functions satisfy the following
properties:

1 Non-linear,

2 Not polynomials,

3 Non-decreasing,

4 Lipschitz continuous, i.e., |σ(s)− σ(t)| ≤ Lip(σ)|s − t| for s, t ∈ R.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 11 / 40

Main properties of the most popular activation functions

In principle, most functions σ : R → R can be used as an activation function.

Furthermore, one could also change the activation function from neuron to neuron and
layer to layer. This is not so common, though.

Most (but not all) of the commonly used activation functions satisfy the following
properties:

1 Non-linear,

2 Not polynomials,

3 Non-decreasing,

4 Lipschitz continuous, i.e., |σ(s)− σ(t)| ≤ Lip(σ)|s − t| for s, t ∈ R.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 11 / 40

Activations with bounded range

An important class of activation functions, called sigmoidal, have a bounded range, i.e.,
σ(R) is bounded. Examples are σ(x) = tanh(x) and σ(x) = 1/(1 + e−x). These
functions are said to saturate, which could be a problem for gradient stability.

−10 0 10

x

−1

0

1

tanh

−10 0 10

x

Sigmoid

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 12 / 40

Activations with unbounded range

There are many other activation functions with unbounded range, such as the popular
σ(x) = ReLU(x) = max{x , 0} and σ(x) = LeakyReLU(x) = max{x , ax}, a ∈ (0, 1).
ReLU is flat in half of the line, and this could also lead to gradient instabilities.

−5 0 5

x

0

2

4

ReLU

−5 0 5

x

LeakyReLU, a = 0.1

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 13 / 40

Some functions representable with ReLU

x = ReLU(x)− ReLU(−x), xp = ReLUp(x) + (−1)pReLUp(−x), p ∈ N,

|x | = ReLU(x) + ReLU(−x),

max{x , y} = x + ReLU(y − x) = y + ReLU(x − y)1,

min{x , y} = x − ReLU(x − y) = y − ReLU(y − x),

Hat functions such as f (x) = max{0, |1− |x ||} can also be represented:
f (x) = ReLU(x − 1)− 2ReLU(x) + ReLU(x + 1)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

0.0

0.5

1.0
f

ReLU-based

1Exercise: Show that this can be written as a single hidden layer neural network with ReLU as activation.
Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 14 / 40

Some functions representable with ReLU

x = ReLU(x)− ReLU(−x), xp = ReLUp(x) + (−1)pReLUp(−x), p ∈ N,

|x | = ReLU(x) + ReLU(−x),

max{x , y} = x + ReLU(y − x) = y + ReLU(x − y)1,

min{x , y} = x − ReLU(x − y) = y − ReLU(y − x),

Hat functions such as f (x) = max{0, |1− |x ||} can also be represented:
f (x) = ReLU(x − 1)− 2ReLU(x) + ReLU(x + 1)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

0.0

0.5

1.0
f

ReLU-based

1Exercise: Show that this can be written as a single hidden layer neural network with ReLU as activation.
Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 14 / 40

Some functions representable with ReLU

x = ReLU(x)− ReLU(−x), xp = ReLUp(x) + (−1)pReLUp(−x), p ∈ N,

|x | = ReLU(x) + ReLU(−x),

max{x , y} = x + ReLU(y − x) = y + ReLU(x − y)1,

min{x , y} = x − ReLU(x − y) = y − ReLU(y − x),

Hat functions such as f (x) = max{0, |1− |x ||} can also be represented:
f (x) = ReLU(x − 1)− 2ReLU(x) + ReLU(x + 1)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

0.0

0.5

1.0
f

ReLU-based

1Exercise: Show that this can be written as a single hidden layer neural network with ReLU as activation.
Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 14 / 40

Some functions representable with ReLU

x = ReLU(x)− ReLU(−x), xp = ReLUp(x) + (−1)pReLUp(−x), p ∈ N,

|x | = ReLU(x) + ReLU(−x),

max{x , y} = x + ReLU(y − x) = y + ReLU(x − y)1,

min{x , y} = x − ReLU(x − y) = y − ReLU(y − x),

Hat functions such as f (x) = max{0, |1− |x ||} can also be represented:
f (x) = ReLU(x − 1)− 2ReLU(x) + ReLU(x + 1)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

0.0

0.5

1.0
f

ReLU-based

1Exercise: Show that this can be written as a single hidden layer neural network with ReLU as activation.
Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 14 / 40

How do we train neural networks?

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 15 / 40

The need for first-order optimisation methods

To find the network weights θ, we need to minimise a loss function L(θ). This cannot
generally be done analytically, and we therefore need a numerical method to approximate
such a solution.

Most of these methods are iterative, in the sense that they start from a hopefully good
initial guess θ0, and define an iteration that aims to improve on it until a stopping
criterion is met:

θ0 ∼ D, θk+1 = T (θk ,∇L(θk), ...), k = 1, ..., epochs.

When dealing with neural network training, we generally need to solve very
high-dimensional problems, since θ ∈ Rp with p usually large. For example, GPT-1 has
117 million parameters.

