
Learning the Hamiltonian of some classes of
mechanical systems

Davide Murari
davide.murari@ntnu.no

Norwegian University of Science and Technology, Trondheim

NUMDIFF-16,Halle, 09-09-2021

Part of an ongoing project with Elena Celledoni, Ergys Çokaj, Andrea
Leone, Brynjulf Owren.

Learning Hamiltonian systems with NNs 1 / 14



Definition of the problem

Goal: to approximate the dynamics of a Hamiltonian vector field
XH ∈ X (T ∗Q), T ∗Q ⊂ R2n, starting from a set of given trajectories.

Some solutions proposed in the literature:

Learning the vector field: fθ(z) ≈ XH(z),

Learning the Hamiltonian: fθ(z) ≈ H(z) =⇒ XH(z) ≈ J∇z fθ(z).
1 Hamiltonian Neural Networks [1] (Greydanus et al., 2019)

2 Symplectic Recurrent Neural Networks [2] (Chen et al., 2020)

Learning the symplectic flow map Φ∆t
XH

, e.g. SympNets [3] (Jin et al.,
2020)

Learning Hamiltonian systems with NNs 2 / 14



What are Recurrent Neural Networks (RNNs)?

Made by multiple copies of the same network, each passing a message to a
successor.

Figure 1: Source:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

When to use RNNs?

“Whenever there is a sequence of data and that temporal dynamics that
connects the data is more important than the spatial content of each
individual frame.” – Lex Fridman (MIT).

Learning Hamiltonian systems with NNs 3 / 14

http: //colah.github.io/posts/2015-08-Understanding-LSTMs/


A Neural Network as the Hamiltonian

Separable Hamiltonian to learn:

H(q, p) = K (p) + U(q), (q, p) ∈ R2n

Approximation of the kinetic energy

K (p) ≈ KA(p) =
1

2
‖Ap‖2 =

1

2
pT (ATA)p

Approximation of the potential energy

U(q) ≈ Uθ(q) = fθm ◦ ... ◦ fθ1(q),

θi = (Wi , bi ) ∈ Rni×ni−1 × Rni , θ := [θ1, ..., θm]

fθi (q) := Σ(qW T
i + bi ), Rn 3 z 7→ Σ(z) = [σ(z1), ..., σ(zn)] ∈ Rn,

and for example σ(x) = tanh(x).

Learning Hamiltonian systems with NNs 4 / 14



A Neural Network as the Hamiltonian

Separable Hamiltonian to learn:

H(q, p) = K (p) + U(q), (q, p) ∈ R2n

Approximation of the kinetic energy

K (p) ≈ KA(p) =
1

2
‖Ap‖2 =

1

2
pT (ATA)p

Approximation of the potential energy

U(q) ≈ Uθ(q) = fθm ◦ ... ◦ fθ1(q),

θi = (Wi , bi ) ∈ Rni×ni−1 × Rni , θ := [θ1, ..., θm]

fθi (q) := Σ(qW T
i + bi ), Rn 3 z 7→ Σ(z) = [σ(z1), ..., σ(zn)] ∈ Rn,

and for example σ(x) = tanh(x).

Learning Hamiltonian systems with NNs 4 / 14



A Neural Network as the Hamiltonian

Separable Hamiltonian to learn:

H(q, p) = K (p) + U(q), (q, p) ∈ R2n

Approximation of the kinetic energy

K (p) ≈ KA(p) =
1

2
‖Ap‖2 =

1

2
pT (ATA)p

Approximation of the potential energy

U(q) ≈ Uθ(q) = fθm ◦ ... ◦ fθ1(q),

θi = (Wi , bi ) ∈ Rni×ni−1 × Rni , θ := [θ1, ..., θm]

fθi (q) := Σ(qW T
i + bi ), Rn 3 z 7→ Σ(z) = [σ(z1), ..., σ(zn)] ∈ Rn,

and for example σ(x) = tanh(x).

Learning Hamiltonian systems with NNs 4 / 14



Learning a better Hamiltonian

Approximation of the Hamiltonian: HA,θ(q, p) = KA(p) + Uθ(q),

Training trajectories:

{(xi , y1
i , ..., y

M
i )}i=1,...,N , y

j
i = Φj∆t

XH
(xi )

Numerical ∆t-flow of XHA,θ
:

ŷ ji (A, θ) := Ψ∆t(ŷ j−1
i (A, θ)), ŷ0

i (A, θ) := xi

Loss function:

L(A, θ) :=
1

2

N∑
i=1

m∑
j=1

‖ŷ ji (A, θ)− y ji ‖
2

Improving the approximation:

Ā, θ̄ := arg min
A,θ
L(A, θ)→ H ≈ HĀ,θ̄.

