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1-Lipschitz Neural Networks
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Why 1-Lipschitz neural networks? ∥F (y)− F (x)∥2 ≤ ∥y − x∥2

Adversarial robustness

Constraining the Lipschitz constant leads to a reduced sensitivity to input perturbations.

Wasserstein Generative Adversarial Networks (Kantorovich-Rubinstein duality)

W1(µ, ν) = sup
f :X→R

f 1−Lipschitz

EX∼µ[f (X )]− EY∼ν [f (Y )].

Convergent fixed point iterations

If ∥F (y) − F (x)∥2 < ∥y − x∥2 for every x, y ∈ Rd , then xk+1 = F (xk) admits a unique
and attractive fixed point. If Tα(x) = (1 − α)x + αF (x), α ∈ (0, 1) and F 1-Lipschitz,
then whenever xk+1 = Tα(xk) has a fixed point, the sequence converges.
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1-Lipschitz MLPs

Given two Lipschitz-continuous functions F : Rh → Rc , G : Rd → Rh, with Lipschitz
constants Lip(F ) and Lip(G ), respectively, the composition H = F ◦ G : Rd → Rc is
Lipschitz continuous as well, with Lip(H) ≤ Lip(F )Lip(G ):

∥H(y)− H(x)∥2 = ∥F (G (y))− F (G (x))∥2 ≤ Lip(F )∥G (y)− G (x)∥2
≤ Lip(F )Lip(G )∥y − x∥2, ∀x, y ∈ Rd .

We can get a 1-Lipschitz feedforward network (MLP) composing 1-Lipschitz layers:

Nθ = AL ◦ σ ◦ AL−1 ◦ ... ◦ σ ◦ A1 : Rd → Rc ,

where we need |σ(s)− σ(t)| ≤ |s − t|, and ∥Ai∥2 ≤ 1 for j = 1, ..., L. Most activation
functions, such as tanh,ReLU,LeakyReLU, sigmoid, sin are 1-Lipschitz.
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1-Lipschitz ResNets are more challenging to obtain

For ResNets, it is more challenging, since the basic layers are of the form

Rd ∋ x 7→ x+ τFθi (x) = φτ
θi
(x) ∈ Rd , τ > 0,

and, for a generic Fθi : Rd → Rd , it is hard to get better bounds than

∥φτ
θi
(y)− φτ

θi
(x)∥2 ≤ (1 + τLip(Fθi )) ∥y − x∥2, x, y ∈ Rd .

We hence need to modify them slightly, or properly choose the residual map Fθi .
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Negative gradient flows

Let V : Rd → R be a continuously differentiable convex function. We consider vector
fields of the form

F(x) = −∇V (x).

Given two solution curves, ẋ(t) = F(x(t)) and ẏ(t) = F(y(t)), we see that

d

dt
∥x(t)− y(t)∥22 = − (∇V (x(t))−∇V (y(t)))⊤ (x(t)− y(t)) ≤ 0.

Thus, the flow map ϕt
F : Rd → Rd defined by ϕt

F (x(0)) = x(t) is 1-Lipschitz.
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Non-expansive gradient flows

Gradient flows on Rd

Consider the scalar functiona Vθ(x) = 1⊤ReLU2(W x+ b)/2. Define

Fθ(x) = −∇Vθ(x) = −W⊤ReLU(W x+ b).

If ẋ = Fθ(x) and ẏ = Fθ(y), we have ∥y(t)− x(t)∥2 ≤ ∥y(0)− x(0)∥2 for every t ≥ 0.

aW ∈ Rh×d , b ∈ Rh, h ∈ N, θ = (W , b), and 1 ∈ Rh a vector of ones.