This implies that we need to use first-order algorithms, i.e., methods where T only
depends on the gradient of L, and not on its higher-order derivatives.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 16 / 40

The need for first-order optimisation methods

To find the network weights θ, we need to minimise a loss function L(θ). This cannot
generally be done analytically, and we therefore need a numerical method to approximate
such a solution.

Most of these methods are iterative, in the sense that they start from a hopefully good
initial guess θ0, and define an iteration that aims to improve on it until a stopping
criterion is met:

θ0 ∼ D, θk+1 = T (θk ,∇L(θk), ...), k = 1, ..., epochs.

When dealing with neural network training, we generally need to solve very
high-dimensional problems, since θ ∈ Rp with p usually large. For example, GPT-1 has
117 million parameters.

This implies that we need to use first-order algorithms, i.e., methods where T only
depends on the gradient of L, and not on its higher-order derivatives.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 16 / 40

The need for first-order optimisation methods

To find the network weights θ, we need to minimise a loss function L(θ). This cannot
generally be done analytically, and we therefore need a numerical method to approximate
such a solution.

Most of these methods are iterative, in the sense that they start from a hopefully good
initial guess θ0, and define an iteration that aims to improve on it until a stopping
criterion is met:

θ0 ∼ D, θk+1 = T (θk ,∇L(θk), ...), k = 1, ..., epochs.

When dealing with neural network training, we generally need to solve very
high-dimensional problems, since θ ∈ Rp with p usually large. For example, GPT-1 has
117 million parameters.

This implies that we need to use first-order algorithms, i.e., methods where T only
depends on the gradient of L, and not on its higher-order derivatives.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 16 / 40

The need for first-order optimisation methods

To find the network weights θ, we need to minimise a loss function L(θ). This cannot
generally be done analytically, and we therefore need a numerical method to approximate
such a solution.

Most of these methods are iterative, in the sense that they start from a hopefully good
initial guess θ0, and define an iteration that aims to improve on it until a stopping
criterion is met:

θ0 ∼ D, θk+1 = T (θk ,∇L(θk), ...), k = 1, ..., epochs.

When dealing with neural network training, we generally need to solve very
high-dimensional problems, since θ ∈ Rp with p usually large. For example, GPT-1 has
117 million parameters.

This implies that we need to use first-order algorithms, i.e., methods where T only
depends on the gradient of L, and not on its higher-order derivatives.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 16 / 40

Some properties of functions fundamental in optimisation

Let F : Rd → R be a continuously differentiable function.

Lipschitz continuity: F is L-Lipschitz continuous if and only if for any x, y ∈ Rd ,
|F (y)− F (x)| ≤ L∥y − x∥2,

L-smoothness: F is L-smooth if and only if ∇F is L-Lipschitz, i.e. for any x, y ∈ Rd ,
∥∇F (y)−∇F (x)∥2 ≤ L∥y − x∥2,

Convexity: F is convex if and only if for any x, y ∈ Rd , (∇F (y)−∇F (x))⊤(y − x) ≥ 0,

Strong Convexity: Let µ > 0. F is µ-strongly convex if and only if for any x, y ∈ Rd ,
(∇F (y)−∇F (x))⊤(y − x) ≥ µ∥y − x∥22 = µ(y − x)⊤(y − x).

−1 0 1

x

0

1

Convex

−1 0 1

x

−1

0

1
Not convex

−1 0 1

x

0.0

2.5

Strongly convex

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 17 / 40

Some properties of functions fundamental in optimisation

Let F : Rd → R be a continuously differentiable function.

Lipschitz continuity: F is L-Lipschitz continuous if and only if for any x, y ∈ Rd ,
|F (y)− F (x)| ≤ L∥y − x∥2,

L-smoothness: F is L-smooth if and only if ∇F is L-Lipschitz, i.e. for any x, y ∈ Rd ,
∥∇F (y)−∇F (x)∥2 ≤ L∥y − x∥2,

Convexity: F is convex if and only if for any x, y ∈ Rd , (∇F (y)−∇F (x))⊤(y − x) ≥ 0,

Strong Convexity: Let µ > 0. F is µ-strongly convex if and only if for any x, y ∈ Rd ,
(∇F (y)−∇F (x))⊤(y − x) ≥ µ∥y − x∥22 = µ(y − x)⊤(y − x).

−1 0 1

x

0

1

Convex

−1 0 1

x

−1

0

1
Not convex

−1 0 1

x

0.0

2.5

Strongly convex

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 17 / 40

Some properties of functions fundamental in optimisation

Let F : Rd → R be a continuously differentiable function.

Lipschitz continuity: F is L-Lipschitz continuous if and only if for any x, y ∈ Rd ,
|F (y)− F (x)| ≤ L∥y − x∥2,

L-smoothness: F is L-smooth if and only if ∇F is L-Lipschitz, i.e. for any x, y ∈ Rd ,
∥∇F (y)−∇F (x)∥2 ≤ L∥y − x∥2,

Convexity: F is convex if and only if for any x, y ∈ Rd , (∇F (y)−∇F (x))⊤(y − x) ≥ 0,

Strong Convexity: Let µ > 0. F is µ-strongly convex if and only if for any x, y ∈ Rd ,
(∇F (y)−∇F (x))⊤(y − x) ≥ µ∥y − x∥22 = µ(y − x)⊤(y − x).

