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ResNets as dynamical systems

Residual Neural Networks (ResNets) are networks of the form Nθ = fθL ◦ ... ◦ fθ1 with

fθi (x) = x+ B⊤
i σ (Aix+ bi ) ∈ Rd , x ∈ Rd ,

Ai ,Bi ∈ Rh×d , bi ∈ Rh, θi = {Ai ,Bi ,bi} .

The layer
fθi (x) = x+ B⊤

i σ (Aix+ bi ) = x+ Fθi (x) ∈ Rd

is an explicit Euler step of size 1 for the initial value problem{
ẏ(t) = B⊤

i σ(Aiy(t) + bi ) = Fθi (y(t)),

y(0) = x
.
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ResNet-like archtectures

We can define ResNet-like neural networks by choosing a family of parametric functions
SΘ =

{
Fθ : Rd → Rd : θ ∈ Θ

}
and a numerical method Ψh

F , like explicit Euler defined
as Ψh

F (x) = x+ hF(x), and set

Nθ(x) = ΨhL
FθL

◦ · · · ◦Ψh1
Fθ1

(x), Fθ1 , ...,FθL ∈ SΘ.

We could also combine these residual blocks with lifting and projection layers, as for usual
neural networks.
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Structured networks based on dynamical systems

Choose a property P that the network has to satisfy, e.g. volume preservation.

Choose a family of parametric vector fields SΘ whose solutions satisfy P, e.g.

Fθ(x) =

[
σ (A1x2 + b1)
σ (A2x1 + b2)

]
, x =

[
x1
x2

]
.
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Structured networks based on dynamical systems1

Choose a property P that the network has to satisfy, e.g. volume preservation.

Choose a family of parametric vector fields SΘ whose solutions satisfy P, e.g.

Fθ(x) =

[
σ (A1x2 + b1)

0

]
+

[
0

σ (A2x1 + b2)

]
, x =

[
x1
x2

]
.

Choose a numerical method Ψh
Fθ

that preserves the property P at a discrete level, e.g.

Ψh
Fθ
(x) =

[
x1 + hσ (A1x2 + b1) =: x̃1

x2 + hσ (A2x̃1 + b2)

]
.

The resulting network Nθ = ΨhL
FθL

◦ · · · ◦Ψh1
Fθ1

will preserve P.

1Elena Celledoni et al. “Dynamical Systems—Based Neural Networks”. In: SIAM Journal on Scientific
Computing 45.6 (2023), A3071–A3094.
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Time-dependent Symplectic Neural
Networks

In collaboration with Priscilla Canizares, Carola-Bibiane Schönlieb, Ferdia Sherry, Zakhar
Shumaylov2

2Priscilla Canizares et al. “Hamiltonian Matching for Symplectic Neural Integrators”. In: arXiv preprint
arXiv:2410.18262 (2024).



Canonical Hamiltonian equations

The equations of motion of canonical Hamiltonian systems write

ẋ = J∇H(x) = XH(x) ∈ R2n, J =

[
0 In

−In 0n

]
∈ R2n×2n. (1)

Denoted with ϕH,t : R2n → R2n the exact flow of (1), we have that

d

dt
H(ϕH,t(x0)) = ∇H(ϕH,t(x0))

⊤J∇H(ϕH,t(x0)) = 0,

(
∂ϕH,t(x0)

∂x0

)⊤
J
(
∂ϕH,t(x0)

∂x0

)
= J,

the flow preserves the canonical volume form of R2n.
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Forward invariant subset of the phase space

Suppose x(t) ∈ Ω ⊂ R2n, whenever x(0) ∈ Ω, for any t ≥ 0.

By the group property of the flow map, we know that

ϕH,n∆t+δt = ϕH,δt ◦ ϕH,∆t ◦ ... ◦ ϕH,∆t︸ ︷︷ ︸
n times

, n ∈ N, δt ∈ (0,∆t).

As a consequence, to approximate ϕH,t : Ω → Ω for any t ≥ 0, we only have to
approximate it for t ∈ [0,∆t].
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Figure 1: Neural network trained to approximate ϕH,t for t ∈ [0,∆t = 1] and applied up to T = 100.
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Two learning problems associated to Hamiltonian systems

Unsupervised solution of the Hamiltonian equations

Approximate the flow map ϕH,t : Ω → Ω, for any t ≥ 0, on a compact forward invariant
set Ω ⊂ R2n, given the Hamiltonian energy H : R2n → R.

