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@ 1-Lipschitz Neural Networks

© 1-Lipschitz Networks for Robust Classification

e Universal approximation theorem for 1-Lipschitz ResNets:
Unbounded width and depth

e Universal approximation theorem for 1-Lipschitz ResNets:
Unbounded depth and fixed width
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Adversarial robustness

Constraining the Lipschitz constant leads to a reduced sensitivity to input perturbations.
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Adversarial robustness

Constraining the Lipschitz constant leads to a reduced sensitivity to input perturbations.

Wasserstein Generative Adversarial Networks (Kantorovich-Rubinstein duality)

Wil v) = sup  Exeul[f(X)] = Ever [f(Y)]

X —
f 1—Lipschitz
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Adversarial robustness

Constraining the Lipschitz constant leads to a reduced sensitivity to input perturbations.

Wasserstein Generative Adversarial Networks (Kantorovich-Rubinstein duality)

Wi(p,v) = I Ex~ulf(X)] = By [F(Y)]-
fl—'Lip—s>chitz

Convergent fixed point iterations

If |F(y) — F(X)|l2 < |ly — x||2 for every x,y € RY, then x,,; = F(xx) admits a unique
and attractive fixed point. If T,(x) = (1 — a)x + aF(x), a € (0,1) and F 1-Lipschitz,
then whenever x, 1 = T,(xk) has a fixed point, the sequence converges.
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1-Lipschitz MLPs

@ Given two Lipschitz-continuous functions F : R” — R¢, G : R? — R”, with Lipschitz
constants Lip(F) and Lip(G), respectively, the composition H = Fo G : RY — R€ is
Lipschitz continuous as well, with Lip(H) < Lip(F)Lip(G):

[H(y) — H(x)[l2 = [|F(G(y)) — F(G(x))[2 < Lip(F)[|G(y) — G(x)]]2
< Lip(F)Lip(G)|ly — x|l2, ¥x,y € R?.
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1-Lipschitz MLPs

@ Given two Lipschitz-continuous functions F : R” — R¢, G : R? — R”, with Lipschitz
constants Lip(F) and Lip(G), respectively, the composition H = Fo G : RY — R€ is
Lipschitz continuous as well, with Lip(H) < Lip(F)Lip(G):

[H(y) — H(x)[l2 = [|F(G(y)) — F(G(x))[2 < Lip(F)[|G(y) — G(x)]]2
< Lip(F)Lip(G)|ly — x|l2, ¥x,y € R?.

@ We can get a 1-Lipschitz feedforward network (MLP) composing 1-Lipschitz layers:
Ng=A 0c0A_10..000A;:RY = R,
where we need |o(s) — o(t)] < |s—t|, and ||Aj]]2 <1 for j =1,...,L. Most activation

functions, such as tanh, ReLLU, LeakyReLU, sigmoid, sin are 1-Lipschitz.
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1-Lipschitz ResNets are more challenging to obtain

For ResNets, it is more challenging, since the basic layers are of the form
RY 3 x 5 x + 7Fp.(x) = ©p.(x) € RY, 7> 0,
and, for a generic Fy, : RY — R it is hard to get better bounds than

5.(¥y) — 5, (x)]l2 < (1 + 7Lip(F,)) ly — xl2, x,y € R9.

We hence need to modify them slightly, or properly choose the residual map Fy,.
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Let V : RY — R be a continuously differentiable convex function. We consider vector
fields of the form
F(x) = -V V(x).

Given two solution curves, x(t) = F(x(t)) and y(t) = F(y(t)), we see that

%IIX(t) —y(0)I3 = = (VV(x(t) = VV(y(t)" (x(2) - y(t)) < 0.

Thus, the flow map ¢t : RY — RY defined by ¢t-(x(0)) = x(t) is 1-Lipschitz.
F F
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Gradient flows on R?

Consider the scalar function? Vy(x) = 1TReLU?(Wx + b)/2. Define

Fo(x) = =V Vj(x) = —WTReLU(Wx + b).

If x = Fp(x) and y = Fy(y), we have |ly(t) — x(t)[|2 < ||y(0) — x(0)]|2 for every t > 0.