−1 0 1

x

0

1

Convex

−1 0 1

x

−1

0

1
Not convex

−1 0 1

x

0.0

2.5

Strongly convex

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 17 / 40

Gradient descent: The algorithm and its convergence properties

θk+1 = T (θk ,∇L(θk)) := θk − τ∇L(θk)

Assume that L : Rp → R is µ-strongly convex, continuously differentiable, and L-smooth.
Let θ∗ = argminθ∈Rp L(θ). Assume 0 < τ ≤ 2/(µ+ L). Then

∥θk − θ∗∥22 ≤ γk∥θ0 − θ∗∥22, γ =

(
1− 2τ

µL

µ+ L

)
∈ (0, 1).

The contraction factor γ is minimised at τ∗ = 2/(L+ µ), where

γ∗ =
(
L− µ

L+ µ

)2

=

(
κ− 1

κ+ 1

)2

, κ =
L

µ
(condition number of the problem).

For a proof, see Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic
Course. Vol. 87. Springer Science & Business Media, 2013.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 18 / 40

Gradient descent: The algorithm and its convergence properties

θk+1 = T (θk ,∇L(θk)) := θk − τ∇L(θk)

Assume that L : Rp → R is µ-strongly convex, continuously differentiable, and L-smooth.
Let θ∗ = argminθ∈Rp L(θ). Assume 0 < τ ≤ 2/(µ+ L). Then

∥θk − θ∗∥22 ≤ γk∥θ0 − θ∗∥22, γ =

(
1− 2τ

µL

µ+ L

)
∈ (0, 1).

The contraction factor γ is minimised at τ∗ = 2/(L+ µ), where

γ∗ =
(
L− µ

L+ µ

)2

=

(
κ− 1

κ+ 1

)2

, κ =
L

µ
(condition number of the problem).

For a proof, see Nesterov, Introductory Lectures on Convex Optimization: A Basic Course.
Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 18 / 40

The loss function is usually not convex

The loss of neural networks is generally not convex. Consider Nθ : R → R defined as

Nθ(x) = tanh(ax), θ = a ∈ R.

It is easy to see that the loss function below is not convex in this case

L(a) = 1

2
(Nθ(1)− 0)2 =

1

2
tanh(a)2.

−4 −3 −2 −1 0 1 2 3 4

a

0.0

0.2

0.4

tanh(a)2/2

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 19 / 40

Convergence properties for non-convex objectives

The lack of convexity generally leads to several equivalent local minima.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x

0.0

0.5

1.0

1.5

f(x) = (x2 − 1)2

This complicates the convergence analysis of the optimisers. These lectures will not cover
these aspects, but here are a couple of relevant references:

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. “A Convergence Theory for Deep Learning
via Over-Parameterization”. In: International Conference on Machine Learning. Vol. 451.
2018,
Simon Du et al. “Gradient Descent Finds Global Minima of Deep Neural Networks”. In:
International conference on machine learning. PMLR. 2019, pp. 1675–1685.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 20 / 40

Vanishing gradients

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 21 / 40

Backpropagation: how do we compute the gradients?

prediction = model(input) #Forward propagation

loss = criterion(prediction,target) #Compute the mean squared error

loss.backward() #Backpropagation

Let us focus on a data point (xn, yn) ∈ Rd × Rc , and consider the network Nθ = FθL ◦ · · · ◦ Fθ1 . Define

x1 = xn, xj+1 = Fθj (x
j), j = 1, . . . , L, ŷn := xL+1.

Define Ln := ∥ŷn − yn∥22/2. Assume for simplicity that all the weights θ1, ..., θL are vectors. Set

gL+1 := ∇xL+1Ln = xL+1 − yn, gj := ∇xjLn =
(
JxjFθj (x

j)
)⊤
gj+1, j = L, . . . , 1,

where J denotes a Jacobian.

Gradients (per sample)

∇θjLn =
(
JθjFθj (x

j)
)⊤∇xjLn =

(
JθjFθj (x

j)
)⊤
gj+1, j = L, . . . , 1.

Thus, the Backpropagation algorithm is just the chain rule organised to reuse Jacobian–vector products.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 22 / 40

Backpropagation: how do we compute the gradients?

prediction = model(input) #Forward propagation

loss = criterion(prediction,target) #Compute the mean squared error

loss.backward() #Backpropagation

Let us focus on a data point (xn, yn) ∈ Rd × Rc , and consider the network Nθ = FθL ◦ · · · ◦ Fθ1 . Define

x1 = xn, xj+1 = Fθj (x
j), j = 1, . . . , L, ŷn := xL+1.

Define Ln := ∥ŷn − yn∥22/2. Assume for simplicity that all the weights θ1, ..., θL are vectors. Set

gL+1 := ∇xL+1Ln = xL+1 − yn, gj := ∇xjLn =
(
JxjFθj (x

j)
)⊤
gj+1, j = L, . . . , 1,

where J denotes a Jacobian.