Supervised approximation of an unknown Hamiltonian flow map

Approximate the flow map ϕH,t : Ω → Ω, for any t ≥ 0, on a compact forward invariant
set Ω ⊂ R2n, given trajectory segments {(xn0, yn1 , ..., ynM)}Nn=1, y

n
m ≈ ϕH,tnm(x

n
0).

Remark: Given the several known qualitative properties of ϕH,t , we want to exploit them
when designing the approximating map.
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The SympFlow

We now build a neural network that approximates ϕH,t : Ω → Ω for a forward invariant
set Ω ⊂ R2n, and t ∈ [0,∆t], while reproducing the qualitative properties of ϕH,t .

We rely on two building blocks, which applied to (q,p) ∈ R2n write:

ϕp,t((q,p)) =

[
q

p− (∇qV (t,q)−∇qV (0,q))

]
,

ϕq,t((q,p)) =

[
q+ (∇pK (t,p)−∇pK (0,p))

p

]
.

The SympFlow architecture is defined as

Nθ (t, (q0,p0)) = ϕLp,t ◦ ϕLq,t ◦ · · · ◦ ϕ1p,t ◦ ϕ1q,t((q0,p0)).
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Properties of the SympFlow

The SympFlow is symplectic for every time t ∈ R. The building blocks we compose are
exact flows of time-dependent Hamiltonian systems:

ϕip,t((q,p)) =

[
q

p−
(
∇qV

i (t,q)−∇qV
i (0,q)

)]
=

[
q

p−∇q

(∫ t
0 ∂sV

i (s,q)ds
)] = ϕ

Ṽ i ,t
((q,p)),

with Ṽ i (t, (q,p)) = ∂tV
i (t,q).

The SympFlow is volume preserving.

The SympFlow is the exact solution of a time-dependent Hamiltonian system.
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Ṽ i ,t
((q,p)),
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Composition of Hamiltonian flows3

Theorem (The Hamiltonian flows are closed under composition)

Let H1,H2 : R× R2n → R be continuously differentiable functions. Then, the map
ϕH2,t ◦ ϕH1,t : R2n → R2n is the exact flow of the time-dependent Hamiltonian system defined
by the Hamiltonian function

H3(t, x) = H2(t, x) + H1
(
t, ϕ−1

H2,t
(x)

)
.

This theorem implies that there is a Hamiltonian function H(Nθ) : R× R2n → R2n such
that

Nθ (t, x) = ϕH(Nθ),t(x)

for every t ≥ 0 and x ∈ R2n.

3Leonid Polterovich. The Geometry of the Group of Symplectic Diffeomorphisms. Lectures in Mathematics
ETH Zürich. Basel: Springer Basel AG, 2001. isbn: 978-3-7643-6432-8.
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Training of the SympFlow to solve ẋ(t) = XH(x(t))

The SympFlow is based on modelling the scalar-valued potentials Ṽ i , K̃ i : R× Rn → R
with feed-forward neural networks.

To train the overall model Nθ we minimise the loss function

L(θ) = 1

Nr

Nr∑
i=1

∥∥∥∥∥ d

dt
Nθ

(
t, xi0

)∣∣∣∣
t=ti

− J∇H
(
Nθ

(
ti , x

i
0

))∥∥∥∥∥
2

2︸ ︷︷ ︸
Residual term

+
1

Nm

Nm∑
j=1

(
H(Nθ)(tj , x

j)− H(xj)
)2

︸ ︷︷ ︸
Hamiltonian matching

,

where we sample ti , tj ∈ [0,∆t], and xi0, x
i ∈ Ω ⊂ R2n.
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Supervised training of the SympFlow to approximate ϕH,t

The SympFlow is based on modelling the scalar-valued potentials Ṽ i , K̃ i : R× Rn → R
with feed-forward neural networks.

To train the overall model Nθ we minimise the loss function

L(θ) = 1

NM

N∑
n=1

M∑
m=1

∥Nθ (t
n
m, x

n
0)− ynm∥22 ,

where xn0 ∈ Ω ⊂ R2n, and ynm ≈ ϕH,tnm(x
n
0).