Learning Hamiltonian systems with NNs 5 / 14



Learning a better Hamiltonian

Approximation of the Hamiltonian: HA,θ(q, p) = KA(p) + Uθ(q),

Training trajectories:

{(xi , y1
i , ..., y

M
i )}i=1,...,N , y

j
i = Φj∆t

XH
(xi )

Numerical ∆t-flow of XHA,θ
:

ŷ ji (A, θ) := Ψ∆t(ŷ j−1
i (A, θ)), ŷ0

i (A, θ) := xi

Loss function:

L(A, θ) :=
1

2

N∑
i=1

m∑
j=1

‖ŷ ji (A, θ)− y ji ‖
2

Improving the approximation:

Ā, θ̄ := arg min
A,θ
L(A, θ)→ H ≈ HĀ,θ̄.

Learning Hamiltonian systems with NNs 5 / 14



Learning a better Hamiltonian

Approximation of the Hamiltonian: HA,θ(q, p) = KA(p) + Uθ(q),

Training trajectories:

{(xi , y1
i , ..., y

M
i )}i=1,...,N , y

j
i = Φj∆t

XH
(xi )

Numerical ∆t-flow of XHA,θ
:

ŷ ji (A, θ) := Ψ∆t(ŷ j−1
i (A, θ)), ŷ0

i (A, θ) := xi

Loss function:

L(A, θ) :=
1

2

N∑
i=1

m∑
j=1

‖ŷ ji (A, θ)− y ji ‖
2

Improving the approximation:

Ā, θ̄ := arg min
A,θ
L(A, θ)→ H ≈ HĀ,θ̄.

Learning Hamiltonian systems with NNs 5 / 14



Learning a better Hamiltonian

Approximation of the Hamiltonian: HA,θ(q, p) = KA(p) + Uθ(q),

Training trajectories:

{(xi , y1
i , ..., y

M
i )}i=1,...,N , y

j
i = Φj∆t

XH
(xi )

Numerical ∆t-flow of XHA,θ
:

ŷ ji (A, θ) := Ψ∆t(ŷ j−1
i (A, θ)), ŷ0

i (A, θ) := xi

Loss function:

L(A, θ) :=
1

2

N∑
i=1

m∑
j=1

‖ŷ ji (A, θ)− y ji ‖
2

Improving the approximation:

Ā, θ̄ := arg min
A,θ
L(A, θ)→ H ≈ HĀ,θ̄.

Learning Hamiltonian systems with NNs 5 / 14



Numerical methods and RNNs

RNNs have two main features:
1 They exploit the temporal relations in the data
2 They are based on weight sharing between the layers

In this learning framework we use some numerical integrator Ψ∆t and
obtain:

ŷ1
i := Ψ∆t(ŷ0

i ) = Ψ∆t(xi )

ŷ2
i := Ψ∆t(ŷ1

i )

...

ŷM
i := Ψ∆t(ŷM−1

i )

The weights are shared since this time stepping refers always to HA,θ,

The time updates to compute the ŷ ji can be interpreted similarly to
layer updates in RNNs.

Learning Hamiltonian systems with NNs 6 / 14



Numerical methods and RNNs

RNNs have two main features:
1 They exploit the temporal relations in the data
2 They are based on weight sharing between the layers

In this learning framework we use some numerical integrator Ψ∆t and
obtain:

ŷ1
i := Ψ∆t(ŷ0

i ) = Ψ∆t(xi )

ŷ2
i := Ψ∆t(ŷ1

i )

...

ŷM
i := Ψ∆t(ŷM−1

i )

The weights are shared since this time stepping refers always to HA,θ,

The time updates to compute the ŷ ji can be interpreted similarly to
layer updates in RNNs.

Learning Hamiltonian systems with NNs 6 / 14



Numerical methods and RNNs

RNNs have two main features:
1 They exploit the temporal relations in the data
2 They are based on weight sharing between the layers

In this learning framework we use some numerical integrator Ψ∆t and
obtain:

ŷ1
i := Ψ∆t(ŷ0

i ) = Ψ∆t(xi )

ŷ2
i := Ψ∆t(ŷ1

i )

...