Gradients (per sample)

∇θjLn =
(
JθjFθj (x

j)
)⊤∇xjLn =

(
JθjFθj (x

j)
)⊤
gj+1, j = L, . . . , 1.

Thus, the Backpropagation algorithm is just the chain rule organised to reuse Jacobian–vector products.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 22 / 40

Backpropagation: how do we compute the gradients?

prediction = model(input) #Forward propagation

loss = criterion(prediction,target) #Compute the mean squared error

loss.backward() #Backpropagation

Let us focus on a data point (xn, yn) ∈ Rd × Rc , and consider the network Nθ = FθL ◦ · · · ◦ Fθ1 . Define

x1 = xn, xj+1 = Fθj (x
j), j = 1, . . . , L, ŷn := xL+1.

Define Ln := ∥ŷn − yn∥22/2. Assume for simplicity that all the weights θ1, ..., θL are vectors. Set

gL+1 := ∇xL+1Ln = xL+1 − yn, gj := ∇xjLn =
(
JxjFθj (x

j)
)⊤
gj+1, j = L, . . . , 1,

where J denotes a Jacobian.

Gradients (per sample)

∇θjLn =
(
JθjFθj (x

j)
)⊤∇xjLn =

(
JθjFθj (x

j)
)⊤
gj+1, j = L, . . . , 1.

Thus, the Backpropagation algorithm is just the chain rule organised to reuse Jacobian–vector products.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 22 / 40

Backpropagation: how do we compute the gradients?

prediction = model(input) #Forward propagation

loss = criterion(prediction,target) #Compute the mean squared error

loss.backward() #Backpropagation

Let us focus on a data point (xn, yn) ∈ Rd × Rc , and consider the network Nθ = FθL ◦ · · · ◦ Fθ1 . Define

x1 = xn, xj+1 = Fθj (x
j), j = 1, . . . , L, ŷn := xL+1.

Define Ln := ∥ŷn − yn∥22/2. Assume for simplicity that all the weights θ1, ..., θL are vectors. Set

gL+1 := ∇xL+1Ln = xL+1 − yn, gj := ∇xjLn =
(
JxjFθj (x

j)
)⊤
gj+1, j = L, . . . , 1,

where J denotes a Jacobian.

Gradients (per sample)

∇θjLn =
(
JθjFθj (x

j)
)⊤∇xjLn =

(
JθjFθj (x

j)
)⊤
gj+1, j = L, . . . , 1.

Thus, the Backpropagation algorithm is just the chain rule organised to reuse Jacobian–vector products.
Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 22 / 40

Vanishing gradients

x

y

0 500 1000 1500 2000 2500 3000

Training iterations

10−20

10−17

10−14

10−11

10−8

10−5

10−2

101

‖∂
x
k
x
`
‖ 2

Decision boundary and Jacobian norms for a 12-layer MLP

By repeated application of the chain rule, we can see that

∥∇θjLn∥2 ≤ ∥JθjFθj (xj)∥2

 L∏
ℓ=j+1

∥∥∥JxℓFθℓ(xℓ)∥∥∥
2

 ∥∇xL+1Ln∥

If ∥JxFθℓ(x)∥2 ≤ ρ < 1 (e.g. Lip(σ) ≤ 1 and ∥Aℓ∥2 ≤ ρ), then ∥∇θjLn∥2 ≲ ρ L−j

⇒ vanishing gradients, and we can not meaningfully update the weights.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 23 / 40

Vanishing gradients

x

y

0 500 1000 1500 2000 2500 3000

Training iterations

10−20

10−17

10−14

10−11

10−8

10−5

10−2

101

‖∂
x
k
x
`
‖ 2

Decision boundary and Jacobian norms for a 12-layer MLP

By repeated application of the chain rule, we can see that

∥∇θjLn∥2 ≤ ∥JθjFθj (xj)∥2

 L∏
ℓ=j+1

∥∥∥JxℓFθℓ(xℓ)∥∥∥
2

 ∥∇xL+1Ln∥

If ∥JxFθℓ(x)∥2 ≤ ρ < 1 (e.g. Lip(σ) ≤ 1 and ∥Aℓ∥2 ≤ ρ), then ∥∇θjLn∥2 ≲ ρ L−j

⇒ vanishing gradients, and we can not meaningfully update the weights.
Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 23 / 40

Interpolation, Generalisation, and Extrapolation

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 24 / 40

A visual understanding (the Runge function)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x

−3

−2

−1

0

1

Interpolation can overfit and generalise poorly

target f(x) = 1
1+25x2

interpolant deg 12
RMSE=9.89e-01

LS fit deg 5
RMSE=1.35e-01

train points

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x

0

100000

200000

300000

400000

Extrapolation: behaviour outside [-1, 1] is unreliable

target

interpolant deg 12

LS fit deg 5

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 25 / 40

Improving generalisation and extrapolation in neural networks

Generalisation = Performance on i.i.d. test data from the same distribution of the training set.
Extrapolation = Performance outside the training regime/support.

Improving generalisation (in-distribution)

Data: augmentation or synthetic data.

Explicit regularisation: weight decay (ℓ2), dropout, early stopping.

