Contractive Systems Inspired GNNs

Davide Murari (NTNU)

davide.murari@ntnu.no

In collaboration with Moshe Eliasof, Ferdia Sherry and Carola Schönlieb (Cambridge University)

Graphs are everywhere

Molecule structure

Reference graph some notes I wrote

Connectivity of neurons in the brain

Citation graph of some papers I saved

Usual structure of GNNs $F^{(0)} = F$ $F^{(l+1)} = T_l\left(F^{(l)}, A\right), l = 0, \dots L - 1$ $R = MLP(F^{(L)}) =: GNN(F, A)$

Invariant $GNN(F, A) = GNN(PF, PAP^T)$ $PGNN(F, A) = GNN(PF, PAP^T)$ Equivariant

Usual structure of GNNs

Are (learnable) functions

Source : <u>https://geometricdeeplearning.com/lectures/</u>

Adversarial attacks

on Facebook

Adversarial attacks $F_* = F + \delta F, \quad \|\delta F\|_F \le \varepsilon_1$ $A_* = A + \delta A, \quad \|\delta A\|_0 \le \varepsilon_2$

Attacks do not break the properties of symmetry generally

Goal: $GNN(F, A) \approx GNN(F_*, A_*)$

Remark on Nuclear Norm

 $A \in \overline{\{0,1\}^{n \times n}} \implies ||A||_0 = \#\{i, j \in \{1, ..., n\}: A_{ij} \neq 0\} = ||\operatorname{vec}(\overline{A})||_{\ell^1}$

The 1-norm of the vectorisation is better suited for what we do, and we will use such norm instead of the nuclear norm.

Our proposed architecture: CSGNN

$$\begin{split} \left(F^{(0)}, A^{(0)}\right) &:= \left(\mathcal{K}\left(F_{*}\right), A_{*}\right) \\ \Psi^{h_{i}}_{X_{i}}(F, A) &= F - h_{i}G(A)^{T}\sigma\left(G(A)FW_{i}\right)W_{i}^{T} \\ \Psi^{h_{i}}_{Y_{i}}(A) &= A + h_{i}\sigma\left(M_{i}(A)\right) \end{split}$$

Linear equivariant vector field

$$\begin{split} M(A) &= k_1 A + k_2 \operatorname{diag}(\operatorname{diag}(A)) + \frac{k_3}{2n} (A \mathbf{1}_n \mathbf{1}_n^\top + \mathbf{1}_n \mathbf{1}_n^\top A) + k_4 \operatorname{diag}(A \mathbf{1}_n) \\ &+ \frac{k_5}{n^2} (\mathbf{1}_n^\top A \mathbf{1}_n) \mathbf{1}_n \mathbf{1}_n^\top + \frac{k_6}{n} (\mathbf{1}_n^\top A \mathbf{1}_n) I_n + \frac{k_7}{n^2} (\mathbf{1}_n^\top \operatorname{diag}(A)) \mathbf{1}_n \mathbf{1}_n^\top \\ &+ \frac{k_8}{n} (\mathbf{1}_n^\top \operatorname{diag}(A)) I_n + \frac{k_9}{2n} (\operatorname{diag}(A) \mathbf{1}_n^\top + \mathbf{1}_n (\operatorname{diag}(A))^\top) \end{split}$$

 $M(PAP^T) = PM(A)P^T, \quad (M(A))^T = M(A)$

Contractivity of feature updates

If $\sigma : \mathbb{R} \to \mathbb{R}$ is a non-decreasing 1-Lipschitz function, then the explicit Euler update is contractive in the F-norm when $h_i \leq 2/||W_i||_2^2$: $\left\|\Psi_{X_i}^{h_i}(\mathbf{F} + \delta \mathbf{F}, \mathbf{A}) - \Psi_{X_i}^{h_i}(\mathbf{F}, \mathbf{A})\right\|_F \leq \|\delta \mathbf{F}\|_F,$ $\delta \mathbf{F} \in \mathbb{R}^{n \times c}$

