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Solving initial value problems with neural networks

» We aim to solve the autonomous initial value problem (IVP)

{x/(t) = F(x(t)) €RY,
X(O) = Xp € R

on the time interval [0, T].
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Solving initial value problems with neural networks

» We aim to solve the autonomous initial value problem (IVP)

{x/(t) = F(x(t)) €RY,
X(O) = Xp € RY

on the time interval [0, T].

» A one-step numerical method of order p is a map 2! : RY — R
such that &t = At + O (AtPH1), with ¢At the exact flow map of F.

» Using neural networks to replace or modify the map ¢t can be
useful when
> the dimension d is large
> one desires to have a (piecewise) continuous approximate solution
> one wants to also fit some observed data while approximately
solving the IVP




Physics-informed neural networks

» We introduce a parametric map Ay (-;xo) : [0, T] — R? such that
Ny (0; x9) = xo, and choose its weights so that

C
Z ||N/ te; Xo (Ng (tc;XO))Hg — min

for some collocation points ty,...,tc € [0, T].
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for some collocation points ty,...,tc € [0, T].

» Then, t — Np (t; xo) will solve a different IVP

{Y’ (1) = F(y(t)) + Vg (t:x0) — F (y (1)) € RY,
y (0) = xo € R9,

where hopefully the residual Ny (t;x0) — F (y (t)) is small in some
sense.




A-posteriori error estimate

Theorem: Quadrature-based a-posteriori error estimate

Let x(t) be the solution of the IVP

{x’ (t) = F(x(t)) e R?, F e cPt(RI, RY),
x(0) = xo.

Suppose that Ay (-; xo) : [0, At] — RY is smooth and satisfies
HNQI (teixo) = F (Np (fcixo))H2 <eg c=1,...,C

for C collocation points 0 < t; < --- < t¢c < At defining a quadra-
ture rule of order p. Then, there exist «, 8 > 0 such that

Ix () = No (t:x0) I, < a(At)PF! + Be, t € [0, At].




Training issues with neural network
> Solving a single IVP on [0, T] with a neural network can take long

training time.

» The obtained solution can not be used to solve the same ordinary
differential equation with a different initial condition.
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Figure: Solution comparison after reaching a loss value of 10=°. The training
time is of 87 seconds (7500 epochs with 1000 new collocation points randomly

sampled at each of them).




Training issues with neural network
» Itis hard to solve initial value problems over long time intervals.
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Figure: Solution comparison after 10000 epochs.




Forward invariant sets: Flow map approach
> Suppose ¢f(xo) € Q C RY for ¢t > 0.

> We can then work with N : [0, At] x Q — RY, where'

1 < ! c C H
£(0) = & > NG (te,x6) = F (N (te. x§))[[3 — min.
c=1

Solution

Figure: Network trained with At = 1 and applied up to T = 100.

'Sifan Wang and Paris Perdikaris. “Long-time integration of parametric evolution
equations with physics-informed DeepONets”. In: Journal of Computational Physics 475

(2023), p. 111855.




Another option for long-time simulations

» In case it is not known of a forward invariant set Q, one could split
the time domain [0, T] into smaller sub-intervals of size [0, At], and
solve a sequence of IVPs.
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Another option for long-time simulations

» In case it is not known of a forward invariant set Q, one could split
the time domain [0, T] into smaller sub-intervals of size [0, At], and
solve a sequence of IVPs.

» Lett,=nAt,n=0,..,N, At = T/N. We can solve in sequence the
initial value problems

{x’,, (t) = F (xa (t)) € RY, t € [tn, ta + At],

with t — Ny (t — tn; Xp). We set Xg = xo and X1 = Ny, (At; X,).
» Problem: Training these N networks can be extremely expensive.




Extreme learning machines (ELMs)

» ELMs are networks where only part of the weights are trained.
> We consider two-layer ELMs Nj (-; xo) : [0, At] — R of the form
Ny (t;x0) = x0 + 0 (o (at + b) — (b)), a,b € R, )
with @ € R>H, a, b, cU([-1,1]), h=1,..., H.

Theorem: Approximation properties of ELMs

For any smooth activation function ¢ : R — R and any set
{(tc,yc)}cczl, if H = C then with probabilty one there is matrix
0 € R¥Hin (1) such that MV} (tc; xo) = ye for c = 1,..., C°.

9Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. “Extreme learning
machine: Theory and applications”. In: Neurocomputing 70.1-3 (2006),
pp. 489-501.




