SINDy - a survey of methods and their
properties

Davide Murari

Trial lecture
September 25, 2024

=
bo
S
(o)
=
c
(9]
()
f
el
C
©
[0}
(9]
=
o
(o)
(%2}
Y
©
P
5=
w
z
[
2
c
D
C
8
bo
()
2
g
o
b4




Data-driven discovery of dynamical systems

t=0.00s

We want to find the differential equa-
tion x(t) = X(x(t)), X : R> — R?, gen-
erating the trajectory in the movie.




Data-driven discovery of dynamical systems

We want to find the differential equa-
tion x(t) = X(x(t)), X : R? — R?, gen-
£- 0005 erating the trajectory in the movie.

05 Outline of the procedure

We define

os ] X = ZIN:X]. )\,-f,-(x,y)
. N,
y =221 1igi(x,y),

(1)

N R for a set of functions f;, gj : R? — R,
) and look for a good set of coefficients
Ai, pj making (1) an accurate approxi-
mation of x(t) = X(x(t)).




Sparse Identification of Nonlinear Dynamics (SINDy)
B Motivation behind SINDy

The right-hand side of most differential equations is made of the
sum of a few functions, so the coefficients \;, x1; in the linear com-
bination should be, in large part, set to zero.




Sparse Identification of Nonlinear Dynamics (SINDy)
Motivation behind SINDy

The right-hand side of most differential equations is made of the
sum of a few functions, so the coefficients \;, x1; in the linear com-
bination should be, in large part, set to zero.

Some examples:
» Simple pendulum: x =y, y = —g/Lsin(x),
» Lorenz: x=o0(y —x),y=x(p—2z)—y, z=xy — Bz,
» Free rigid body:
|: 0 x3/h3 x2//2]
x=|—x3/h 0 xi/h | x.

X2//2 —Xl/ll 0




Sparse Identification of Nonlinear Dynamics (SINDy)

The algorithm to approximate X : R — R

1. Build the data and derivative matrices

U=[x(tr) - x(tm)]", Up=[x(tr) -+ x(tm)] €R™.




Sparse Identification of Nonlinear Dynamics (SINDy)

The algorithm to approximate X : R — R

1. Build the data and derivative matrices
U=[x(tr) - x(tm)]", Up=[x(tr) -+ x(tm)] €R™.
2. Choose f, ..., fy : R — R that are likely to appear in X, and
define the matrix ©(U) € R™N with entries

@(U)i’j = G(X(t,')), i=1..m j=1_..N.




Sparse Identification of Nonlinear Dynamics (SINDy)

The algorithm to approximate X : R — R

1. Build the data and derivative matrices
U=[x(tr) - x(tm)]", Up=[x(tr) -+ x(tm)] €R™.
2. Choose f, ..., fy : R — R that are likely to appear in X, and
define the matrix ©(U) € R™N with entries

@(U)i’j = G(X(t,')), i=1..m j=1_..N.

3. Solve

. 2
_mip |Up — ©(U)X||z + Alvec(X)|l;, A > 0.




Building the data matrix

o 0 oo 2 2 - 2 2
X=y y=—x x=y—((+y)—1)x, y= —x—((x*+y°) = 1)y
10 10
05 05
> 00 > 00
~05 —05
~10 ~10
-2 -1 0 1 2 -2 -1 0 1 2
X X
15 10 P—
104 e AN
051 / \
051 / \
> 00 > 004 % +
051 \ /
05
1 \ /
~05
~1.01 \\
151 10 //
4 ‘3 ‘2 ‘1 0 ‘1 é é 4 ‘2 ‘1 6 ‘1 2




Building the data matrix

o - oo 2 2 - 2 2
X=y y=—x x=y—((+y)—1)x, y= —x—((x*+y°) = 1)y
10 10
05 05
> 00 > 00
~05 —05
~10 ~10
-2 -1 0 1 2 -2 -1 0 1 2
X X
15 10 P—
10 e AN
051 / \
051 / \
> 00 > 00 % +
N \ /
05
\ /
~05
10 /
\\\_'/
~15 10
4 3 2 1 6 1 2 é 4 ‘2 ‘1 6 ‘1 2
X X

» The data matrix U € R™*9 collects the snapshots of some observed
trajectories at different time instants ty, ..., t.



Building the derivative matrix

» We generally do not know the exact values of x(t;), i.e., of X(x(t;)),
so we need to approximate them to assemble U, € R™*¢,




Building the derivative matrix
» We generally do not know the exact values of x(t;), i.e., of X(x(t;)),
so we need to approximate them to assemble U, € R™*¢,

» Approximating the derivatives is a delicate step that could amplify
the noise present in the trajectory data.

f(t) = —t +sin(2mt — 2)2 +20 - [t e f'(t) = —1+ 27 - sin(4nt — 4) + 20 - sign(t)

True derivative
Finite differences
Polynomial
—— TV regularised

50 1

Clean data ~754
+  Noisy data

1.00 -0.75 —0.50 —0.25 0.00 025 050 0.75 1.00 1.00 -0.75 —0.50 —0.25 0.00 0.25 050 0.75 1.00
t t

Figure: Results obtained with the PySINDy' library.

