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Definition of the problem

Goal: to approximate the dynamics of a Hamiltonian vector field
XH ∈ X (T ∗Q), T ∗Q ⊂ R2n, starting from a set of given trajectories.

Some solutions proposed in the literature:

Learning the vector field: fθ(z) ≈ XH(z),

Learning the Hamiltonian: fθ(z) ≈ H(z) =⇒ XH(z) ≈ J∇z fθ(z).
1 Hamiltonian Neural Networks [1] (Greydanus et al., 2019)

2 Symplectic Recurrent Neural Networks [2] (Chen et al., 2020)

Learning the symplectic flow map Φ∆t
XH

, e.g. SympNets [3] (Jin et al.,
2020)
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What are Recurrent Neural Networks (RNNs)?

Made by multiple copies of the same network, each passing a message to a
successor.

Figure 1: Source:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

When to use RNNs?

“Whenever there is a sequence of data and that temporal dynamics that
connects the data is more important than the spatial content of each
individual frame.” – Lex Fridman (MIT).
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A Neural Network as the Hamiltonian

Separable Hamiltonian to learn:

H(q, p) = K (p) + U(q), (q, p) ∈ R2n

Approximation of the kinetic energy

K (p) ≈ KA(p) =
1

2
‖Ap‖2 =

1

2
pT (ATA)p

Approximation of the potential energy

U(q) ≈ Uθ(q) = fθm ◦ ... ◦ fθ1(q),

θi = (Wi , bi ) ∈ Rni×ni−1 × Rni , θ := [θ1, ..., θm]

fθi (q) := Σ(qW T
i + bi ), Rn 3 z 7→ Σ(z) = [σ(z1), ..., σ(zn)] ∈ Rn,

and for example σ(x) = tanh(x).
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Learning a better Hamiltonian

Approximation of the Hamiltonian: HA,θ(q, p) = KA(p) + Uθ(q),

Training trajectories:

{(xi , y1
i , ..., y

M
i )}i=1,...,N , y

j
i = Φj∆t

XH
(xi )

Numerical ∆t-flow of XHA,θ
:

ŷ ji (A, θ) := Ψ∆t(ŷ j−1
i (A, θ)), ŷ0

i (A, θ) := xi

Loss function:

L(A, θ) :=
1

2

N∑
i=1

m∑
j=1

‖ŷ ji (A, θ)− y ji ‖
2

Improving the approximation:

Ā, θ̄ := arg min
A,θ
L(A, θ)→ H ≈ HĀ,θ̄.

Learning Hamiltonian systems with NNs 5 / 14



Learning a better Hamiltonian

Approximation of the Hamiltonian: HA,θ(q, p) = KA(p) + Uθ(q),

Training trajectories:

{(xi , y1
i , ..., y

M
i )}i=1,...,N , y

j
i = Φj∆t

XH
(xi )

Numerical ∆t-flow of XHA,θ
:
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‖ŷ ji (A, θ)− y ji ‖
2

Improving the approximation:
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Numerical methods and RNNs

RNNs have two main features:
1 They exploit the temporal relations in the data
2 They are based on weight sharing between the layers

In this learning framework we use some numerical integrator Ψ∆t and
obtain:

ŷ1
i := Ψ∆t(ŷ0

i ) = Ψ∆t(xi )

ŷ2
i := Ψ∆t(ŷ1

i )

...

ŷM
i := Ψ∆t(ŷM−1

i )

The weights are shared since this time stepping refers always to HA,θ,

The time updates to compute the ŷ ji can be interpreted similarly to
layer updates in RNNs.
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i )

The weights are shared since this time stepping refers always to HA,θ,
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Numerical experiment: Mathematical pendulum

H(q, p) =
p2

2
− cos (q), (q, p) ∈ R2
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Learning some constrained Hamiltonian systems
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Formulation of the dynamics ([5] Lee et al., 2017)

[
q̇
ṗ

]
=

[
0n P(q)

−P(q)T M(q, p)

]
∇H(q, p)

M(q, p) = P(q)T
(
∂P(q)T p

∂q

)T

P(q) +

(
∂P(q)T p

∂q

)
P(q) − P(q)T

(
∂P(q)T p

∂q

)T

.
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Hamiltonian systems on homogeneous manifolds

Homogeneous manifold

A smooth manifold M is homogeneous if there is a transitive Lie group
action ψ : G ×M → M.

We restrict to the case T ∗Q = M is homogeneous.

Here the ∆t flow of X ∈ X(M), reads

Φ∆t(x) = ψ(exp(σx(∆t)), x)

σ̇x = dexp−1
σx ◦ f ◦ ψ(exp(σx), x), σx(0) = 0 ∈ g,

for some f : M → g = TeG .

If X = XH is Hamiltonian, then f just depends on H and M, i.e.
f = F [H] for some F depending on M.
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Learning the Hamiltonian of these systems

Neural network as the Hamiltonian

Net(q, p) = HA,θ(q, p) ≈ H(q, p),

Approximation of the ∆t flow with some numerical method
For example with a Runge–Kutta–Munthe–Kaas method:

ŷ j+1
i = ψ(exp(σ̄), ŷ ji )

where σ̄ is the ∆t solution of{
σ̇ = dexp−1

σ ◦ F [Net] ◦ ψ(exp(σ), ŷ ji ),

σ(0) = 0 ∈ g

approximated with some Runge-Kutta method.
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Case M = T ∗S2

A transitive action on M [4] (Celledoni et al., 2021) is

ψ : SE (3)×M → M, ψ((R, r), (q, p)) = (Rq,Rp + r × Rq),

The Hamiltonian is a function H : M → R, and

f = F [H] =

[
0 In
In 0

]
∇H.
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Thanks for the attention
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