1.5 1.0 0.5 0.0 0.5 1.0 1.5
q

1.5

1.0

0.5

0.0

0.5

1.0
p

Training data
N = 200 initial conditions of M = 50 time samples each
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Simple Harmonic Oscillator (unsupervised)

Equations of motion

ẋ = p, ṗ = −x .
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Simple Harmonic Oscillator (supervised)
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1-Lipschitz and α−averaged neural
networks

In collaboration with Elena Celledoni, Matthias J. Ehrhardt, Brynjulf Owren, Carola-Bibiane
Schönlieb, Ferdia Sherry4

4Ferdia Sherry et al. “Designing stable neural networks using convex analysis and odes”. In: Physica D:
Nonlinear Phenomena 463 (2024), p. 134159.



Why do we care about these constraints?

Adversarial robustness

Constraining the Lipschitz constant allows the reduction/control of the sensitivity of the
network to perturbations in the input space.

Convergent Plug-and-Play algorithms

They can help in Plug-and-Play algorithms to ensure the convergence of the iteration

xk+1 = Nθ(xk − τ∇F (xk)).

This iteration converges if Nθ is α−averaged and the sequence has a fixed pointa.

aPravin Nair, Ruturaj G Gavaskar, and Kunal Narayan Chaudhury. “Fixed-Point and Objective
Convergence of Plug-and-Play Algorithms”. In: IEEE Transactions on Computational Imaging 7 (2021),
pp. 337–348.
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1-Lipschitz neural networks

Non-expansive dynamical systems

Dynamics: ẋ = Fθ(x) = −A⊤σ (Ax+ b) .

Explicit Euler approximation: Ψh
Fθ
(x) = x− hA⊤σ (Ax+ b) .

1-Lipschitz map:
∥∥∥Ψh

Fθ
(y)−Ψh

Fθ
(x)

∥∥∥
2
≤ ∥y − x∥2 ,

if h ≤ 2/∥A∥22 and σ is 1−Lipschitz.

We define the 1−Lipschitz neural network

Nθ = ΨhL
FθL

◦ ... ◦ΨhL
FθL

: Rd → Rd ,

where h1, ..., hL are adjusted during training to ensure hi ≤ 2/∥Ai∥22.
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α−averaged neural networks

α−averaged maps

A map F : Rd → Rd is α−averaged, α ∈ (0, 1), if there is a 1−Lipschitz map T : Rd →
Rd such that

F = (1− α)id+ αT .

If F is continuously differentiable and has symmetric Jacobian, then it is α−averaged if
and only if spectrum(F ′(x)) ⊂ [1− 2α, 1]. Composition of averaged maps is averaged.

The map

Ψh
Fθ
(x) = x− hA⊤σ (Ax+ b) = ∇

(∥x∥22
2

− h1Tγ(Ax+ b)

)
, γ′ = σ,

is averaged if h ≤ 2/∥A∥22.
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Comparison of learned denoisers

ΓEuler := P ◦ Nθ ◦ L,
L(x1, x2, x3) = (x1, x3, x3, 0, ..., 0) ∈ R64, P(x1, ..., x64) = (x1, x2, x3) ∈ R3.

y

DnCNN10(y) DnCNN50(y) DnCNN200(y)

Γ10
Euler(y) Γ50

Euler(y) Γ200
Euler(y)

Figure 2: Repeated application of the unconstrained denoiser DnCNN5 and the constrained denoiser
ΓEuler to a given input image.

5Kai Zhang et al. “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising”. In:
IEEE transactions on image processing 26.7 (2017), pp. 3142–3155.
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Plug-and-Play for a deblurring task

100 101 102

Iteration number k

10−9

10−7

10−5

10−3

10−1

101

103

‖x
k
−
x̂
‖2

Convergence of the PnP iterations
x

y 15.6

x̂ 30.6

Figure 3: Using the learned Euler denoiser to solve an ill-posed inverse problem (deblurring) in a PnP
fashion, with convergence guarantee. The numbers in the top right corner of each image are the
PSNRs (in dB) relative to the ground truth x .
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Physics-informed neural networks

We introduce a parametric map Nθ (·, x0) : [0,T ] → Rd such that Nθ (0, x0) = x0, and
choose its weights so that

L(θ) := 1

C

C∑
c=1

∥∥∥∥∥ d

dt
Nθ (t, x0)

∣∣∣∣
t=tc

−F (Nθ (tc , x0))

∥∥∥∥∥
2

2

→ min

for some collocation points t1, . . . , tC ∈ [0,T ].