W eR™  beR" heN, 6§ =(W,b), and 1 € R" a vector of ones.
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Non-expansive gradient flows

Gradient flows on R

Consider the scalar function? Vy(x) = 1TReLU?(Wx + b)/2. Define
Fo(x) = =V Vp(x) = —W T ReLU(Wx + b).

If x = Fp(x) and y = Fp(y), we have |ly(t) —x(t)||2 < |ly(0) — x(0)||2 for every t > 0.

WeR™ beR" heN, 0= (W,b), and 1 € R" a vector of ones.

\.

Euler step (1-Lipschitz)

If 7 € [0,2/||W|3], the explicit Euler map ¢} (x) = x + 7.Fy(x) is 1-Lipschitz, i.e.,

log(y) = 95(x)ll2 < lly = x|l2, x,y € RY.
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: 1[vV2 =2
X(t) = ~WTReLU(WA(t)), W = 3 [\/E \/;}

[[%i(t) = %;(®)ll [[%i(t) = %;(®)[l [[%i(t) = %;(®)[l
[[%:(0) = x;(0)[2 [[:(0) = x;(0)[2 [[:(0) = x;(0)[2
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Neural networks based on gradient flows
We consider neural networks of the form
Ny :Wogo@Lo...ocp@loQ:Rd%Rc, vo, € En,
Eni={# R" > R" (x) = x = 7W ReLU(Wx + b), W € R¥*" b € R",
W eN.7 e [0.2/|WI3l}.

where Q : R — RN and 7 : R" — R€ are affine maps.

~FinisB B

,ﬁg‘:Q i(t) = —A(t) ReLU(A(t)x(t) + b(t)) =
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Classification problem

Let X C R? be a set whose points are known to belong to C classes. Given part of their
labels, we want to label the remaining points using Ny : R — RS where we set

predicted class of x = arg max <N9 (x)T ec> .
E=iloooy©
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Classification problem

Let X C R? be a set whose points are known to belong to C classes. Given part of their
labels, we want to label the remaining points using Ny : R — RS where we set

predicted class of x = arg max <N9 (x)T ec> .
c=1,...,C

Adversarial examples

X+6, |6],=0.3

X
Label : Horse Label : Dog
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@ Not all correct predictions are equivalent.

@ Let /(x) = 2 be the correct label for the point x € X.

o Ny (x)=1[0.49 0.51 0] is not so certain as a prediction.
o Ny, (x)=1[0.05 0.9 0.05] there is a higher gap here.

~ Davide Murari (DAMTP)  Approximation theory for 1-Lipschitz ResNets 13/28



@ Not all correct predictions are equivalent.

@ Let /(x) = 2 be the correct label for the point x € X.

o Ny (x)=1[0.49 0.51 0] is not so certain as a prediction.
o Ny, (x)=1[0.05 0.9 0.05] there is a higher gap here.

Margin: My, (x) := Ng(x)TeZ(x) - 'an(X)Na(x)Tej-
JAL(x

M, (x) >0 = N correctly classifies x.
M, (x) > V2Lip(Np)e = My, (x + 1) > 0V]lnf2 < <.
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How to have guaranteed robustness

@ Not all correct predictions are equivalent.
@ Let /(x) = 2 be the correct label for the point x € X.
o Np, (x) =[0.49 0.51 0] is not so certain as a prediction.
o Ny, (x)=1[0.05 0.9 0.05] there is a higher gap here.
Margin: My, (x) := Ng(x)TeE(x) — max NVy(x)e;.
J#4(x)
My, (x) >0 = Nj correctly classifies x.

My, (x) > V2Lip(Np)e = My, (x+ 1) > 0V|n|2 <e.

@ We constrain the Lipschitz constant of A (and train the network so it maximises the
margin).
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Robustness to adversarial attacks

—€— ResNet
80 1 —8— Non-Expansive
g
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= 201
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™

Ferdia Sherry et al. "Designing stable neural networks using convex analysis and ODEs”
Physica D: Nonlinear Phenomena 463 (2024), p. 134159

Davide Murari (DAMTP) Approximation theory for 1-Lipschitz ResNets 14 /28




~ Davide Murari (DAMTP)  Approximation theory for 1-Lipschitz ResNets 15 /28



Let d € N, X C R and fix c = 1, i.e., consider scalar-valued networks. The networks we just
derived define the following set

gd(X):{WogogLo...o<pgloQ:X—>R‘<p9£Ggh,ﬁzl,...,L, h,L €N,
Q:RY SR 7:R" 5 R, Q and ﬂaffine}.