Euler step (1-Lipschitz)

If τ ∈ [0, 2/∥W ∥22], the explicit Euler map φτ
θ(x) = x+ τFθ(x) is 1-Lipschitz, i.e.,

∥φτ
θ(y)− φτ

θ(x)∥2 ≤ ∥y − x∥2, x, y ∈ Rd .
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ODEs with 1-Lipschitz solution and Euler maps

ẋ(t) = −W⊤ReLU(Wx(t)), W =
1
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Neural networks based on gradient flows

We consider neural networks of the form

Nθ = π ◦ φθL ◦ ... ◦ φθ1 ◦ Q : Rd → Rc , φθℓ ∈ Eh,

Eh :=
{
φ : Rh → Rh

∣∣∣φ(x) = x − τW⊤ReLU(W x+ b), W ∈ Rh′×h,b ∈ Rh′ ,

h′ ∈ N, τ ∈ [0, 2/∥W ∥22]
}
,

where Q : Rd → Rh and π : Rh → Rc are affine maps.
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1-Lipschitz Networks for Robust Classification
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The problem of robust classification

Classification problem

Let X ⊂ Rd be a set whose points are known to belong to C classes. Given part of their
labels, we want to label the remaining points using Nθ : Rd → RC where we set

predicted class of x = argmax
c=1,...,C

(
Nθ (x)

⊤ ec

)
.

Adversarial examples
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How to have guaranteed robustness

Not all correct predictions are equivalent.

Let ℓ (x) = 2 be the correct label for the point x ∈ X .

Nθ1 (x) =
[
0.49 0.51 0

]
is not so certain as a prediction.

Nθ2 (x) =
[
0.05 0.9 0.05

]
there is a higher gap here.

Margin: MNθ
(x) := Nθ(x)

⊤eℓ(x) − max
j ̸=ℓ(x)

Nθ(x)
⊤e j .

MNθ
(x) > 0 =⇒ Nθ correctly classifies x.

MNθ
(x) >

√
2Lip(Nθ)ε =⇒ MNθ

(x+ η) > 0 ∀∥η∥2 ≤ ε.

We constrain the Lipschitz constant of Nθ (and train the network so it maximises the
margin).
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Robustness to adversarial attacks
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Ferdia Sherry et al. “Designing stable neural networks using convex analysis and ODEs”. In:
Physica D: Nonlinear Phenomena 463 (2024), p. 134159
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Universal approximation theorem for 1-Lipschitz ResNets:
Unbounded width and depth

Davide Murari (DAMTP) Approximation theory for 1-Lipschitz ResNets 15 / 28



Statement of the theorem

Let d ∈ N, X ⊆ Rd , and fix c = 1, i.e., consider scalar-valued networks. The networks we just
derived define the following set

Gd(X ) =
{
π ◦ φθL ◦ ... ◦ φθ1 ◦ Q : X → R

∣∣∣φθℓ ∈ Eh, ℓ = 1, ..., L, h, L ∈ N,

Q : Rd → Rh, π : Rh → R,Q and π affine
}
.

We denote with C1(X ,R) the set of 1-Lipschitz functions from X to R.

Universal approximation theorem

Let ε > 0, X ⊂ Rd compact, and g ∈ C1(X ,R) a 1-Lipschitz function. Then, there
exists f ∈ Gd(X ) ∩ C1(X ,R) such that

max
x∈X

|f (x)− g(x)| < ε.
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Two proof techniques

We prove this theorem in two different ways:

1 First, we prove that the Restricted Stone-Weierstrass Theorem (see below) holds,

2 Second, we prove that each piecewise affine 1-Lipschitz function belongs to our set of
networks, and conclude thanks to their density in the set of 1-Lipschitz functions.

Restricted Stone-Weierstrass Theorem

Let X ⊂ Rd be compact and have at least two points. Let A ⊂ C1(X ,R) be a latticea

separating the pointsb of X . Then A satisfies the universal approximation property for
C1(X ,R).

aClosed under max and min.
bFor any pair of distinct elements x , y ∈ X and real numbers a, b ∈ R with |a− b| ≤ ∥y − x∥2, there

is an f ∈ A such that f (x) = a and f (y) = b.
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Representation of piecewise affine functions

To prove the universal approximation theorem, we first show that our networks can represent
all piecewise affine 1-Lipschitz functions.

Representation theorem

Gd(Rd)∩C1(Rd ,R) contains all the 1-Lipschitz piecewise affine functions from Rd to R.