Smoothness & stability: Jacobian/Lipschitz penalties, spectral/weight norm constraints,
batch/weight norm.

Architecture: residual connections, or normalisation layers.

Improving extrapolation (out-of-distribution)

Inductive biases: symmetry/equivariance, invariances.

Physical/structural constraints: physics-informed losses or hard constraints,
Symplectic/Hamiltonian Networks, Monotone/Convex layers, stability/Lipschitz control.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 26 / 40

Improving generalisation and extrapolation in neural networks

Generalisation = Performance on i.i.d. test data from the same distribution of the training set.
Extrapolation = Performance outside the training regime/support.

Improving generalisation (in-distribution)

Data: augmentation or synthetic data.

Explicit regularisation: weight decay (ℓ2), dropout, early stopping.

Smoothness & stability: Jacobian/Lipschitz penalties, spectral/weight norm constraints,
batch/weight norm.

Architecture: residual connections, or normalisation layers.

Improving extrapolation (out-of-distribution)

Inductive biases: symmetry/equivariance, invariances.

Physical/structural constraints: physics-informed losses or hard constraints,
Symplectic/Hamiltonian Networks, Monotone/Convex layers, stability/Lipschitz control.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 26 / 40

Improving generalisation and extrapolation in neural networks

Generalisation = Performance on i.i.d. test data from the same distribution of the training set.
Extrapolation = Performance outside the training regime/support.

Improving generalisation (in-distribution)

Data: augmentation or synthetic data.

Explicit regularisation: weight decay (ℓ2), dropout, early stopping.

Smoothness & stability: Jacobian/Lipschitz penalties, spectral/weight norm constraints,
batch/weight norm.

Architecture: residual connections, or normalisation layers.

Improving extrapolation (out-of-distribution)

Inductive biases: symmetry/equivariance, invariances.

Physical/structural constraints: physics-informed losses or hard constraints,
Symplectic/Hamiltonian Networks, Monotone/Convex layers, stability/Lipschitz control.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 26 / 40

Universal Approximation Theorems

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 27 / 40

What is a universal approximation theorem?

One of the reasons behind the popularity of neural networks is their great flexibility and
ability to approximate complicated and interesting functions.

The Weierstrass approximation theorem states that every continuous function defined on
a closed interval [a, b] can be uniformly approximated as closely as desired by a
polynomial function. Can we do something similar for neural networks?

Analogous results for neural networks are called universal approximation theorems, and we
now see two of them.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 28 / 40

What is a universal approximation theorem?

One of the reasons behind the popularity of neural networks is their great flexibility and
ability to approximate complicated and interesting functions.

The Weierstrass approximation theorem states that every continuous function defined on
a closed interval [a, b] can be uniformly approximated as closely as desired by a
polynomial function. Can we do something similar for neural networks?

Analogous results for neural networks are called universal approximation theorems, and we
now see two of them.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 28 / 40

What is a universal approximation theorem?

One of the reasons behind the popularity of neural networks is their great flexibility and
ability to approximate complicated and interesting functions.

The Weierstrass approximation theorem states that every continuous function defined on
a closed interval [a, b] can be uniformly approximated as closely as desired by a
polynomial function. Can we do something similar for neural networks?

Analogous results for neural networks are called universal approximation theorems, and we
now see two of them.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 28 / 40

Shallow Neural Networks

Let σ : R → R be an activation function, and consider the set of neural networks

Fσ,d =
{
Rd ∋ x 7→ Nθ(x) = a⊤σ(Ax+ b) ∈ R : A ∈ Rh×d , a,b ∈ Rh, h ∈ N

}
.

Universal approximation theorem for shallow networks

Let d ∈ N, and σ be a continuous function which is not a polynomiala. Then for every
Ω ⊂ Rd compact, for every ε > 0, and for every continuous function f : Ω → R, there
is a network Nθ ∈ Fσ,d such that

max
x∈Ω

|f (x)−Nθ(x)| < ε.

aWhy?

This and several more such results can be found in Allan Pinkus. “Approximation theory of
the MLP model in neural networks”. In: Acta numerica 8 (1999), pp. 143–195.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 29 / 40

Shallow Neural Networks

Let σ : R → R be an activation function, and consider the set of neural networks

Fσ,d =
{
Rd ∋ x 7→ Nθ(x) = a⊤σ(Ax+ b) ∈ R : A ∈ Rh×d , a,b ∈ Rh, h ∈ N

}
.

Universal approximation theorem for shallow networks

Let d ∈ N, and σ be a continuous function which is not a polynomiala. Then for every
Ω ⊂ Rd compact, for every ε > 0, and for every continuous function f : Ω → R, there
is a network Nθ ∈ Fσ,d such that

max
x∈Ω

|f (x)−Nθ(x)| < ε.

aWhy?

This and several more such results can be found in Pinkus, “Approximation theory of the MLP
model in neural networks”.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 29 / 40

Deep Neural Networks

There are several such results also for deep networks, see for example Moshe Leshno et al.
“Multilayer feedforward networks with a nonpolynomial activation function can approximate
any function”. In: Neural networks 6.6 (1993), pp. 861–867.

