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Data-driven discovery of dynamical systems
Wewant to find the differential equa-
tion ẋ(t) = X (x(t)), X : R2 → R2, gen-
erating the trajectory in the movie.

Outline of the procedure

We define{
ẋ =

∑Nx
i=1 λi fi (x , y)

ẏ =
∑Ny

j=1 µjgj(x , y),
(1)

for a set of functions fi , gj : R2 → R,
and look for a good set of coefficients
λi , µj making (1) an accurate approxi-
mation of ẋ(t) = X (x(t)).
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Sparse Identification of Nonlinear Dynamics (SINDy)
Motivation behind SINDy

The right-hand side of most differential equations is made of the
sum of a few functions, so the coefficients λi , µj in the linear com-
bination should be, in large part, set to zero.

Some examples:

▶ Simple pendulum: ẋ = y , ẏ = −g/L sin(x),

▶ Lorenz: ẋ = σ(y − x), ẏ = x(ρ− z)− y , ż = xy − βz ,

▶ Free rigid body:

ẋ =

 0 x3/I3 −x2/I2
−x3/I3 0 x1/I1
x2/I2 −x1/I1 0

 x .
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Sparse Identification of Nonlinear Dynamics (SINDy)
The algorithm to approximate X : Rd → Rd

1. Build the data and derivative matrices

U =
[
x(t1) · · · x(tm)

]⊤
, Up =

[
ẋ(t1) · · · ẋ(tm)

]⊤ ∈ Rm×d .

2. Choose f1, ..., fN : Rd → R that are likely to appear in X , and
define the matrix Θ(U) ∈ Rm×N with entries

Θ(U)i ,j = fj(x(ti )), i = 1, ...,m, j = 1, ...,N.

3. Solve

min
Σ∈RN×d

∥Up −Θ(U)Σ∥2
F + λ ∥vec(Σ)∥1 , λ > 0.
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Building the data matrix
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▶ The data matrix U ∈ Rm×d collects the snapshots of some observed
trajectories at different time instants t1, ..., tm.
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Building the derivative matrix
▶ We generally do not know the exact values of ẋ(ti ), i.e., of X (x(ti )),

so we need to approximate them to assemble Up ∈ Rm×d .

▶ Approximating the derivatives is a delicate step that could amplify
the noise present in the trajectory data.
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Figure: Results obtained with the PySINDy library.
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1Alan A Kaptanoglu et al. “PySINDy: A comprehensive Python package for robust
sparse system identification”. In: arXiv preprint arXiv:2111.08481 (2021).
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Total Variation Regularised Derivative
▶ Let [t1, tm] ∋ t 7→ x(t) ∈ R be a signal with derivative u(t).

▶ Consider a vector s ∈ Rm made of noisy entries si = x(ti ) + δi .

▶ The TV regularised derivative based on s ∈ Rm is defined as

argmin
u∈Rm

F (u) :=
1
2
∥Au − (s − s1)∥2

2 + α ∥Du∥1 .

The matrix A contains quadrature weights, so

(Au)i ≈
∫ ti

t1

u(t)dt,

while D is a finite differences matrix of the first order, so

(Du)i ≈ u̇(ti ).
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Building a library of candidate functions
▶ Many dynamical systems are well approximated by polynomial

differential equations.

▶ Multivariate polynomials are usually the first reasonable set of
functions one can test in the dictionary of candidate functions.

▶ For example, if we consider polynomials up to degree 2 for a
system in R2, we would have

Θ(U) =

1 x(t1) y(t1) x(t1)
2 x(t1)y(t1) y(t1)

2

...
...

...
...

...
...

1 x(tm) y(tm) x(tm)
2 x(tm)y(tm) y(tm)

2

 ∈ Rm×6.

▶ Another common set of functions are trigonometric functions, for
example in the pendulum ẍ = −g/L sin(x). Thus, one can augment
the polynomial dictionary with functions like sin(kx), k ∈ Z.



7

Building a library of candidate functions
▶ Many dynamical systems are well approximated by polynomial

differential equations.

▶ Multivariate polynomials are usually the first reasonable set of
functions one can test in the dictionary of candidate functions.

▶ For example, if we consider polynomials up to degree 2 for a
system in R2, we would have

Θ(U) =

1 x(t1) y(t1) x(t1)
2 x(t1)y(t1) y(t1)

2

...
...

...
...

...
...