This theorem follows from the max-min representation of piecewise affine functions:

max-min representation of 1-Lipschitz piecewise affine scalar functions

Let f : Rd → R be a 1-Lipschitz piecewise affine scalar function. Then, there exists a
choice of scalars bi ,j ∈ R and vectors ai ,j ∈ Rd , ∥ai ,j∥2 ≤ 1, such that

f (x) = max{f1(x), . . . , fk(x)}, fi (x) = min{a⊤i ,1x + bi ,1, . . . , a
⊤
i ,li
x + bi ,li}, k , li ∈ N.
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Visualisation of the derivation in the proof
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Preliminary properties of ReLU

Let x , x1, x2 ∈ R. We use four of the main properties of ReLU:

• Identity map:
x = ReLU(x)− ReLU(−x),

• Positively homogeneous:

ReLU(αx) = αReLU(x), with α > 0,

• Representation of the maximum:

max{x1, x2} = x1 + ReLU(x2 − x1) = x2 + ReLU(x1 − x2),

• Representation of the minimum:

min{x1, x2} = x1 − ReLU(x1 − x2) = x2 − ReLU(x2 − x1).
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Idea of the proof of the representation theorem (part 1)

Given

f (x) = max{f1(x), . . . , fk(x)}, fi (x) = min{a⊤i ,1x + bi ,1, . . . , a
⊤
i ,li
x + bi ,li}, k , li ∈ N,

we first define the affine layer Q : Rd → Rh to extract all the affine pieces:

Q(x) =

 a⊤1,1x + b1,1
...

a⊤k,lkx + bk,lk

 ∈ Rh,

with h = l1 + ...+ lk , which represents the network width.
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Idea of the proof of the representation theorem (part 2)

We then extract the maxima and minima as needed via maps of the form

φ(x) =


max{x1, x2}
min{x1, x2}

x3
...
xh

 = x − 2


−1/

√
2

1/
√
2

0
...
0

ReLU
([
−1/

√
2 1/

√
2 0 · · · 0

]
x
)
,

which can be written as φ(x) = x − τW⊤ReLU(Wx), with τ = 2, and

R1×h ∋ W =
[
−1/

√
2 1/

√
2 0 · · · 0

]
.

Notice that τ = 2/∥W ∥22 since ∥W ∥2 = 1.
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Universal approximation theorem for 1-Lipschitz ResNets:
Unbounded depth and fixed width
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New set of networks

Fix h ≥ 3. We now consider the set

G̃d ,σ,h(X ,R) :=
{
v⊤ ◦ φθL ◦ AL−1 ◦ · · · ◦ A1 ◦ φθ1 ◦ Q : X → R

∣∣∣ m = (1, 1, 1, h − 3),

Q ∈ R̃d ,m, v ∈ Rh, ∥v∥1 ≤ 1,A1, ...,AL−1 ∈ L̃m, φθℓ ∈ Ẽh−3, L ∈ N
}
.

Lm =
{A11 ... A1k

...
. . .

...
Ak1 ... Akk

 ∈ Rαm×αm

∣∣∣ Aij ∈ Rmi×mj ,

k∑
j=1

∥Aij∥2 ≤ 1, i = 1, ..., k
}
, m ∈ Nk ,

Rd ,m =
{[

B⊤
1 · · · B⊤

k

]⊤ ∈ Rαm×d
∣∣∣ Bi ∈ Rmi×d , ∥Bi∥2 ≤ 1, i = 1, ..., k

}
, αm := ∥m∥1,

Ẽh =
{
φθ : Rh+3 → Rh+3

∣∣∣φθ(x) =
[
max{x1, x2} min{x1, x2} x3 φ̃θ(x4:)

⊤] , φ̃θ ∈ Eh
}
.
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Theorem statement

Characterisation of the set of networks

Let d , h ∈ N with h ≥ 3. All the functions in G̃d ,h(Rd ,R) are 1-Lipschitz.

Representation Theorem

Any piecewise affine 1-Lipschitz function f : Rd → R can be represented by a network
in G̃d ,h(Rd ,R) with h ≥ d + 3.