We denote with C1(X,R) the set of 1-Lipschitz functions from X" to R.
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Let d € N, X C R and fix c = 1, i.e., consider scalar-valued networks. The networks we just
derived define the following set

gd(X):{WOQO@LO...O()DQIOQ:X%R‘QOQZGgh,EZ].,...,L, h,L €N,
Q:RY SR 7:R" 5 R, Q and ﬂaffine}.

We denote with C1(X,R) the set of 1-Lipschitz functions from X" to R.

Universal approximation theorem

Let ¢ > 0, X C RY compact, and g € C1(X,R) a 1-Lipschitz function. Then, there
exists f € G4(X) N C1(X,R) such that

f(x) — .
max |f(x) — g(x)| <e
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We prove this theorem in two different ways:
@ First, we prove that the Restricted Stone-Weierstrass Theorem (see below) holds,

@ Second, we prove that each piecewise affine 1-Lipschitz function belongs to our set of
networks, and conclude thanks to their density in the set of 1-Lipschitz functions.

Restricted Stone-Weierstrass Theorem

Let X C RY be compact and have at least two points. Let A C C;(X,R) be a lattice?
separating the points? of X. Then A satisfies the universal approximation property for

C1(X,R).

?Closed under max and min.
®For any pair of distinct elements x,y € X and real numbers a, b € R with |a — b| < ||y — x||2, there

is an f € A such that f(x) = a and f(y) = b.
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To prove the universal approximation theorem, we first show that our networks can represent
all piecewise affine 1-Lipschitz functions.

Representation theorem

Ga(RY) NC1(RY, R) contains all the 1-Lipschitz piecewise affine functions from R? to R.
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Representation of piecewise affine functions

To prove the universal approximation theorem, we first show that our networks can represent
all piecewise affine 1-Lipschitz functions.

Representation theorem

Gq(RY)NC1(RY, R) contains all the 1-Lipschitz piecewise affine functions from R? to R.

This theorem follows from the max-min representation of piecewise affine functions:

max-min representation of 1-Lipschitz piecewise affine scalar functions

Let f : R — R be a 1-Lipschitz piecewise affine scalar function. Then, there exists a
choice of scalars b; j € R and vectors a;j € RY, llaijll2 < 1, such that

f(x) = max{f(x),..., k(x)}, fi(x)= min{ale + b1y, aI,ix +bi s}, kI €N
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Visualisation of the derivation in the proof

- T =
al,lcc F bl,l

.
@1, T + bl,ll_

. )
4517 + b2y

.
@2, + b2y |

.
ap T+ b1

=
a1, T St bkylk

Davide Murari (DAMTP)

$o,C "0 Po,
L = max{ly,..., L}y—-1
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Let x, x1,xo € R. We use four of the main properties of ReLU:
e |dentity map:
x = ReLU(x) — ReLU(—x),
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Let x, x1,xo € R. We use four of the main properties of ReLU:
e |dentity map:
x = ReLU(x) — ReLU(—x),

e Positively homogeneous:

ReLU(ax) = aReLU(x), with a > 0,
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Let x, x1,xo € R. We use four of the main properties of ReLU:
e |ldentity map:
x = ReLU(x) — ReLU(—x),

e Positively homogeneous:

ReLU(ax) = aReLU(x), with a > 0,

e Representation of the maximum:

max{xi,x2} = x1 + ReLU(x2 — x1) = x2 + ReLU(x; — x2),

~ Davide Murari (DAMTP)  Approximation theory for 1-Lipschitz ResNets 20/28



Let x, x1,xo € R. We use four of the main properties of ReLU:
e |ldentity map:
x = ReLU(x) — ReLU(—x),
e Positively homogeneous:

ReLU(ax) = aReLU(x), with a > 0,

e Representation of the maximum:

max{xi,x2} = x1 + ReLU(x2 — x1) = x2 + ReLU(x; — x2),

e Representation of the minimum:
min{x1,x2} = x; — ReLU(x1 — x2) = x2 — ReLU(x2 — x1).
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Given

f(x) = max{fi(x),...,k(x)}, fi(x)= min{a,Tlx +bi1,..., a,T,.x +bjy}, k.l €N,

1

we first define the affine layer Q : RY — R" to extract all the affine pieces:

ale + b1,1
Qx) = : € R",
aZ’,kx + bk,lk

with h = I + ... + I, which represents the network width.
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|dea of the proof of the representation theorem (part 2)