1 x(tm) y(tm) x(tm)
2 x(tm)y(tm) y(tm)

2

 ∈ Rm×6.

▶ Another common set of functions are trigonometric functions, for
example in the pendulum ẍ = −g/L sin(x). Thus, one can augment
the polynomial dictionary with functions like sin(kx), k ∈ Z.



7

Building a library of candidate functions
▶ Many dynamical systems are well approximated by polynomial

differential equations.

▶ Multivariate polynomials are usually the first reasonable set of
functions one can test in the dictionary of candidate functions.

▶ For example, if we consider polynomials up to degree 2 for a
system in R2, we would have

Θ(U) =

1 x(t1) y(t1) x(t1)
2 x(t1)y(t1) y(t1)

2

...
...

...
...

...
...

1 x(tm) y(tm) x(tm)
2 x(tm)y(tm) y(tm)

2

 ∈ Rm×6.

▶ Another common set of functions are trigonometric functions, for
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Least squares with sparsity promotion
▶ We now need to find how to linearly combine the columns of Θ(U)

to recover Up , with a sparse set of coefficients.

▶ A first strategy to do so is ℓ1 regularisation, leading to the (convex)
unconstrained minimisation problem

min
Σ∈RN×d

∥Up −Θ(U)Σ∥2
F + λ ∥vec(Σ)∥1 , λ > 0,

or, equivalently, to the inequality-constrained problem

min
Σ∈RN×d

∥Up −Θ(U)Σ∥2
F , s.t. ∥vec(Σ)∥1 < tol.

▶ This method can be expensive, especially for high-dimensional
datasets.
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The sequential thresholded least squares method
▶ The alternative approach recommended in the original paper2 is

the Sequential Thresholded Least Squares method (STLS).

Sequential thresholded least squares method

1. Solve the least squares problem

Σ0 := argmin
Σ∈RN×d

∥Up −Θ(U)Σ∥2
F .

2. For k = 1, ...,K solve the constrained least squares problem

Σk := argmin
Σ∈RN×d

∥Up −Θ(U)Σ∥2
F

s.t. Σi,j = 0 whenever
∣∣∣Σk−1

i,j

∣∣∣ < λ.

2Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. “Discovering governing
equations from data by sparse identification of nonlinear dynamical systems”. In:
Proceedings of the national academy of sciences 113.15 (2016), pp. 3932–3937.
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STLS convergence properties3

F (Σ) = ∥Up −Θ(U)Σ∥2
F + λ2 ∥vec(Σ)∥0 . (2)

Convergence theorem

Suppose that ∥Θ(U)∥2 = 1.
1. The STLS iterates {Σk} converge to a fixed point in at most

N · d steps.

2. A fixed point of the STLS method is a local minimiser of (2).

3. A global minimiser of (2) is a fixed point of the scheme.

4. The iterates {Σk} strictly decrease (2) unless stationary.

3Linan Zhang and Hayden Schaeffer. “On the convergence of the SINDy algorithm”.
In: Multiscale Modeling & Simulation 17.3 (2019), pp. 948–972.
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Example: Simple harmonic oscillator
The target equations are {

ẋ(t) = y(t)

ẏ(t) = −0.5 x(t).

Result obtained with LASSO, fixing
λ = 10−3 and exact derivatives ẋ(ti ):



ẋ ẏ
1 0 0
x 0 −0.4996
y 0.9991 0
x2 0 0
xy 0 0
y2 0 0

.

Result obtained with STLS, fixing
λ = 0.05 and exact derivatives ẋ(ti ):



ẋ ẏ
1 0 0
x 0 −0.5
y 1 0
x2 0 0
xy 0 0
y2 0 0

.
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Example with noisy data

Target differential equations:
{
ẋ = −0.1x + 2y
ẏ = −2x − 0.1y

.
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Figure: Gaussian noise with σ = 0.1. STLS algorithm with λ = 0.05.

POLY:
{
ẋ = −0.082x + 1.975y
ẏ = −1.972x − 0.110y

, TV:
{
ẋ = −0.092x + 1.974y
ẏ = −1.981x − 0.107y .
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Constraining the coefficients

▶ Suppose we know we are dealing with a planar Hamiltonian system
of the form {

ẋ = y

ẏ = −V ′(x),
(3)

where we do not know the potential energy V : R → R.

▶ Then we could constrain the optimisation problem further, for
example saying that there is no term in y in the second equation.