Universal Approximation Theorem

Let d ∈ N, and X ⊂ Rd be compact. The set G̃d ,h(X ,R) satisfies the universal approxi-
mation property for C1(X ,R) if h ≥ d + 3.
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Idea of the proof for the representation theorem

Example: f (x) = min{max{a⊤1 x , a⊤2 x},max{a⊤3 x , a⊤4 x}}:

Rd ∋ x 7→︸︷︷︸
Q


a⊤1 x
a⊤2 x
0
x

 7→︸︷︷︸
φθ1


max{a⊤1 x , a⊤2 x}
min{a⊤1 x , a⊤2 x}

0
x

 7→︸︷︷︸
A1


a⊤3 x
a⊤4 x

max{a⊤1 x , a⊤2 x}
x

 7→︸︷︷︸
φθ2


max{a⊤3 x , a⊤4 x}
min{a⊤3 x , a⊤4 x}
max{a⊤1 x , a⊤2 x}

x



7→︸︷︷︸
A2


max{a⊤1 x , a⊤2 x}
max{a⊤3 x , a⊤4 x}

0
x

 7→︸︷︷︸
φθ3


max{a⊤1 x , a⊤2 x , a⊤3 x , a⊤4 x}

min{max{a⊤1 x , a⊤2 x},max{a⊤3 x , a⊤4 x}}
0
x

 7→︸︷︷︸
e⊤2

f (x).
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Final remarks

Since Ẽh ⊂ Eh+3, the same universality result applies by replacing the highly-structured
gradient modules considered in G̃d ,d+3(X ,R) with the unconstrained ones in Eh+3 and
intersecting with C1(X ,R).

To obtain universality while maintaining the width fixed, we introduced affine layers
between the residual gradient steps. Setting them to identity maps would lead to a subset
of G̃d ,h(X ,R) and of Gd(X ,R) which might not be universal.

Our proofs strongly rely on the properties of ReLU. The same results could be obtained
by any other activation functions that are positively homogeneous, can represent the
identity map, and the entrywise maximum and minimum functions.

The elements of Gd(X ,R) and G̃d ,h(X ,R) are neural networks that can be numerically
implemented. All the weight constraints can be efficiently enforced using projected
gradient descent. Spectral norms can be estimated using the power method.
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APPENDIX



1-Lipschitz Networks for Inverse Problems



The Proximal Gradient Descent Method

min
x∈Rd

(f (x) + γg(x)) , f : Rd → R, g : Rd → R ∪ {±∞}, (1)

where f is a data-fidelity term, g is a regularisation term, and γ > 0.

Example:

f (x) =
1

2
∥Kx− y∥22, g(x) =

1

2
∥x∥22 (Ridge Regression).

Assume f : Rd → R and g : Rd → R ∪ {±∞} convex, f continuously differentiable, g
continuous and proper. A method to solve (1) is the Proximal Gradient Descent Method:

xk+1 = proxγg ,τ (xk − τ∇f (xk)) , τ > 0,

proxγg ,τ (x) = argmin
z∈Rd

(
1

2τ
∥x− z∥22 + γg(z)

)
.
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Example: Projected Gradient Descent

Ω ⊂ Rd non-empty, closed, convex set. f : Rd → R convex and continuously differentiable.

min
x∈Ω

f (x) ⇐⇒ min
x∈Rd

f (x) + iΩ(x), iΩ(x) =

{
0, x ∈ Ω,

+∞, x /∈ Ω.

Here, we have that if iΩ =: g , the proximal operator is an orthogonal projection operator:

proxγg ,τ (x) = argmin
z∈Rd

(
1

2τ
∥x− z∥22 + γiΩ(z)

)
= argmin

z∈Ω
∥x− z∥22 = projΩ(x).

The proximal gradient method then becomes the projected gradient descent method:

xk+1 = projΩ(xk − τ∇f (xk)).
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Example: ISTA (cfr. SINDy)

Let f (x) = 1
2∥Kx− y∥22, g(x) = ∥x∥1 =

∑d
i=1 |xi |, and γ > 0 the regularisation parameter.

The Proximal Gradient Descent then writes

xk+1 = proxγg ,τ

(
xk − τK⊤(Kx− y)

)
= Sτγ

(
xk − τK⊤(Kx− y)

)
,

(Sλ(x))i =


xi − λ, xi > λ,

0, |xi | ≤ λ,

xi + λ, xi < −λ,

λ > 0, i = 1, ..., d .

