Improving the robustness of Graph Neural Networks with coupled dynamical systems

Davide Murari (NTNU) davide.murari@ntnu.no

Structured Machine Learning and Time–Stepping for Dynamical Systems Banff, 20/02/2024

In collaboration with Moshe Eliasof, Ferdia Sherry and Carola Schönlieb

The problem of adversarial robustness

Analysis of the GNN we propose

Numerical experiments

Classical tasks solved with GNNs

Usual structure of GNNs $F^{(0)} = F$ $F^{(l+1)} = T_l \left(F^{(l)}, A \right), l = 0, \dots L - 1$ $R = \mathrm{MLP}\left(F^{(L)}\right) =: \mathrm{GNN}(F, A)$

Invariant $GNN(F, A) = GNN(PF, PAP^T)$ $PGNN(F, A) = GNN(PF, PAP^T)$ Equivariant

Simple example of a GNN update

Adversarial Attacks for images

X, Label : Ship

Mathematically...

Building a network with a reduced sensitivity to these input perturbations, can be phrased as a constraint on the Lipschitz constant of the network, which should be "as small as possible" with respect to a suitable norm.

$\|\mathcal{N}_{\theta}(X+\delta) - \mathcal{N}_{\theta}(X)\| \le c\|\delta\|$

For graphs it is more complicated..

e.g. A hacker adding or removing friendships on Facebook

Adversarial attacks on Graphs $F_* = F + \delta F, \quad \|\delta F\|_F \le \varepsilon_1$ $A_* = A + \delta A, \quad \sum_{i,j=1}^n |(\delta A)_{ij}|$ $= \|\operatorname{vec}(\delta A)\|_1 \le \varepsilon_2$

Attacks do not break the properties of symmetry generally

Goal:

 $\operatorname{GNN}(F,A) \approx \operatorname{GNN}(F_*,A_*)$

Dynamical systems-based neural networks

Example (ResNet) $\Psi_{f_i}^{h_i}(x) = x + h_i f_i(x)$

Our proposed architecture

Coupled Systems Graph Neural Network (CSGNN)

$$\begin{cases} \dot{F}(t) = -G(A(t))^T \sigma(G(A(t))F(t)W)W^T \\ \dot{A}(t) = \sigma(M(A(t))) \\ F(0) = F^{(0)}, \ A(0) = A^{(0)} \end{cases}$$

And the solution is approximated with Explicit Euler steps of "small-enough" step size to obtain the neural network.

Some details on the functions

Graph Gradient Operator

 $(G(A)F)_{ijk} = A_{ij} (F_{ik} - F_{jk}), \qquad i, j = 1, \cdots, n$ $k = 1, \cdots, c$ $(G(A)^T O)_{ik} = \sum_{j=1}^n (A_{ij}O_{ijk} - A_{ji}O_{jik}), \qquad i = 1, \cdots, n,$ $k = 1, \cdots, c$

Linear Equivariant Map

 $M(A) = k_1 A + k_2 \operatorname{diag}(\operatorname{diag}(A)) + \frac{k_3}{2n} \left(A \mathbf{1}_n \mathbf{1}_n^T + \mathbf{1}_n \mathbf{1}_n^T A \right) + k_4 \operatorname{diag}(A \mathbf{1}_n)$ $+ \frac{k_5}{n^2} \left(\mathbf{1}_n^T A \mathbf{1}_n \right) \mathbf{1}_n \mathbf{1}_n^T + \frac{k_6}{n} \left(\mathbf{1}_n^T A \mathbf{1}_n \right) I_n + \frac{k_7}{n^2} \left(\mathbf{1}_n^T \operatorname{diag}(A) \right) \mathbf{1}_n \mathbf{1}_n^T$ $+ \frac{k_8}{n} \left(\mathbf{1}_n^T \operatorname{diag}(A) \right) I_n + \frac{k_9}{2n} \left(\operatorname{diag}(A) \mathbf{1}_n^T + \mathbf{1}_n (\operatorname{diag}(A))^T \right)$

 $M(PAP^T) = PM(A)P^T, \ M(A) = M(A)^T$

Non-expansivity of the system

(Result based on "Contractive Systems with Inputs", Eduardo D. Sontag)

If $\sigma(x) = \max\{ax, x\}, a \in (0, 1)$, then for a suitable choice of the coefficient k_1 , the two individual systems are contractive, i.e.