We then extract the maxima and minima as needed via maps of the form

[max{x1, x2}] [—1/V/2]
min{xl,X2} 1/\/§
p(x) = X3 =x-2| 0 |ReLU([-1/v2 1/v2 0 --- 0]x),

L Xh L 0
which can be written as ¢(x) = x — 7W TReLU(Wx), with 7 = 2, and
RYM s w=1[-1/v2 1/vV2 0 --- 0].

Notice that 7 = 2/||W/||3 since ||W||2 = 1.
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New set of networks

Fix h > 3. We now consider the set

é@m@nRy:{ﬂb¢ﬂoAEﬂ»~omp¢%oQ:X—+R m=(1,1,1,h— 3),

Q € ﬁd,ma v E Rh? HVHI é ]-aAl? "'7AL—1 S Ema@@g S gh—37 L S N}

A1
zm:{ :
Ax1
Rom=1{[B]

Alk k

: € Rmxm Afj S Rm;xmj’ Z HAUHZ < 1; | = ]-a ooy k}: me Nk7
Akk =
B;]T € Rade ) Bi S RmiXd, ||BI”2 < 17 I = 17 (XY k}7 am = HmHl?

5;7 = {gpg - RM3 5 RAH3 ‘ wo(x) = [max{xl,xz} min{xi,x2} x3 (Z@(X;;;)T} , Qg € Eh}.
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Characterisation of the set of networks

Let d, h € N with h > 3. All the functions in gd,h(Rd,R) are 1-Lipschitz.

Representation Theorem

Any piecewise affine 1-Lipschitz function f : RY — R can be represented by a network
in Gy p(RY, R) with h > d + 3.

Universal Approximation Theorem

Let d € N, and X C RY be compact. The set de,h(X,R) satisfies the universal approxi-
mation property for C1(X,R) if h > d + 3.
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Idea of the proof for the representation theorem

Example: f(x) = min{max{a; x, aj x}, max{aj x, aj x} }:

_aix max{a%Tx, a%Tx} a31x max{a_%x, a%{x}
RYS x| 2% min{ay x, a, x} . a{}x . . mln{as,Tx, a‘er}
~ | 0 |~ 0 —~~ |max{a; x,a, x} | ~~ | max{a; x, a, x}
Q o, A1 6,
| x X X X
max{a; x, a, x} max{aj x, a, X, a3 X, a, x}
Ty ol : Ty T Ty oT
o max{a; x, a, x} = min{max{a; x, a, x}, max{as x,a, x}} s F(%).
—~ 0 ~~ 0 ~~
Ao x Po3 X €
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@ Since gh C &3, the same universality result applies by replacing the highly-structured
gradient modules considered in Gy ¢4+3(X,R) with the unconstrained ones in 43 and
intersecting with C; (X, R).
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Final remarks

@ Since SN;, C Eht3, the same universality result applies by replacing the highly-structured
gradient modules considered in Gy 443(X, R) with the unconstrained ones in £,43 and
intersecting with C1(X, R).

@ To obtain universality while maintaining the width fixed, we introduced affine layers
between the residual gradient steps. Setting them to identity maps would lead to a subset
of Gy n(X,R) and of G4(X,R) which might not be universal.
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Final remarks

@ Since SN;, C Eht3, the same universality result applies by replacing the highly-structured
gradient modules considered in Gy 443(X, R) with the unconstrained ones in £,43 and
intersecting with C1(X, R).

@ To obtain universality while maintaining the width fixed, we introduced affine layers
between the residual gradient steps. Setting them to identity maps would lead to a subset
of Gy n(X,R) and of G4(X,R) which might not be universal.

@ Our proofs strongly rely on the properties of ReLU. The same results could be obtained
by any other activation functions that are positively homogeneous, can represent the
identity map, and the entrywise maximum and minimum functions.
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Final remarks

@ Since SN;, C Eht3, the same universality result applies by replacing the highly-structured
gradient modules considered in Gy 443(X, R) with the unconstrained ones in £,43 and
intersecting with C1(X, R).