Let us consider the set of networks

Fσ,d =
{
AL ◦ σ ◦ ... ◦ A1 ◦ σ ◦ A0 : Rd → R : L ∈ N, Aℓ affine, ℓ = 1, ..., L

}
.

A simple and constructive result that we can prove for Deep ReLU networks is the following:

Representation of continuous piecewise affine functions

Let σ = ReLU. Any continuous piecewise affine (CPA) function f : Rd → R belongs to
Fσ,d . Moreover, any function in Fσ,d is CPA.

For further results on ReLU networks see Ronald DeVore, Boris Hanin, and Guergana Petrova.
“Neural network approximation”. In: Acta Numerica 30 (2021), pp. 327–444, Section 3, and
Philipp Petersen and Jakob Zech. “Mathematical theory of deep learning”. In: arXiv preprint
arXiv:2407.18384 (2024), Sections 5, 6, 7.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 30 / 40

Deep Neural Networks

There are several such results also for deep networks, see for example Leshno et al., “Multilayer
feedforward networks with a nonpolynomial activation function can approximate any function”.
Let us consider the set of networks

Fσ,d =
{
AL ◦ σ ◦ ... ◦ A1 ◦ σ ◦ A0 : Rd → R : L ∈ N, Aℓ affine, ℓ = 1, ..., L

}
.

A simple and constructive result that we can prove for Deep ReLU networks is the following:

Representation of continuous piecewise affine functions

Let σ = ReLU. Any continuous piecewise affine (CPA) function f : Rd → R belongs to
Fσ,d . Moreover, any function in Fσ,d is CPA.

For further results on ReLU networks see DeVore, Hanin, and Petrova, “Neural network
approximation”, Section 3, and Petersen and Zech, “Mathematical theory of deep learning”,
Sections 5, 6, 7.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 30 / 40

Deep Neural Networks

There are several such results also for deep networks, see for example Leshno et al., “Multilayer
feedforward networks with a nonpolynomial activation function can approximate any function”.
Let us consider the set of networks

Fσ,d =
{
AL ◦ σ ◦ ... ◦ A1 ◦ σ ◦ A0 : Rd → R : L ∈ N, Aℓ affine, ℓ = 1, ..., L

}
.

A simple and constructive result that we can prove for Deep ReLU networks is the following:

Representation of continuous piecewise affine functions

Let σ = ReLU. Any continuous piecewise affine (CPA) function f : Rd → R belongs to
Fσ,d . Moreover, any function in Fσ,d is CPA.

For further results on ReLU networks see DeVore, Hanin, and Petrova, “Neural network
approximation”, Section 3, and Petersen and Zech, “Mathematical theory of deep learning”,
Sections 5, 6, 7.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 30 / 40

Continuous piecewise affine functions

Polytope partition

A polytope partition of Rd is a finite collection P = {Pj} of convex closed d-dimensional
polytopes such that ⋃

j

Pj = Rd ,
◦
Pj ∩

◦
Pk = ∅, j ̸= k.

The convex polytopes are the intersection of a finite number of closed half spaces {x ∈
Rd | a⊤i x ≥ bi}.

Continuous piecewise affine (CPA) functions

The function F : Rd → Rc is continuous piecewise affine if it is globally continuous, and
there is a polytope partition P = {Pj} such that F |Pj

(x) = Ajx+ bj for Aj ∈ Rc×d and
bj ∈ Rc for every j .

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 31 / 40

ReLU-networks are CPA

Composition of CPA is CPA

Let f : Rd → Rc and g : Rc → Re be CPA functions with partitions Pf = {Pj}j and
Pg = {P ′

k}k . Then h = g ◦ f : Rd → Re is CPA with partition obtained from

Ph = {(f |Pj
)−1(P ′

k) ∩ Pj}j ,k

by discarding empty/lower-dimensional cells.

The composition of continuous functions is continuous

For x ∈ f −1(P ′
k) ∩ Pj , f (x) = f |Pj

(x) ∈ P ′
k . Hence, g(f (x)) = g |P′

k
(f |Pj

(x)) is affine.

Exercise: Prove that Ph can be refined to a polytope partition by discarding
empty/lower-dimensional cells.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 32 / 40

Part I of the proof: Any CPA is a ReLU network

If g : Rd → R is convex and CPA, then g(x) = max
m=1,...,M

{a⊤mx+ bm} for some

{(am, bm) ∈ Rd × R : m = 1, ...,M}.2

The function (u, v) 7→ max(u, v) = f (u, v) belongs to Fσ,2:

f (u, v) = ReLU(u − v) + v = ReLU(u − v) + ReLU(v)− ReLU(−v)

=
[
1 1 −1

]⊤
ReLU

1 −1
0 1
0 −1

[
u
v

] .

This extends to the function RM ∋ u 7→ max{u1, ..., uM} since
max{a, b, c} = max{max{a, b}, c} for a, b, c ∈ R.