Exploiting the efficiency of ELMs to solve IVPs

» One option would be to split the time domain into subintervals and
solve each of the obtained IVPs with an ELM?. Each of these ELMs
could be trained as a normal physics-informed neural network.

2Gianluca Fabiani et al. “Parsimonious physics-informed random projection neural
networks for initial value problems of ODEs and index-1 DAEs". In: Chaos: An
Interdisciplinary Journal of Nonlinear Science 33.4 (2023), p. 043128.
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Exploiting the efficiency of ELMs to solve IVPs

» One option would be to split the time domain into subintervals and
solve each of the obtained IVPs with an ELM?. Each of these ELMs
could be trained as a normal physics-informed neural network.

» Possible problems with this approach are:

> Solutions completely based on networks are not always reliable.
> Increased accuracy has to come from more collocation points.

» We consider a hybrid approach: replacing the coarse propagator in
the Parareal method with an ELM.

ZFabiani et al., “Parsimonious physics-informed random projection neural networks
for initial value problems of ODEs and index-1 DAEs".




B Parareal method

NTNU

» Divide the time interval [0, T] into N sub-intervals of size At = T/N.

» Choose a (cheap) coarse integrator ¢2¢, and a more accurate fine
integrator @2t

» Update iteratively the approximate solution x at the time
t = t, = nAt as follows:

0 0
Xg = X0, X, —90c (
A
Yc

i+1
= o8 o) +

),n>1

0
n
( ) (x;’,),nzl,izo.



Parareal method with ELMs
B Algorithm Hybrid Parareal algorithm based on ELMs

1: while /i < max_it and error > tol do
2 error +~0

3 ”H — pRi(xl), n=0to N — 1 > Fine integrator, Parallel
4: Xo <— Xp

5: forn=0to N —-1do
6 Find 01 — arg mingegne S NG (i) — F (N (tei %)
7 X0, 1 NQ,-H (At- xit1) > Next coarse approximation
8

’,,jll exEo xS 0! > Parareal correction

. 5 S
9 n+1 X1

10: error<— max {error
11: end for

12: i+—i+1

13: end while

i+1

i
Xn—i—l xn+1H2}




B The resulting piecewise smooth approximation
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> After the training, we end up with the hybrid Parareal
approximations x, at the time instants t, = nAt



B The resulting piecewise smooth approximation

NTNU

> After the training, we end up with the hybrid Parareal
approximations x, at the time instants t, = nAt

» But we also have a piecewise smooth approximation of the
solution given by

X(t) =Ny, (t — tn;Xp), t € [tn, tht1)-

» This function is the one we plot in the following experiments.



Example with the SIR problem

[ Timing breakdown I ELM \ Flow \
Offline training phase S ~20 minutes
Average cost coarse step || 0.0009773s | 0.0002729s
Total 0.3940s 0.8047s

ELM Flow map approach
Average computational time: 0.39s Average computational time: 0.8s
xq ref o para 1.5 xq ref To para
--=-- 1 para 3 ref ---- 1) para 3 ref
o ref —==- 13 para 1.0 o ref —==- 13 para
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Example with the Arenstorf orbit

[ Timing breakdown [ EIM ]
Average cost coarse step 0.001912s
Average cost to produce the solution 9.7957s

Average computational time: 9.8s
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Example with the Lorenz equation

100

[ Timing breakdown | Uniform [ Lobatto |
Average cost coarse step 0.0009430s | 0.0009371s
Average cost to produce the solution 1.8312s 1.8184s

Uniform nodes

Average computational time: 1.83s

1 ref Ty para
—==- 1 para 3 ref
Ty ref —==- 13 para

0.0

100

Lobatto nodes
Average computational time: 1.82s

1 ref

—===- 1) para

9 ref

T9 para

—==- 13 para

x3 ref

0.0 2.5
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Link to the preprint: davidemurari.com/ELM.pdf



https://davidemurari.com/ELM.pdf
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Convergence of Parareal

Theorem: Convergence of the Parareal method

Let o2t = ¢At. Assume that there exist p € N, a set of continuousl
F y

differentiable functions c,1, ¢p42,- -+, and a > 0 such that
PR (x) — 02" () = cor1 (X) (At)PH + Gppp (x) (AL)PT2 4+, and
[f* (x) = 2* (x)]|, < a(At)PH

for every x € R9, and also that there exists 8 > 0 such that
loe* (x) = e Wl, < (1 + BAL) [x —yl,, ¥x,y €R.

Then there exists a positive constant v such that

p i+1 ' i
( (At) +1) (1 + ﬁAt)nflfl H (n __/) ]

Ix(en) = xill, < 5=y — <o
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