▶ The same might occur when we know part of the terms on the
right-hand side, conservation laws, or symmetries in the equations.

▶ To see how to impose the structure in (3), we first rewrite the SINDy
method in vector form.
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Vector version of SINDy
▶ We use the vec operator, which stacks the columns of a matrix into

a single column vector:

vec
([

a1 a2 · · · ak

])
=

[
a⊤

1 · · · a⊤
k

]⊤
.

This operator also satisfies vec(ABC ) = (C⊤ ⊗ A)vec(B), and hence

vec(Θ(U)Σ) = (Id ⊗Θ(U)) vec(Σ) =: Θ̃(U)σ ∈ Rm·d .

More explicitly, Θ̃(U) is of the form

Θ̃(U) =


Θ(U) 0 · · · 0

0 Θ(U) · · · 0
...

... . . . ...
0 0 · · · Θ(U)

.
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The constrained STLS algorithm4

▶ With the vector notation, one of the STLS iterates is of the form

σk := argmin
σ∈RN·d

∥∥∥Θ̃(U)σ − up

∥∥∥2

2

s.t. C kσ = d k , C k ∈ Rrk×N·d ,

which admits a unique solution if
rank(C k) = rk , and rank

([
Θ̃(U)
C k

])
= N · d .

4Jean-Christophe Loiseau and Steven L Brunton. “Constrained sparse Galerkin
regression”. In: Journal of Fluid Mechanics 838 (2018), pp. 42–67.
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Back to planar Hamiltonian systems...
▶ Say that we want to discover ẍ = −V ′(x) with V (x) = x2/4. We can

then include prior information as C̃σ = d̃ where

C̃ =


ẋ ẏ

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 x y 1 x y

, d̃ =

0
0
0

 .

▶ At each step, we can then solve

σk := argmin
σ∈RN·d

∥∥∥Θ̃(U)σ − up

∥∥∥2

2

s.t.
[
C k

C̃

]
σ =

[
d k

d̃

]
.
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Constraining the model in the presence of noise
We now perturb the exact derivatives ẋ(ti ) to v i = ẋ(ti ) + ε with
εk ∼ N (0, σ2), k = 1, ..., d , and see how the reconstructed models are.

The target equations are ẋ = y , ẏ = −0.5x .

The orange matrices are obtained with constrained models, while the
blue ones are unconstrained:


1 0 0
x 0 −0.500
y 1.000 0
x2 0 0
xy 0 0
y2 0 0

ẋ ẏ

σ = 10−3 ,


0 0
0 −0.500

1.000 0
0 0
0 0
0 0
ẋ ẏ

σ = 10−3 ,


0 0
0 −0.500

1.000 0
0 0
0 0
0 0
ẋ ẏ

σ = 10−2 ,


0 0.112
0 −0.500

1.000 0
0 −0.112
0 0
0 −0.223
ẋ ẏ

σ = 10−2 .
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Analysis of the recovered dynamics

Σ =


0 0.112 1
0 −0.500 x

1.000 0 y
0 −0.112 x2

0 0 xy
0 −0.223 y2

 =⇒
{
ẋ = y

ẏ = −0.5x + c(1 − x2 − 2y2), c ≈ 0.112.

The additional term vanishes on the energy level set of the initial
condition x0 = [1, 0], which is the ellipse{

(x , y) ∈ R2 : H(x , y) = y2/2 + x2/4 = 1/4
}
.

10−1 100 101 102

t

10−4

10−2

`2
er

ro
r

Difference of the produced solutions with σ = 10−2

Constrained

Unconstrained
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SINDy for discrete dynamical systems

▶ What if we want to approximate a map F : Rd → Rd defining the
discrete dynamics xk+1 = F (xk)?

▶ In this case, we do not need the derivative matrix Up , but we work
with the dataset

Ul =
[
x1 · · · xm

]⊤
, Ur =

[
x2 · · · xm+1

]⊤ ∈ Rm×d .

▶ We can still apply the same procedure as SINDy for continuous
systems, but to these new data matrices:

min
Σ∈RN×d

∥Ur −Θ(Ul)Σ∥2
F + λ ∥vec(Σ)∥1 , λ > 0.
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SINDy for parametric differential equations

▶ What we have seen up to now extends to dynamical systems that
depend on a parameter µ ∈ Rp.