2Lauren A Hannah and David B Dunson. “Multivariate convex regression with adaptive partitioning”. In:
The Journal of Machine Learning Research 14.1 (2013), pp. 3261–3294.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 33 / 40

Part I of the proof: Any CPA is a ReLU network

If g : Rd → R is convex and CPA, then g(x) = max
m=1,...,M

{a⊤mx+ bm} for some

{(am, bm) ∈ Rd × R : m = 1, ...,M}.2

The function (u, v) 7→ max(u, v) = f (u, v) belongs to Fσ,2:

f (u, v) = ReLU(u − v) + v = ReLU(u − v) + ReLU(v)− ReLU(−v)

=
[
1 1 −1

]⊤
ReLU

1 −1
0 1
0 −1

[
u
v

] .

This extends to the function RM ∋ u 7→ max{u1, ..., uM} since
max{a, b, c} = max{max{a, b}, c} for a, b, c ∈ R.

2Hannah and Dunson, “Multivariate convex regression with adaptive partitioning”.
Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 33 / 40

Part II of the proof: Any CPA is a ReLU network

We see that g ∈ Fσ,d by defining

u = Ax+ b =

 a⊤1 x+ b1
...

a⊤Mx+ bM

 .

Every CPA f : Rd → R can be written as f = g − h, g , h : Rd → R convex CPA.3

Assume without loss of generality that g and h can be represented with the same number
of layers4. We can then conclude that since g , h ∈ Fσ,d also f ∈ Fσ,d . This is because

f (x) = g(x)− h(x) =
[
1 −1

]⊤ [
g(x)
h(x)

]
=

[
1 −1

]⊤ [
Ag
L 0
0 Ah

L

]
◦ σ ◦ · · · ◦ σ ◦

[
Ag
0 (x)

Ah
0(x)

]
,

and running in parallel two ReLU networks in Fσ,d maintains us inside Fσ,d .

3Anita Kripfganz and R Schulze. “Piecewise affine functions as a difference of two convex functions”. In:
Optimization 18.1 (1987), pp. 23–29.

4Exercise: Prove that this is true.
Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 34 / 40

Part II of the proof: Any CPA is a ReLU network

We see that g ∈ Fσ,d by defining

u = Ax+ b =

 a⊤1 x+ b1
...

a⊤Mx+ bM

 .

Every CPA f : Rd → R can be written as f = g − h, g , h : Rd → R convex CPA.3

Assume without loss of generality that g and h can be represented with the same number
of layers4. We can then conclude that since g , h ∈ Fσ,d also f ∈ Fσ,d . This is because

f (x) = g(x)− h(x) =
[
1 −1

]⊤ [
g(x)
h(x)

]
=

[
1 −1

]⊤ [
Ag
L 0
0 Ah

L

]
◦ σ ◦ · · · ◦ σ ◦

[
Ag
0 (x)

Ah
0(x)

]
,

and running in parallel two ReLU networks in Fσ,d maintains us inside Fσ,d .

3Kripfganz and Schulze, “Piecewise affine functions as a difference of two convex functions”.
4Exercise: Prove that this is true.
Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 34 / 40

Part II of the proof: Any CPA is a ReLU network

We see that g ∈ Fσ,d by defining

u = Ax+ b =

 a⊤1 x+ b1
...

a⊤Mx+ bM

 .

Every CPA f : Rd → R can be written as f = g − h, g , h : Rd → R convex CPA.3

Assume without loss of generality that g and h can be represented with the same number
of layers4. We can then conclude that since g , h ∈ Fσ,d also f ∈ Fσ,d . This is because

f (x) = g(x)− h(x) =
[
1 −1

]⊤ [
g(x)
h(x)

]
=

[
1 −1

]⊤ [
Ag
L 0
0 Ah

L

]
◦ σ ◦ · · · ◦ σ ◦

[
Ag
0 (x)

Ah
0(x)

]
,

and running in parallel two ReLU networks in Fσ,d maintains us inside Fσ,d .
3Kripfganz and Schulze, “Piecewise affine functions as a difference of two convex functions”.
4Exercise: Prove that this is true.
Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 34 / 40

Some of the most popular architectures

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 35 / 40

Convolutional Neural Networks

Figure 1: Source: https://pylessons.com/CNN-tutorial-introduction.

They allow to represent finite differences discretisations, see Zichao Long et al. “PDE-
Net: Learning PDEs from Data”. In: International Conference on Machine Learning.
PMLR. 2018, pp. 3208–3216.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 36 / 40

https://pylessons.com/CNN-tutorial-introduction

Autoencoders

Figure 2: Source: https://lilianweng.github.io/posts/2018-08-12-vae/.

They can be seen as a non-linear version of the truncated Singular Value Decomposition
A ≈ UΣV⊤ ∈ Rd×d , U,V ∈ Rd×r , Σ ∈ Rr×r , r ≪ d . Used for Reduced Order
Modelling, and data-driven modelling, see, e.g., Kathleen Champion et al. “Data-driven
discovery of coordinates and governing equations”. In: Proceedings of the National
Academy of Sciences 116.45 (2019), pp. 22445–22451.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 37 / 40

https://lilianweng.github.io/posts/2018-08-12-vae/

Graph Neural Networks

(a) Source: https:
//pytorch-geometric.

readthedocs.io/.

