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Definition of the problem
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Problem:
@ How can we approximate the Hamiltonian H of a vector field
Xy € X (M), where M is a symplectic manifold, starting from a set of
given trajectories?
@ And how can we approximate the solutions of this Hamiltonian
system with a neural network?
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@ Assumption on the Hamiltonian to learn:

1,
H(a,p)=5p"M~'p+ U(q), (q.p) €M CR*"



A Neural Network as the Hamiltonian
o Assumption on the Hamiltonian to learn:

1 — n
H(q.p) = 5p"M~'p+ U(q), (q.p) € M CR?

e Approximation of the kinetic energy

1

K(p) = Ka(p) = *IIAPHZ P (ATA)p
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A Neural Network as the Hamiltonian
o Assumption on the Hamiltonian to learn:

1 — n
H(q.p) = 5p"M~'p+ U(q), (q.p) € M CR?

e Approximation of the kinetic energy

1

K(p) = Ka(p) = *IIAPHZ P (ATA)p

e Approximation of the potential energy

U(q) = Up(q) = fy,, o ... o fp,(q),
0; = (W;, b)) € R"*"=1 x R" 0 := [0, ..., 0]

f3.(q) == X(qW,” + b)), R" 3 z = ¥(2) = [0(21), ..., 0(20)] € R,

and for example o(x) = tanh(x).
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We focus on the case M = T*Q c R?", where

Q={qeR": g(q)=0€R"} CR".



Mechanical systems with holonomic constraints
We focus on the case M = T*Q C R2", where
Q={geR": g(g)=0€R"} CR".

Let H: M — R be the Hamiltonian. Then the vector field Xy € X(M)
can be written in the form

q _| On P(q) B
[f’] a [—P(q)T M(q. p)| VH(9P) = Xu(a.p)
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A smooth manifold M is homogeneous if there is a transitive Lie group
action ¢ : G x M — M.




Case M is homogeneous

Homogeneous manifold

A smooth manifold M is homogeneous if there is a transitive Lie group
action ) : G x M — M.

@ We restrict to the case T*Q = M is homogeneous.
@ Here the At flow of X € X(M), reads

&2 (x) = Y(exp(ox(At)), )

Gx = dexp, o f o p(exp(0x),x), ox(0) =0 € g,
for some f: M — g = T.G.
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Case M is homogeneous

Homogeneous manifold

A smooth manifold M is homogeneous if there is a transitive Lie group
action ) : G x M — M.

@ We restrict to the case T*Q = M is homogeneous.
@ Here the At flow of X € X(M), reads

&2 (x) = Y(exp(ox(At)), )

Gx = dexp, o f o p(exp(0x),x), ox(0) =0 € g,
for some f: M — g = T.G.

e Examples: systems on S2, SO(3), SE(3), their (co)tangent bundles
and even their cartesian products.
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Case M is homogeneous

Homogeneous manifold

A smooth manifold M is homogeneous if there is a transitive Lie group
action ) : G x M — M.

@ We restrict to the case T*Q = M is homogeneous.
@ Here the At flow of X € X(M), reads

&2 (x) = Y(exp(ox(At)), )

Gx = dexp, o f o p(exp(0x),x), ox(0) =0 € g,
for some f: M — g = T.G.

e Examples: systems on S2, SO(3), SE(3), their (co)tangent bundles
and even their cartesian products.

o If X = Xy is Hamiltonian, then f just depends on H and M, i.e.
f = F[H] for some F depending on M.
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e Approximation of the Hamiltonian: Net(q, p) = Ka(p) + Uy(q),



e Approximation of the Hamiltonian: Net(q, p) = Ka(p) + Uy(q),

e Training trajectories:

. ‘A
{(Xiayi17 "'7yiM)}i=1,...,Na y,j = <:I)jXHt(Xi)



Learning a better Hamiltonian

e Approximation of the Hamiltonian: Net(q, p) = Ka(p) + Uy(q),

e Training trajectories:

' A
{(Xiayilu”vyiM)}i:l,A..,Nv yi = cbfot(X,-)

e Approximation of the At flow with some numerical method
Pt = y(exp(3), §/) where 7 is the At solution of

6 = dexp, ! o F[Net] o ?ﬂ(eXP(U)a)A’,j)a
c(0)=0€g

approximated with some Runge-Kutta method.
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Learning a better Hamiltonian

e Approximation of the Hamiltonian: Net(q, p) = Ka(p) + Uy(q),

e Training trajectories:

' A
{(Xiayilu”vyiM)}i:l,A..,Nv yi = <1>/XHt(X,-)

e Approximation of the At flow with some numerical method
Pt = y(exp(3), §/) where 7 is the At solution of

6 = dexp, ! o F[Net] o ?ﬂ(eXP(U)a)A’,j)a
c(0)=0€g

approximated with some Runge-Kutta method.

Optimize the weights: L(A,0) := 25", S°¥ d(y/, y/)?
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@ A transitive action on M is
Y :SEB)x M — M, %((R,r),(q,p)) = (Rq, Rp + r x Rq),
@ The Hamiltonian is a function H: M — R, and
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Some questions for future work

@ How can we preserve not just the geometry of the phase space, but
even symplecticity of the flow map and the Hamiltonian energy?

@ How does this global approach compare to one based on intrinsic
formulation of the dynamics typical of geometric mechanics?

@ How can we extend this approach to Hamiltonian systems defined on
generic symplectic manifolds?
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Thanks for the attention
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