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Solving initial value problems with neural networks
▶ We aim to solve the autonomous initial value problem (IVP){

x′ (t) = F (x (t)) ∈ Rd ,

x (0) = x0 ∈ Rd

on the time interval [0, T ].

▶ A one-step numerical method of order p is a map φ∆t : Rd → Rd

such that φ∆t = ϕ∆t +O
(
∆tp+1)

, with ϕ∆t the exact flow map of F .

▶ Using neural networks to replace or modify the map φ∆t can be
useful when
▶ the dimension d is large
▶ one desires to have a (piecewise) continuous approximate solution
▶ one wants to also fit some observed data while approximately

solving the IVP
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Physics-informed neural networks

▶ We introduce a parametric map Nθ (·; x0) : [0, T ]→ Rd such that
Nθ (0; x0) = x0, and choose its weights so that

L(θ) := 1
C

C∑
c=1

∥∥N ′
θ (tc ; x0)−F (Nθ (tc ; x0))

∥∥2
2 → min

for some collocation points t1, . . . , tC ∈ [0, T ].

▶ Then, t 7→ Nθ (t; x0) will solve a different IVP{
y′ (t) = F (y (t)) + (N ′

θ (t; x0)−F (y (t))) ∈ Rd ,

y (0) = x0 ∈ Rd ,

where hopefully the residual N ′
θ (t; x0)−F (y (t)) is small in some

sense.
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A-posteriori error estimate
Theorem: Quadrature-based a-posteriori error estimate

Let x(t) be the solution of the IVP{
x′ (t) = F (x (t)) ∈ Rd , F ∈ Cp+1(Rd ,Rd),
x (0) = x0.

Suppose that Nθ (·; x0) : [0, ∆t]→ Rd is smooth and satisfies∥∥N ′
θ (tc ; x0)−F (Nθ (tc ; x0))

∥∥
2 ≤ ε, c = 1, . . . , C

for C collocation points 0 ≤ t1 < · · · < tC ≤ ∆t defining a quadra-
ture rule of order p. Then, there exist α, β > 0 such that

∥x (t)−Nθ (t; x0)∥2 ≤ α(∆t)p+1 + βε, t ∈ [0, ∆t].
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Training issues with neural network
▶ Solving a single IVP on [0, T ] with a neural network can take long

training time.

▶ The obtained solution can not be used to solve the same ordinary
differential equation with a different initial condition.
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Figure: Solution comparison after reaching a loss value of 10−5. The training
time is of 87 seconds (7500 epochs with 1000 new collocation points randomly
sampled at each of them).
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Training issues with neural network
▶ It is hard to solve initial value problems over long time intervals.
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Figure: Solution comparison after 10000 epochs.
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Forward invariant sets: Flow map approach
▶ Suppose ϕt(x0) ∈ Ω ⊂ Rd for t ≥ 0.

▶ We can then work with Nθ : [0, ∆t]× Ω→ Rd , where1

L(θ) := 1
C

C∑
c=1

∥∥N ′
θ (tc , xc

0)−F (Nθ (tc , xc
0))

∥∥2
2 → min .
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Figure: Network trained with ∆t = 1 and applied up to T = 100.

1Sifan Wang and Paris Perdikaris. “Long-time integration of parametric evolution
equations with physics-informed DeepONets”. In: Journal of Computational Physics 475
(2023), p. 111855.
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Another option for long-time simulations

▶ In case it is not known of a forward invariant set Ω, one could split
the time domain [0, T ] into smaller sub-intervals of size [0, ∆t], and
solve a sequence of IVPs.

▶ Let tn = n∆t , n = 0, ..., N , ∆t = T/N. We can solve in sequence the
initial value problems{

x′
n (t) = F (xn (t)) ∈ Rd , t ∈ [tn, tn + ∆t],

xn (tn) = x̂n,

with t 7→ Nθn (t − tn; x̂n). We set x̂0 = x0 and x̂n+1 = Nθn (∆t; x̂n).
▶ Problem: Training these N networks can be extremely expensive.
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Extreme learning machines (ELMs)
▶ ELMs are networks where only part of the weights are trained.

▶ We consider two-layer ELMs Nθ (·; x0) : [0, ∆t]→ Rd of the form

Nθ (t; x0) = x0 + θ (σ (at + b)− σ(b)) , a, b ∈ RH , (1)

with θ ∈ Rd×H , ah, bh ∈ U ([−1, 1]), h = 1, . . . , H .

Theorem: Approximation properties of ELMs

For any smooth activation function σ : R → R and any set
{(tc , yc)}Cc=1, if H = C then with probabilty one there is matrix
θ ∈ Rd×H in (1) such that N ′

θ (tc ; x0) = yc for c = 1, ..., Ca.
aGuang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. “Extreme learning

machine: Theory and applications”. In: Neurocomputing 70.1-3 (2006),
pp. 489–501.
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Exploiting the efficiency of ELMs to solve IVPs

▶ One option would be to split the time domain into subintervals and
solve each of the obtained IVPs with an ELM2. Each of these ELMs
could be trained as a normal physics-informed neural network.