ŷM
i := Ψ∆t(ŷM−1

i )

The weights are shared since this time stepping refers always to HA,θ,

The time updates to compute the ŷ ji can be interpreted similarly to
layer updates in RNNs.

Learning Hamiltonian systems with NNs 6 / 14



Numerical experiment: Mathematical pendulum

H(q, p) =
p2

2
− cos (q), (q, p) ∈ R2

Learning Hamiltonian systems with NNs 7 / 14



Learning some constrained Hamiltonian systems

Learning Hamiltonian systems with NNs 8 / 14



Formulation of the dynamics ([5] Lee et al., 2017)

[
q̇
ṗ

]
=

[
0n P(q)

−P(q)T M(q, p)

]
∇H(q, p)

M(q, p) = P(q)T
(
∂P(q)T p

∂q

)T

P(q) +

(
∂P(q)T p

∂q

)
P(q) − P(q)T

(
∂P(q)T p

∂q

)T

.

Learning Hamiltonian systems with NNs 9 / 14



Hamiltonian systems on homogeneous manifolds

Homogeneous manifold

A smooth manifold M is homogeneous if there is a transitive Lie group
action ψ : G ×M → M.

We restrict to the case T ∗Q = M is homogeneous.

Here the ∆t flow of X ∈ X(M), reads

Φ∆t(x) = ψ(exp(σx(∆t)), x)

σ̇x = dexp−1
σx ◦ f ◦ ψ(exp(σx), x), σx(0) = 0 ∈ g,

for some f : M → g = TeG .

If X = XH is Hamiltonian, then f just depends on H and M, i.e.
f = F [H] for some F depending on M.

Learning Hamiltonian systems with NNs 10 / 14



Hamiltonian systems on homogeneous manifolds

Homogeneous manifold

A smooth manifold M is homogeneous if there is a transitive Lie group
action ψ : G ×M → M.

We restrict to the case T ∗Q = M is homogeneous.

Here the ∆t flow of X ∈ X(M), reads

Φ∆t(x) = ψ(exp(σx(∆t)), x)

σ̇x = dexp−1
σx ◦ f ◦ ψ(exp(σx), x), σx(0) = 0 ∈ g,

for some f : M → g = TeG .

If X = XH is Hamiltonian, then f just depends on H and M, i.e.
f = F [H] for some F depending on M.

Learning Hamiltonian systems with NNs 10 / 14



Learning the Hamiltonian of these systems

Neural network as the Hamiltonian

Net(q, p) = HA,θ(q, p) ≈ H(q, p),

Approximation of the ∆t flow with some numerical method
For example with a Runge–Kutta–Munthe–Kaas method:

ŷ j+1
i = ψ(exp(σ̄), ŷ ji )

where σ̄ is the ∆t solution of{
σ̇ = dexp−1

σ ◦ F [Net] ◦ ψ(exp(σ), ŷ ji ),

σ(0) = 0 ∈ g

approximated with some Runge-Kutta method.

Learning Hamiltonian systems with NNs 11 / 14



Case M = T ∗S2

A transitive action on M [4] (Celledoni et al., 2021) is

ψ : SE (3)×M → M, ψ((R, r), (q, p)) = (Rq,Rp + r × Rq),

The Hamiltonian is a function H : M → R, and

f = F [H] =

[
0 In
In 0

]
∇H.

Learning Hamiltonian systems with NNs 12 / 14



References

Greydanus, S. J., Dzumba, M., Yosinski, J. (2019). Hamiltonian
neural networks.

Chen, Z., Zhang, J., Arjovsky, M., Bottou, L. (2019). Symplectic
recurrent neural networks. International Conference on Learning
Representations

Jin, P., Zhang, Z., Zhu, A., Tang, Y., Karniadakis, G. E. (2020).
SympNets: Intrinsic structure-preserving symplectic networks for
identifying Hamiltonian systems. Neural Networks, 132, 166-179.

Celledoni, E., Çokaj, E., Leone, A., Murari, D., Owren, B. (2021) Lie
Group integrators for mechanical systems. International Journal of
Computer Mathematics.

Lee, T., Leok, M., McClamroch, N. H. (2017). Global formulations of
Lagrangian and Hamiltonian dynamics on manifolds. Springer, 13, 31.

Learning Hamiltonian systems with NNs 13 / 14



Thanks for the attention

Learning Hamiltonian systems with NNs 14 / 14


	Introduction
	Recurrent Neural Networks for Data Driven Modeling
	Learning Unconstrained Hamiltonian systems
	Learning some constrained Hamiltonian systems