1.0 0.5 0.0 0.5 1.0
x

1

0

1
Soft-thresholding, = 0.4

1.0 0.5 0.0 0.5 1.0
x

Hard-thresholding, = 0.4
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The Plug-and-Play Method

There are two problems with what we saw in the two previous slides:
1 It is extremely hard to define a good regulariser for any given task,
2 The proximal operator of a generic regulariser g is not easy to compute.

Solution: The Plug-and-Play method is defined by replacing proxγg ,α with a Neural Network:

Plug-and-Play: xk+1 = Nθ(xk − τ∇f (xk)), Nθ : Rd → Rd . (2)

The network Nθ is typically trained offline to denoise images:

min
θ

1

N

N∑
i=1

∥Nθ(xi + δi )− xi∥22 , δ1, ..., δN ∼ D.

Convergence guarantees

Assume f is µ-strongly convex, L-smooth, and τ ∈ (0, 2/L). Then if Nθ is 1-Lipschitz,
the iterates in (2) converge to a unique fixed point.
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Averaged maps

α-averaged map

The map T : Rd → Rd is averaged if there exists α ∈ (0, 1) and a 1-Lipschitz map
F : Rd → Rd such that T = (1 − α)id + αF . The composition of averaged maps
is again averaged. Patrick L Combettes and Isao Yamada. “Compositions and Convex
Combinations of Averaged Nonexpansive Operators”. In: Journal of Mathematical Anal-
ysis and Applications 425.1 (2015), pp. 55–70, Proposition 2.4

Let f : Rd → R be convex, continuously-differentiable, and L-smooth. Then if τ ∈
(0, 2/L) the map T (x) = x− τ∇f (x) is averaged with α = τL/2.
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Convergence under convexity

Convergence Theorem

Let f : Rd → R be continuously differentiable, convex, and L-smooth. Assume τ ∈
(0, 2/L). Then G = id − τ∇f is τL/2 averaged. Further assume that Nθ : Rd → Rd

is averaged. Let T = Nθ ◦ G . Assuming that Fix(T ) ̸= ∅, the Plug-and-Play iterates
xk+1 = T (xk) will converge to a fixed point.

Our networks are explicit Euler steps for the gradient of f (x) = 1⊤ReLU2(Ax + b)/2, which is
convex and its gradient is

∇f (x) = A⊤ReLU(Ax + b),

which is ∥A∥22-Lipschitz. This means that the layers of our 1-Lipschitz network are averaged if
0 < τi < 2/∥Ai∥22, and hence so is the full network Nθ.
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The Network Nθ Trained as Denoiser

PSNR (Peak Signal-to-Noise Ratio)

PSNR(x̂, x∗) = 10 log10

(
maxi ,j ,k |x∗i ,j ,k |2

1
3·321·481

∑
i ,j ,k |x∗i ,j ,k − x̂i ,j ,k |2

)
.

x TV 25.8 Euler 27.6

y 16.5 DnCNN 27.1 RK4 27.5

Figure 2: Image from BSDS500 dataset, composed of 500 natural colour images of size 321× 481.
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What do we mean with Deblurring?

Let us consider the inverse problem of deblurring: we assume that we are given
measurements y = Kx + ε, where Kx = k ∗ x is a convolution operation representing a
motion blur.

The ill-posedness of this problem is manifested in the instability of the inverse of the
convolution; as a consequence of this, a naive inversion of the measurements will blow up
the noise in the measurements.

The data-fidelity term is

f (x) =
1

2
∥Kx− y∥22.
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Visualisation of the ill-posedness

Original, x Blur + noise, y = Kx + Naive inverse K 1y = x
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Use in a Deblurring Task

100 101 102

Iteration number k

10−9

10−7

10−5

10−3

10−1

101

103

‖x
k
−
x̂
‖2

Convergence of the PnP iterations
x

y 15.6

x̂ 30.6

Figure 3: Using the learned Euler denoiser to solve an ill-posed inverse problem (deblurring) in a PnP
fashion, with convergence guarantee.
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