@ To obtain universality while maintaining the width fixed, we introduced affine layers
between the residual gradient steps. Setting them to identity maps would lead to a subset
of Gy n(X,R) and of G4(X,R) which might not be universal.

@ Our proofs strongly rely on the properties of ReLU. The same results could be obtained
by any other activation functions that are positively homogeneous, can represent the
identity map, and the entrywise maximum and minimum functions.

@ The elements of G4(X,R) and Gvd,h(X,R) are neural networks that can be numerically
implemented. All the weight constraints can be efficiently enforced using projected
gradient descent. Spectral norms can be estimated using the power method.
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1-Lipschitz Networks for Inverse Problems




n€1[|de (f(x) +vg(x)), f:RY 5 R, g : RY - RU {00}, (1)

where f is a data-fidelity term, g is a regularisation term, and v > 0.
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n€1[|de (f(x) +vg(x)), f:RY 5 R, g : RY - RU {00}, (1)

where f is a data-fidelity term, g is a regularisation term, and v > 0.
Example:

1 1 . .
F(x) = 5lIKx — yIB, g(x) = IxI3 (Ridge Regression).
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The Proximal Gradient Descent Method

rg}iRIL(f(x)—i—'yg(x)), f:RI SR, g:RY - RU{+o0}, (1)

where f is a data-fidelity term, g is a regularisation term, and v > 0.
Example:

1 1 . .
F(x) = 5 IKx— yI3, g(x) = 5[} (Ridge Regression)

Assume f :RY = R and g : RY = R U {£00} convex, f continuously differentiable, g
continuous and proper. A method to solve (1) is the Proximal Gradient Descent Method:

Xk41 = ProX,z - (xk — 7VF(xk)), 7 >0,

i 1

pro%, () = argmin (-~ 23+ 7¢(2) )

8, 2
z€RY T
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Q c R? non-empty, closed, convex set. f : R? — R convex and continuously differentiable.

0, x € Q,

+o00, x ¢ Q.

,TEiS f(x) < ;21;@ £(x) + ia(x), iQ(X):{
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Example: Projected Gradient Descent

Q c R? non-empty, closed, convex set. f : R? — R convex and continuously differentiable.

0, x e Q,

min f(x) <= min f(x) + ia(x), ia(x) = {—I—oo x ¢ €.

xeQ x€Rd

Here, we have that if i =: g, the proximal operator is an orthogonal projection operator:

(1 . : :
prox, . (x) = argmin <2||x —z|3 + 7/9(2)) = argmin ||x — 2||3 = projo(x).
zeRd T 2eQ
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Example: Projected Gradient Descent

Q c R? non-empty, closed, convex set. f : R? — R convex and continuously differentiable.

0, x e Q,

Xmeig f(x) < xrgf'RrL f(x) + ia(x), ia(x) = {+oo, x4 Q.

Here, we have that if i =: g, the proximal operator is an orthogonal projection operator:
. 1 . : :
prox,, ,(x) = arg min <||x —z|3 + 7/9(2)) = argmin ||x — 2||3 = projo(x).
zeRd 21 zeQ
The proximal gradient method then becomes the projected gradient descent method:

Xk+1 = projo(xx — 7V (xk)).
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Let f(x) = 2|Kx —y[3, g(x) = |[x[l1 = 3%, |xi|, and 7 > O the regularisation parameter.
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Let f(x) = 2|Kx —y[3, g(x) = |[x[l1 = 3%, |xi|, and 7 > O the regularisation parameter.
The Proximal Gradient Descent then writes

Xk41 = ProX. . . (xk — 7K (Kx — y)) =5 (xk — 7K (Kx — y)) ,

X;i — A, Xj > A,
(Sx(x))i = {0, | <A A>0,i=1,..4d.
Xi + A, X; < —A,

Soft-thresholding, A = 0.4 Hard-thresholding, A =0.4

1 q /
01 /—/ 4 [

-10 -05 00 05 10-10 -05 00 05 10
X X

3/10



There are two problems with what we saw in the two previous slides:
@ It is extremely hard to define a good regulariser for any given task,
@ The proximal operator of a generic regulariser g is not easy to compute.
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The Plug-and-Play Method

There are two problems with what we saw in the two previous slides:
@ It is extremely hard to define a good regulariser for any given task,
@ The proximal operator of a generic regulariser g is not easy to compute.