 $\|F(t) - F_*(t)\|_F \leq e^{-\nu_1 t} \|F^{(0)} - F_*^{(0)}\|_F, \nu_1 > 0, t \ge 0$ $\|\operatorname{vec}(A(t)) - \operatorname{vec}(A_*(t))\|_1 \leq e^{-\nu_2 t} \|\operatorname{vec}(A^{(0)}) - \operatorname{vec}(A_*^{(0)})\|_1, \nu_2 > 0, t \ge 0$

and there is a pair of constants $m_1, m_2 > 0$ such that the coupled system satisfies

CSGNN

$$\begin{split} \left(F^{(0)}, A^{(0)}\right) &:= \left(\mathcal{K}\left(F_{*}\right), A_{*}\right) \\ \Psi^{h_{i}}_{X_{i}}(F, A) &= F - h_{i}G(A)^{T}\sigma\left(G(A)FW_{i}\right)W_{i}^{T} \\ \Psi^{h_{i}}_{Y_{i}}(A) &= A + h_{i}\sigma\left(M_{i}(A)\right) \end{split}$$

Focus on the feature updates

If $\sigma : \mathbb{R} \to \mathbb{R}$ is a non-decreasing 1-Lipschitz function, then the explicit Euler update is nonexpansive in the Frobenius norm for a small enough step-size, i.e.

$$\left\| \Psi_{X_i}^{h_i}(F + \delta F, A) - \Psi_{X_i}^{h_i}(F, A) \right\|_F \leq \|\delta F\|_F, \\ \delta F \in \mathbb{R}^{n \times c}$$

Focus on the adjacency updates

If $\sigma: \mathbb{R} \to \mathbb{R}$ is a non-decreasing 1-Lipschitz function, then the explicit Euler update is nonexpansive in the vectorized 1-norm for a small enough step-size when

$$k_1 = \left(\alpha - \sum_{i=2}^9 |k_i|\right), \ \alpha \le 0.$$

This means that:

$$\left\| \operatorname{vec}(\Psi_{Y_i}^{h_i}(A + \delta A)) - \operatorname{vec}(\Psi_{Y_i}^{h_i}(A)) \right\|_1 \le \left\| \operatorname{vec}(\delta A) \right\|_1,$$

 $\delta A \in \mathbb{R}^{n \times n}$

Robustness of the network

If the assumptions of the two previous theorems hold, and

$$F_* = F + \delta F, \quad \|\delta F\|_F \le \varepsilon_1$$

$$A_* = A + \delta A, \quad \|\operatorname{vec}(\delta A)\|_1 \le \varepsilon_2$$

it follows $\left\| \operatorname{vec} \left(A^{(L)} \right) - \operatorname{vec} \left(A^{(L)}_* \right) \right\|_1 + \left\| F^{(L)} - F^{(L)}_* \right\|_F$ $\leq \varepsilon_1 + \varepsilon_2 \left(1 + \sum_{i=1}^L \operatorname{Lip} \left(X_{i,F^{(i-1)}} \right) h_i \right)$ $=: \varepsilon_1 + c \left(h_1, \dots, h_L \right) \varepsilon_2.$

Some experimental results

Method	nettack	Cora metattack	random	nettack	Citeseer metattack	random
CSGNN _{noAdj}	81.90	70.25	77.19	82.20	70.17	71.28
CSGNN	83.29	74.46	78.38	84.60	72.94	72.70

We target the nodes with degree at least 10 and flip few of their incident edges

Node classification accuracy (%) of ECSGNN and other baselines, under a targeted attack generated by nettack. The horizontal axis describes the number of perturbations per node.

Some experimental results

Classification accuracy for The Pubmed dataset using Nettack as attack method.

The adjacency matrix is attacked by adding random fake edges, from 0% to 100% of the number of edges in the true one.

Thank you for the attention