▶ Possible problems with this approach are:
▶ Solutions completely based on networks are not always reliable.
▶ Increased accuracy has to come from more collocation points.

▶ We consider a hybrid approach: replacing the coarse propagator in
the Parareal method with an ELM.

2Gianluca Fabiani et al. “Parsimonious physics-informed random projection neural
networks for initial value problems of ODEs and index-1 DAEs”. In: Chaos: An
Interdisciplinary Journal of Nonlinear Science 33.4 (2023), p. 043128.
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Parareal method

▶ Divide the time interval [0, T ] into N sub-intervals of size ∆t = T/N.

▶ Choose a (cheap) coarse integrator φ∆t
C , and a more accurate fine

integrator φ∆t
F .

▶ Update iteratively the approximate solution xi
n at the time

t = tn = n∆t as follows:

x0
0 = x0, x0

n = φ∆t
C

(
x0

n−1

)
, n ≥ 1

xi+1
n+1 = φ∆t

F

(
xi

n

)
+ φ∆t

C

(
xi+1

n

)
− φ∆t

C

(
xi

n

)
, n ≥ 1, i ≥ 0.
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Parareal method with ELMs
Algorithm Hybrid Parareal algorithm based on ELMs

1: while i < max_it and error > tol do
2: error← 0
3: xF

n+1 ← φ∆t
F (xi

n), n = 0 to N − 1 ▷ Fine integrator, Parallel
4: xi

0 ← x0
5: for n = 0 to N − 1 do
6: Find θi+1

n = arg minθ∈RH×d
∑C

c=1
∥∥N ′

θ

(
tc ; xi+1

n
)
−F

(
Nθ

(
tc ; xi+1

n
))∥∥2

2
7: xS

n+1 ← Nθi+1
n

(
∆t; xi+1

n
)

▷ Next coarse approximation
8: xi+1

n+1 ← xF
n+1 + xS

n+1 − xS,−1
n+1 ▷ Parareal correction

9: xS,−1
n+1 ← xS

n+1
10: error← max

{
error,

∥∥∥xi+1
n+1 − xi

n+1

∥∥∥
2

}
11: end for
12: i ← i + 1
13: end while
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The resulting piecewise smooth approximation

▶ After the training, we end up with the hybrid Parareal
approximations xn at the time instants tn = n∆t

▶ But we also have a piecewise smooth approximation of the
solution given by

x̃(t) = Nθn (t − tn; xn) , t ∈ [tn, tn+1).

▶ This function is the one we plot in the following experiments.
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Example with the SIR problem
Timing breakdown ELM Flow
Offline training phase 0s ∼20 minutes
Average cost coarse step 0.0009773s 0.0002729s
Total 0.3940s 0.8047s
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Example with the Arenstorf orbit
Timing breakdown ELM
Average cost coarse step 0.001912s
Average cost to produce the solution 9.7957s

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t
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x
2
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Average computational time: 9.8s
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Example with the Lorenz equation

Timing breakdown Uniform Lobatto
Average cost coarse step 0.0009430s 0.0009371s
Average cost to produce the solution 1.8312s 1.8184s

0.0 2.5 5.0 7.5 10.0
t

0

50

100

Uniform nodes
Average computational time: 1.83s

x1 ref

x1 para

x2 ref

x2 para

x3 ref

x3 para

0.0 2.5 5.0 7.5 10.0
t

0

50

100

Lobatto nodes
Average computational time: 1.82s

x1 ref

x1 para

x2 ref

x2 para

x3 ref

x3 para



17

THANK YOU FOR
THE ATTENTION

davide.murari@ntnu.no

Link to the preprint: davidemurari.com/ELM.pdf

https://davidemurari.com/ELM.pdf
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Convergence of Parareal
Theorem: Convergence of the Parareal method

Let φ∆t
F = ϕ∆t . Assume that there exist p ∈ N, a set of continuously

differentiable functions cp+1, cp+2, · · · , and α > 0 such that

φ∆t
F (x)− φ∆t

C (x) = cp+1 (x) (∆t)p+1 + cp+2 (x) (∆t)p+2 + · · · , and∥∥φ∆t
F (x)− φ∆t

C (x)
∥∥

2 ≤ α(∆t)p+1

for every x ∈ Rd , and also that there exists β > 0 such that∥∥φ∆t
C (x)− φ∆t

C (y)
∥∥

2 ≤ (1 + β∆t) ∥x− y∥2 , ∀x, y ∈ Rd .

Then there exists a positive constant γ such that

∥∥x(tn)− xi
n
∥∥

2 ≤
α

γ

(
γ(∆t)p+1)i+1

(i + 1)! (1 + β∆t)n−i−1
i∏

j=0
(n − j) .
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