Then, t 7→ Nθ (t, x0) will solve a different IVP{
ẏ (t) = F (y (t)) +

(
d
dtNθ (t, x0)

∣∣
t=t

−F (y (t))
)
∈ Rd ,

y (0) = x0 ∈ Rd ,

where hopefully the residual d
dtNθ (t, x0)

∣∣
t=t

−F (y (t)) is small in some sense.
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Training issues with neural network

Solving a single IVP on [0,T ] with a neural network can take long training time.

The obtained solution can not be used to solve the same ordinary differential equation
with a different initial condition.
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Figure 4: Solution comparison after reaching a loss value of 10−5. The training time is of 87 seconds
(7500 epochs with 1000 new collocation points randomly sampled at each of them).



Training issues with neural network

It is hard to solve initial value problems over long time intervals.
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Figure 5: Solution comparison after 10000 epochs.



Extension of the SympFlow outside of [0,∆t]

Once we have trained Nθ to be reliable for t ∈ [0,∆t], we extend it for longer times as

ψ(t, x0) := ψ̄t−∆t⌊t/∆t⌋ ◦
(
ψ̄∆t

)⌊t/∆t⌋
(x0),

for t ∈ [0,+∞) and x0 ∈ Ω ⊂ R2n, where

ψ̄s(x0) := Nθ (s, x0) , s ∈ [0,∆t),(
ψ̄∆t

)k
:= ψ̄∆t ◦ · · · ◦ ψ̄∆t︸ ︷︷ ︸

k times

, k ∈ N.

ψ(t, ·) = ϕH,t(·) for the piecewise continuous Hamiltonian

H(t, x) := H(Nθ) (t −∆t⌊t/∆t⌋, x) .
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Hénon–Heiles (unsupervised)

Equations of motion

ẋ = px , ẏ = py , ṗx = −x − 2xy , ṗy = −y − (x2 − y2).
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Imposing structure over a neural network

To build networks satisfying a desired property, we can either restrict the parametrisation
Nθ or modify the loss function.

Restrict the architecture:

Nθ(x) =
Ñθ(x)∥∥∥Ñθ(x)

∥∥∥
2

∥x∥2 .

Modify the loss function:

L̃ (θ) =
1

N

N∑
i=1

∥Nθ(xi )− yi∥22 +
1

N

N∑
i=1

(∥xi∥2 − ∥Nθ(xi )∥2)2︸ ︷︷ ︸
regulariser

.

Not all restrictions are equally effective, e.g. NR(x) = Rx, R⊤R = Id , is norm-preserving
but probably not expressive enough.
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Ñθ(x)∥∥∥Ñθ(x)
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Ñθ(x)∥∥∥Ñθ(x)
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Approximation properties

The inductive bias provided by modelling the network starting from dynamical systems,
allows us to study these models using the theory of numerical analysis and dynamical
systems.

Universal approximation theorem

Let F : Ω ⊂ Rd → Rd be a continuous function, with Ω ⊂ Rd a compact set. Then,
for every ε > 0, there exists a finite set of gradient vector fields ∇V 1, · · · ,∇V L, sphere-
preserving vector fields X 1

S , · · · ,X L
S , and time steps h1, · · · , hL ∈ R such that∥∥∥F −ΨhL

∇V L ◦ΨhL
X L
S

◦ . . . ◦Ψh1
∇V 1 ◦Ψh1

X 1
S

∥∥∥
Lp(Ω)

< ε.



Idea of the proof

Let F : Ω ⊂ Rd → Rd be a continuous function, with Ω ⊂ Rd a compact set. Then,
for every ε > 0, there exists a finite set of C1 vector fields X 1, ...,X L, and time steps
h1, · · · , hL ∈ R such thata ∥∥∥F −ΨhL

X L ◦ . . . ◦Ψh1
X 1

∥∥∥
Lp(Ω)

< ε.

aQianxiao Li, Ting Lin, and Zuowei Shen. “Deep learning via dynamical systems: An approximation
perspective”. In: Journal of the European Mathematical Society 25.5 (2022), pp. 1671–1709

Presnov decomposition

For any X ∈ C1(Rd ,Rd) there is a unique function U : Rd → R with U(0) = 0, and a
unique sphere-preserving vector field XS : Rd → Rd such that

X (x) = ∇U(x) + XS(x), ∀x ∈ Rd .
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