
Learning the Hamiltonian of some constrained
mechanical systems

Davide Murari
davide.murari@ntnu.no

Norwegian University of Science and Technology, Trondheim

Computational Mathematics and Machine Learning
Lorentz Center, 04-10-2021

Part of an ongoing project with Elena Celledoni, Ergys Çokaj, Andrea
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Definition of the problem

Problem:

How can we approximate the Hamiltonian H of a vector field
XH ∈ X (M), where M is a symplectic manifold, starting from a set of
given trajectories?

And how can we approximate the solutions of this Hamiltonian
system with a neural network?
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A Neural Network as the Hamiltonian

Assumption on the Hamiltonian to learn:

H(q, p) =
1

2
pTM−1p + U(q), (q, p) ∈ M ⊂ R2n

Approximation of the kinetic energy

K (p) ≈ KA(p) =
1

2
∥Ap∥2 = 1

2
pT (ATA)p

Approximation of the potential energy

U(q) ≈ Uθ(q) = fθm ◦ ... ◦ fθ1(q),

θi = (Wi , bi ) ∈ Rni×ni−1 × Rni , θ := [θ1, ..., θm]

fθi (q) := Σ(qW T
i + bi ), Rn ∋ z 7→ Σ(z) = [σ(z1), ..., σ(zn)] ∈ Rn,

and for example σ(x) = tanh(x).
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Mechanical systems with holonomic constraints

We focus on the case M = T ∗Q ⊂ R2n, where

Q = {q ∈ Rn : g(q) = 0 ∈ Rm} ⊂ Rn.

Let H : M → R be the Hamiltonian. Then the vector field XH ∈ X(M)
can be written in the form[

q̇
ṗ

]
=

[
0n P(q)

−P(q)T M(q, p)

]
∇H(q, p) = XH(q, p)
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Case M is homogeneous

Homogeneous manifold

A smooth manifold M is homogeneous if there is a transitive Lie group
action ψ : G ×M → M.

We restrict to the case T ∗Q = M is homogeneous.

Here the ∆t flow of X ∈ X(M), reads

Φ∆t(x) = ψ(exp(σx(∆t)), x)

σ̇x = dexp−1
σx

◦ f ◦ ψ(exp(σx), x), σx(0) = 0 ∈ g,

for some f : M → g = TeG .

Examples: systems on S2, SO(3), SE (3), their (co)tangent bundles
and even their cartesian products.

If X = XH is Hamiltonian, then f just depends on H and M, i.e.
f = F [H] for some F depending on M.
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Learning a better Hamiltonian

Approximation of the Hamiltonian: Net(q, p) = KA(p) + Uθ(q),

Training trajectories:

{(xi , y1i , ..., yMi )}i=1,...,N , y
j
i = Φj∆t

XH
(xi )

Approximation of the ∆t flow with some numerical method
ŷ j+1
i = ψ(exp(σ̄), ŷ ji ) where σ̄ is the ∆t solution of{

σ̇ = dexp−1
σ ◦ F [Net] ◦ ψ(exp(σ), ŷ ji ),

σ(0) = 0 ∈ g

approximated with some Runge-Kutta method.

Optimize the weights: L(A, θ) := 1
2

∑N
i=1

∑M
j=1 d(ŷ

j
i , y

j
i )

2
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j
i , y

j
i )

2

Learning Hamiltonian systems with NNs 6 / 9



Case M = T ∗S2

A transitive action on M is

ψ : SE (3)×M → M, ψ((R, r), (q, p)) = (Rq,Rp + r × Rq),

The Hamiltonian is a function H : M → R, and

f = F [H] =

[
0 In
In 0

]
∇H.
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Some questions for future work

How can we preserve not just the geometry of the phase space, but
even symplecticity of the flow map and the Hamiltonian energy?

How does this global approach compare to one based on intrinsic
formulation of the dynamics typical of geometric mechanics?

How can we extend this approach to Hamiltonian systems defined on
generic symplectic manifolds?
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Thanks for the attention
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