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Definition of the problem
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Goal: to approximate the dynamics of a Hamiltonian vector field
Xy € X(T*Q), T*Q C R?", starting from a set of given trajectories.

Some solutions proposed in the literature:
@ Learning the vector field: fy(z) =~ Xu(z),
@ Learning the Hamiltonian: f(z) = H(z) = Xu(z) =~ IVfy(z).
@ Hamiltonian Neural Networks [1] (Greydanus et al., 2019)
@ Symplectic Recurrent Neural Networks [2] (Chen et al., 2020)

@ Learning the symplectic flow map d)AHt, e.g. SympNets [3] (Jin et al.,
2020)
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What are Recurrent Neural Networks (RNNs)?

Made by multiple copies of the same network, each passing a message to a
successor.
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Figure 1: Source:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

When to use RNNs?

“Whenever there is a sequence of data and that temporal dynamics that
connects the data is more important than the spatial content of each
individual frame.” — Lex Fridman (MIT).
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http: //colah.github.io/posts/2015-08-Understanding-LSTMs/

@ Separable Hamiltonian to learn:

H(g,p) = K(p)+ U(q), (q,p) € R*"



A Neural Network as the Hamiltonian

@ Separable Hamiltonian to learn:

H(a,p) = K(p) + U(q), (q,p) € R*"

e Approximation of the kinetic energy

1

K(p) ~ Ka(p) = *||APH2 P (AT A)p
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A Neural Network as the Hamiltonian

@ Separable Hamiltonian to learn:

H(a,p) = K(p) + U(q), (q,p) € R*"

e Approximation of the kinetic energy

K(p) ~ Kalp) = 51401 = 5

e Approximation of the potential energy

U(q) = Ug(q) = fy, o ... o fy, (q),

0; = (W, b;) € R">M=1 x R 9 := [0y, ...,
fa.(q) := Z(qW,” + b;), R" 3 z+= X(2) = [0(21), -,

and for example o(x) = tanh(x).
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e Approximation of the Hamiltonian: Ha(q, p) = Ka(p) + Us(q),



e Approximation of the Hamiltonian: Ha(q, p) = Ka(p) + Us(q),
o Training trajectories:

. A
{(Xiayi17 "'7yiM)}i=l,...,Na y,j = q>}XHt(Xi)



Learning a better Hamiltonian

e Approximation of the Hamiltonian: Ha(q, p) = Ka(p) + Us(q),
o Training trajectories:

A
{xis ¥ s oo YV Yim1ns v = @501 (x0)

e Numerical At-flow of Xy, ;:

PI(A,0) == WAL (HITN(A0)), 92(A0) = x;
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Learning a better Hamiltonian

e Approximation of the Hamiltonian: Ha(q, p) = Ka(p) + Us(q),
o Training trajectories:

A
{xis ¥ s oo YV Yim1ns v = @501 (x0)

e Numerical At-flow of Xy, ;:

PI(A,0) == WAL (HITN(A0)), 92(A0) = x;

Loss function:

N m
£(A0) = 5 33 15 A0) i

i=1 j=1

Improving the approximation:

A0 = arg Ten L(A,0) - H~ Hgg.
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@ RNNs have two main features:

@ They exploit the temporal relations in the data
@ They are based on weight sharing between the layers



Numerical methods and RNNs

@ RNNs have two main features:

© They exploit the temporal relations in the data
© They are based on weight sharing between the layers

@ In this learning framework we use some numerical integrator WA* and
obtain:

o 91 i= WD) = ()
o y7 = VA(p)
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Numerical methods and RNNs

RNNs have two main features:

© They exploit the temporal relations in the data
© They are based on weight sharing between the layers

@ In this learning framework we use some numerical integrator WA* and
obtain:

o 9 1= WAH(§) = WAT(x)

1
o P = VA(y})
o ...

° )A/iM = WAt(}?iM_l)

The weights are shared since this time stepping refers always to Ha g,

The time updates to compute the f/,’ can be interpreted similarly to
layer updates in RNNs.
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Numerical experiment: Mathematical pendulum

2
p
H(q,p) = 5 —cos(q), (q.p) €R?

Comparison of the trajectories

Comparison of Hamiltonian surfaces
— true
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Hamiltonian systems on homogeneous manifolds

Homogeneous manifold

A smooth manifold M is homogeneous if there is a transitive Lie group
action ¢ : G x M — M.

@ We restrict to the case T*Q = M is homogeneous.
@ Here the At flow of X € X(M), reads

dAE(x) = h(exp(ox(At)), X)

Gx = dexp, o f o p(exp(0x),x), ox(0) =0 € g,
for some f: M — g = T.G.
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Hamiltonian systems on homogeneous manifolds

Homogeneous manifold

A smooth manifold M is homogeneous if there is a transitive Lie group
action ¢ : G x M — M.

@ We restrict to the case T*Q = M is homogeneous.
@ Here the At flow of X € X(M), reads
O2(x) = Y(exp(ox(At)), )

Gx = dexp, o f o p(exp(0x),x), ox(0) =0 € g,
for some f: M — g = T.G.

o If X = Xy is Hamiltonian, then f just depends on H and M, i.e.
f = F[H] for some F depending on M.
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Learning the Hamiltonian of these systems

@ Neural network as the Hamiltonian

Net(qap) = HA,@(qap) ~ H(q7p)7

e Approximation of the At flow with some numerical method
For example with a Runge-Kutta—Munthe—Kaas method:

)’){Jrl = ’Qb(exp(&)’j},!)
where 7 is the At solution of

o= dexp(;1 o F[Net] o w(exp(a),ﬁf),
0(0)=0€g

approximated with some Runge-Kutta method.
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@ A transitive action on M [4] (Celledoni et al., 2021) is
¥ SE(3) x M — M, ((R,r),(q,p)) = (Rq, Rp + r x Rq),
@ The Hamiltonian is a function H: M — R, and
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Thanks for the attention
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