Contractivity of adjacency updates

If $\sigma : \mathbb{R} \to \mathbb{R}$ is a non-decreasing 1-Lipschitz function, then the explicit Euler update is contractive in the vectorized 1-norm when

$$h_i \leq \frac{2}{\left(2\sum_{i=2}^9 |k_i|\right) - \alpha}, \quad k_1 = \left(\alpha - \sum_{i=2}^9 |k_i|\right), \ \alpha \leq 0.$$

This means that:

$$\left\| \operatorname{vec}(\Psi_{Y_i}^{h_i}(\boldsymbol{A} + \delta \boldsymbol{A})) - \operatorname{vec}(\Psi_{Y_i}^{h_i}(\boldsymbol{A})) \right\|_1 \le \left\| \operatorname{vec}(\delta \boldsymbol{A}) \right\|_1, \\ \delta \boldsymbol{A} \in \mathbb{R}^{n \times n}$$

Robustness of the network

If the assumptions of the two previous theorems hold, and $A_{*}^{(0)} = A^{(0)} + \delta A, \ F_{*}^{(0)} = F^{(0)} + \delta F$ $\|\delta \boldsymbol{F}\|_F \leq \varepsilon_1, \|\operatorname{vec}(\delta \boldsymbol{A})\|_1 \leq \varepsilon_2,$ it follows $d\left(\mathcal{D}\left(\mathbf{F}^{(0)}, \mathbf{A}^{(0)}\right), \mathcal{D}\left(\mathbf{F}^{(0)}_{*}, \mathbf{A}^{(0)}_{*}\right)\right) := \left\|\operatorname{vec}\left(\mathbf{A}^{(L)}\right) - \operatorname{vec}\left(\mathbf{A}^{(L)}_{*}\right)\right\|_{1} + \left\|\mathbf{F}^{(L)} - \mathbf{F}^{(L)}_{*}\right\|_{F}$ $\leq \varepsilon_1 + \varepsilon_2 \left(1 + \sum_{i=1}^{L} \operatorname{Lip}\left(X_{i,\mathbf{F}^{(i-1)}}\right) h_i \right)$ $=: \varepsilon_1 + c (h_1, \ldots, h_L) \varepsilon_2.$

Experimental setup

Hyperparameter	Range	Distribution	
input/output embedding learning rate	$[10^{-5}, 10^{-2}]$	uniform	
node dynamics learning rate	$[10^{-5}, 10^{-2}]$	uniform	
adjacency dynamics learning rate	$[10^{-5}, 10^{-2}]$	uniform	
input/output embedding weight decay	$[5\cdot 10^{-8}, 5\cdot 10^{-2}]$	log uniform	
node dynamics weight decay	$[5 \cdot 10^{-8}, 5 \cdot 10^{-2}]$	log uniform	
adjacency dynamics weight decay	$[5 \cdot 10^{-8}, 5 \cdot 10^{-2}]$	log uniform	
input/output embedding dropout	[0, 0.6]	uniform	
node dynamics dropout	[0, 0.6]	uniform	
share weights between time steps	$\{yes, no\}$	discrete uniform	
step size h	$[10^{-2}, 1]$	log uniform	
adjacency contractivity parameter α	[-2,0]	uniform	
#layers L	$\{2, 3, 4, 5\}$	discrete uniform	
#channels c	$\{8, 16, 32, 64, 128\}$	discrete uniform	

Some experimental results

Method	Cora nettack metattack random		Citeseer nettack metattack random			
CSGNN _{noAdj}	81.90	70.25	77.19	82.20	70.17	71.28
CSGNN	83.29	74.46	78.38	84.60	72.94	72.70

We target the nodes with degree at least 10 and flip few of their incident edges

Node classification accuracy (%) of ECSGNN and other baselines, under a targeted attack generated by nettack. The horizontal axis describes the number of perturbations per node.

Some experimental results

Classification accuracy for The Pubmed dataset using Nettack as attack method.

The adjacency matrix is attacked by adding random fake edges, from 0% to 100% of the number of edges in the true one.

Thank you for the attention

Eliasof, M., M., D., Sherry, F., & Schönlieb, C. B. (2023). Contractive Systems Improve Graph Neural Networks Against Adversarial Attacks. *arXiv preprint*.

Scan for the preprint