▶ We can rewrite
ẋ = X (x ,µ)

as {
ẋ = X (x ,µ)
µ̇ = 0.

(4)

▶ SINDy can then be applied to (4) using the new state variable

z =

[
x
µ

]
.
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SINDy for non-autonomous differential equations

▶ A similar reasoning applies to explicitly time-dependent differential
equations.

▶ We can rewrite
ẋ = X (x , t)

as {
ẋ = X (x , t)
ṫ = 1.

(5)

▶ SINDy can then be applied to (5) using the new state variable

z =

[
x
t

]
.
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ccc

Some limitations and
extensions of SINDy
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Curse of dimensionality5

As the dimension d grows, the set of basis functions one has to
consider will grow quickly. For example dim(Pd

k ) =
(k+d

d

)
, which for

d = 6 and k = 5 is already 462.

A common solution to this problem is to start with a truncated SVD:

U⊤ ≈ ΨrΣrV
⊤
r =⇒ x ≈ Ψra, a ∈ Rr .

Then, one can apply the SINDy algorithm in the variable a, and
ẋ(t) ≈ Ψr ȧ(t).

5Kathleen Champion et al. “Data-driven discovery of coordinates and governing
equations”. In: Proceedings of the National Academy of Sciences 116.45 (2019),
pp. 22445–22451; Brunton, Proctor, and Kutz, “Discovering governing equations from
data by sparse identification of nonlinear dynamical systems”.
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Approximating the derivatives

The SINDy algorithm depends on having an accurate approxima-
tion of the exact derivative matrix Up.

A solution6 can be to work with the integral version of the differential
equation:

x(t)− x(0) =
∫ t

0
X (x(t))dt.

We can then proceed similarly to the SINDy algorithm and write

xi (tm)− xi (0) ≈
N∑
j=1

Σi ,jdj(tm), dj(tm) ≈
∫ tm

0
fj(x(t))dt.

6Hayden Schaeffer and Scott G McCalla. “Sparse model selection via integral terms”.
In: Physical Review E 96.2 (2017), p. 023302.
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Limitation: Knowledge of the terms to include in the
dictionary

The quality of the recovered system depends on our knowledge of
what basis functions to include in Θ(U), which can generally not
be inferred just based on data.

A solution could be to use general enough parametric models like
Neural ODEs

ẋ(t) = Nθ(x(t)), θ ∈ Rp,

to get a first approximation of the right-hand side. We could then do
sparse regression over this approximate model to get a more
interpretable approximation, as in SINDy. [1]Christopher Rackauckas et al. “Universal
differential equations for scientific machine learning”
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Example in higher dimensions1

Figure: Low-rank dynamics underlying the periodic vortex shedding behind a
circular cylinder at low Reynolds number, Re = 100.

ẋ = µx − ωy + Axz

ẏ = ωx + µy + Ayz

ż = −λ(z − x2 − y2).

1Brunton, Proctor, and Kutz, “Discovering governing equations from data by sparse identification of nonlinear dynamical
systems”.
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Some alternative methods to SINDy
▶ Symbolic regression with

evolutionary algorithms1.

▶ Symbolic regression with
transformers2.

▶ Hybrid approaches, like AI
Feynman3.

1Miles Cranmer. “Interpretable machine learning for science with PySR and SymbolicRegression. jl”.
2Stéphane d’Ascoli et al. “Odeformer: Symbolic regression of dynamical systems with transformers”.
3Silviu-Marian Udrescu and Max Tegmark. “AI Feynman: A physics-inspired method for symbolic regression”.
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PDE-FIND1

▶ Similarly to SINDy, we could discover the right-hand side of the PDE

∂tu(x , t) = N (u, ∂xu, ∂xxu, ...) , x ∈ Rd .

▶ This time, the dataset is a vector u ∈ RM·N where

u = vec(U), Un,m ≈ u(xn, tm), n = 1, ...,N, m = 1, ...,M,

for a spatio-temporal grid {(xn, tm)} of Ω× [0,T ], Ω ⊂ Rd .
▶ The candidate matrix becomes

Θ(u) =
[
1 u ux u ⊙ ux · · ·

]
∈ RN·M×K

and we have to deal with a sparse regression of the form

min
σ∈RK

∥ut −Θ(u)σ∥2
2 + λR(σ).

1Samuel H Rudy et al. “Data-driven discovery of partial differential equations”.
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