(b) Rowbottom et al.,
“G-Adaptivity: optimised
graph-based mesh relocation
for finite element methods”.

(c) Battaglia et al.,
“Interaction networks for
learning about objects,
relations and physics”.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 38 / 40

https://pytorch-geometric.readthedocs.io/
https://pytorch-geometric.readthedocs.io/
https://pytorch-geometric.readthedocs.io/

Recurrent Neural Networks / Transformers

Figure 4: Source: https://thegradient.pub/transformers-are-graph-neural-networks/.

Transformers are still hard to describe mathematically, but a promising interpretation
relates them with dynamical systems (as we will do with ResNets, and as it can be done
for RNNs as well), and interprets them as interacting particle systems, see, e.g., Borjan
Geshkovski et al. “A mathematical perspective on transformers”. In: Bulletin of the
American Mathematical Society 62.3 (2025), pp. 427–479.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 39 / 40

https://thegradient.pub/transformers-are-graph-neural-networks/

APPENDIX

Some historical background on Neural Networks

The research in this area began with Frank Rosenblatt, who developed the Perceptron,
attempting to replicate the functioning of biological neurons (1957).

Apart from a few exciting developments like Hopfield Neural Networks, this research
direction seemed less promising in the 1970s and 1980s, especially after the publication of
the book “Perceptrons” (M. Minsky and S. Papert, 1969).

Rumelhart, Hinton, and Williams in 1986 published an experimental analysis of the
backpropagation algorithm, still used nowadays to train neural networks.

Neural networks found their real traction when computing resources, like graphics cards,
improved their efficiency.

Our mathematical understanding of why neural networks are so effective in many areas
is still lacking. A lot of mathematicians are now working on the Mathematics of Deep
Learning to try to understand these models better.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 1 / 1

Some historical background on Neural Networks

The research in this area began with Frank Rosenblatt, who developed the Perceptron,
attempting to replicate the functioning of biological neurons (1957).

Apart from a few exciting developments like Hopfield Neural Networks, this research
direction seemed less promising in the 1970s and 1980s, especially after the publication of
the book “Perceptrons” (M. Minsky and S. Papert, 1969).

Rumelhart, Hinton, and Williams in 1986 published an experimental analysis of the
backpropagation algorithm, still used nowadays to train neural networks.

Neural networks found their real traction when computing resources, like graphics cards,
improved their efficiency.

Our mathematical understanding of why neural networks are so effective in many areas
is still lacking. A lot of mathematicians are now working on the Mathematics of Deep
Learning to try to understand these models better.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 1 / 1

Some historical background on Neural Networks

The research in this area began with Frank Rosenblatt, who developed the Perceptron,
attempting to replicate the functioning of biological neurons (1957).

Apart from a few exciting developments like Hopfield Neural Networks, this research
direction seemed less promising in the 1970s and 1980s, especially after the publication of
the book “Perceptrons” (M. Minsky and S. Papert, 1969).

Rumelhart, Hinton, and Williams in 1986 published an experimental analysis of the
backpropagation algorithm, still used nowadays to train neural networks.

Neural networks found their real traction when computing resources, like graphics cards,
improved their efficiency.

Our mathematical understanding of why neural networks are so effective in many areas
is still lacking. A lot of mathematicians are now working on the Mathematics of Deep
Learning to try to understand these models better.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 1 / 1

Some historical background on Neural Networks

The research in this area began with Frank Rosenblatt, who developed the Perceptron,
attempting to replicate the functioning of biological neurons (1957).

Apart from a few exciting developments like Hopfield Neural Networks, this research
direction seemed less promising in the 1970s and 1980s, especially after the publication of
the book “Perceptrons” (M. Minsky and S. Papert, 1969).

Rumelhart, Hinton, and Williams in 1986 published an experimental analysis of the
backpropagation algorithm, still used nowadays to train neural networks.

Neural networks found their real traction when computing resources, like graphics cards,
improved their efficiency.

Our mathematical understanding of why neural networks are so effective in many areas
is still lacking. A lot of mathematicians are now working on the Mathematics of Deep
Learning to try to understand these models better.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 1 / 1

Some historical background on Neural Networks

The research in this area began with Frank Rosenblatt, who developed the Perceptron,
attempting to replicate the functioning of biological neurons (1957).

Apart from a few exciting developments like Hopfield Neural Networks, this research
direction seemed less promising in the 1970s and 1980s, especially after the publication of
the book “Perceptrons” (M. Minsky and S. Papert, 1969).

Rumelhart, Hinton, and Williams in 1986 published an experimental analysis of the
backpropagation algorithm, still used nowadays to train neural networks.

Neural networks found their real traction when computing resources, like graphics cards,
improved their efficiency.

Our mathematical understanding of why neural networks are so effective in many areas
is still lacking. A lot of mathematicians are now working on the Mathematics of Deep
Learning to try to understand these models better.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 1 / 1

	The building blocks of neural networks
	Activation functions
	How do we train neural networks?
	Vanishing gradients
	Interpolation, Generalisation, and Extrapolation
	Universal Approximation Theorems
	Some of the most popular architectures
	Appendix
	Motivation and brief historical background

	anm0:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