Solution: The Plug-and-Play method is defined by replacing prox., , with a Neural Network:

Plug-and-Play:  xx41 = Na(xx — TV F(x)), Ny : R? — R€. (2)

The network A is typically trained offline to denoise images:

N
1
min §. 1: INo(xi +67) = xi|5, 61, ..., 65 ~ D.
1=

Davide Murari (DAMTP) Approximation theory for 1-Lipschitz ResNets 4/10



There are two problems with what we saw in the two previous slides:
@ It is extremely hard to define a good regulariser for any given task,
@ The proximal operator of a generic regulariser g is not easy to compute.

Solution: The Plug-and-Play method is defined by replacing prox. . , with a Neural Network:
Plug-and-Play:  xx41 = Na(xx — TV F(x)), Ny : R? — R€. (2)

The network N is typically trained offline to denoise images:

N
1
ma.nN;HNe(x,-M,)—x,-ug, 81,0 0N ~ D.

Convergence guarantees

Assume f is p-strongly convex, L-smooth, and 7 € (0,2/L). Then if Ny is 1-Lipschitz,
the iterates in (2) converge to a unique fixed point.
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Averaged maps

«a-averaged map

The map T : RY — R? is averaged if there exists a € (0,1) and a 1-Lipschitz map
F : R?Y - RY such that T = (1 — a)id + aF. The composition of averaged maps
is again averaged. Patrick L Combettes and Isao Yamada. “Compositions and Convex
Combinations of Averaged Nonexpansive Operators”. In: Journal of Mathematical Anal-
ysis and Applications 425.1 (2015), pp. 55-70, Proposition 2.4

Let f : RY — R be convex, continuously-differentiable, and L-smooth. Then if 7 €
(0,2/L) the map T(x) = x — 7Vf(x) is averaged with a = 7L/2.
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Convergence Theorem

Let f : RY — R be continuously differentiable, convex, and L-smooth. Assume 7 €
(0,2/L). Then G = id — 7V is 7L/2 averaged. Further assume that Aj : RY — R
is averaged. Let T = Nyo G. Assuming that Fix(T) # (), the Plug-and-Play iterates
Xk+1 = T (xk) will converge to a fixed point.
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Convergence Theorem

Let f : RY — R be continuously differentiable, convex, and L-smooth. Assume 7 €
(0,2/L). Then G = id — 7V is 7L/2 averaged. Further assume that Aj : RY — R
is averaged. Let T = Ny o G. Assuming that Fix(T) # ), the Plug-and-Play iterates
Xk+1 = T (xk) will converge to a fixed point.

Our networks are explicit Euler steps for the gradient of f(x) = 1T ReLU?(Ax + b)/2, which is
convex and its gradient is
Vf(x) = ATReLU(Ax + b),

which is ||A|3-Lipschitz. This means that the layers of our 1-Lipschitz network are averaged if
0 < 7; < 2/||Ai||3, and hence so is the full network Nj.
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The Network Ay Trained as Denoiser

PSNR (Peak Signal-to-Noise Ratio)

max; ; x |x*: |2
PSNR(%,x*) = 10log;, ( ikl .

1 ~
3321481 Zi,j,k |X7fj,k — Rijk[?

Figure 2: Image from BSDS500 dataset, composed of 500 natural colour images of size 321 x 481.
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What do we mean with Deblurring?

@ Let us consider the inverse problem of deblurring: we assume that we are given
measurements y = Kx + ¢, where Kx = k % x is a convolution operation representing a

motion blur.

@ The ill-posedness of this problem is manifested in the instability of the inverse of the
convolution; as a consequence of this, a naive inversion of the measurements will blow up
the noise in the measurements.

@ The data-fidelity term is
1
() = 5 1Kx— yI
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Visualisation of the ill-posedness

Original, x Blur + noise, y=Kx+ ¢
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Use in a Deblurring Task

Cg)onvergence of the PnP iterations
10°

10!
107" 4

10-3 4

llox — 21

1075
10—7 E

10~9 4

10° 10! 10?
Iteration number &

Figure 3: Using the learned Euler denoiser to solve an ill-posed inverse problem (deblurring) in a PnP
fashion, with convergence guarantee.
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