TAlan A Kaptanoglu et al. “PySINDy: A comprehensive Python package for robust
sparse system identification”. In: arXiv preprint arXiv:2111.08481 (2021).




Total Variation Regularised Derivative
> Let[t1,tm] 3 t — x(t) € R be a signal with derivative u(t).

» Consider a vector s € R™ made of noisy entries s; = x(t;) + 0;.




Total Variation Regularised Derivative

> Let[t1,tm] 3 t — x(t) € R be a signal with derivative u(t).
» Consider a vector s € R™ made of noisy entries s; = x(t;) + 0;.

» The TV regularised derivative based on s € R is defined as

. 1
argmin F(u) := 5 |Au — (s — s1)||5 + «||Du]|; -
ucR™

The matrix A contains quadrature weights, so

(Au), ~ / " (o),

t1

while D is a finite differences matrix of the first order, so

(Du); = a(t;).




Building a library of candidate functions

» Many dynamical systems are well approximated by polynomial
differential equations.

» Multivariate polynomials are usually the first reasonable set of
functions one can test in the dictionary of candidate functions.




Building a library of candidate functions

» Many dynamical systems are well approximated by polynomial
differential equations.

» Multivariate polynomials are usually the first reasonable set of
functions one can test in the dictionary of candidate functions.

» For example, if we consider polynomials up to degree 2 for a
system in R?, we would have

1 x(t1) y(t1) x(t1)> x(t)y(t) y(t2)?
o) =1|: : : : : e R™*6,
1 x(tm) y(tm) x(tm)?® x(tm)y(tm) y(tm)?




Building a library of candidate functions

» Many dynamical systems are well approximated by polynomial
differential equations.

» Multivariate polynomials are usually the first reasonable set of
functions one can test in the dictionary of candidate functions.

» For example, if we consider polynomials up to degree 2 for a
system in R?, we would have

1 x(t1) y(t) x(t)> x(t)y(tr) y(t)?
o) =1|: : : : : e R™*6,
1 x(tm) y(tm) x(tm)?® x(tm)y(tm) y(tm)?

» Another common set of functions are trigonometric functions, for
example in the pendulum % = —g/Lsin(x). Thus, one can augment
the polynomial dictionary with functions like sin(kx), k € Z.




Least squares with sparsity promotion

» We now need to find how to linearly combine the columns of ©(U)
to recover U, with a sparse set of coefficients.




Least squares with sparsity promotion

» We now need to find how to linearly combine the columns of ©(U)
to recover U, with a sparse set of coefficients.

» A first strategy to do so is ¢! regularisation, leading to the (convex)
unconstrained minimisation problem

. 2
_min_[|Up = O(U)E] + Avec(E) |, A >0,

or, equivalently, to the inequality-constrained problem

- 2
Lmin, |Up — ©(U)X||5, s.t. |[vec(X)|l; < tol.




Least squares with sparsity promotion

» We now need to find how to linearly combine the columns of ©(U)
to recover U, with a sparse set of coefficients.

» A first strategy to do so is ¢! regularisation, leading to the (convex)
unconstrained minimisation problem

. 2
_min_[|Up = O(U)E] + Avec(E) |, A >0,

or, equivalently, to the inequality-constrained problem
min U, — O(U)Z|%, s.t. [[vec(T)|, < tol.

TeRNxd

» This method can be expensive, especially for high-dimensional
datasets.




The sequential thresholded least squares method

» The alternative approach recommended in the original paper? is
the Sequential Thresholded Least Squares method (STLS).

2Steven L Brunton, Joshua L Proctor, and ] Nathan Kutz. “Discovering governing
equations from data by sparse identification of nonlinear dynamical systems”. In:
Proceedings of the national academy of sciences 113.15 (2016), pp. 3932-3937.




The sequential thresholded least squares method

» The alternative approach recommended in the original paper? is
the Sequential Thresholded Least Squares method (STLS).

Sequential thresholded least squares method

1. Solve the least squares problem

y0 = argmin||Up — o(U)Z|3.
YeR




The sequential thresholded least squares method

» The alternative approach recommended in the original paper? is
the Sequential Thresholded Least Squares method (STLS).

Sequential thresholded least squares method

1. Solve the least squares problem

y0 = argmin||Up — o(U)Z|3.
YeR

2. For k =1,...,K solve the constrained least squares problem
YK :=argmin ||U, — @(U)ZH%_-
ZE]RNXd

s.t. X;; = 0 whenever

<

. J

2Brunton, Proctor, and Kutz, “Discovering governing equations from data by sparse
identification of nonlinear dynamical systems”.




STLS convergence properties?

F(Z) = | Up = O(V)Z[7 + A% [[vec(Z)lo - (2)

3Linan Zhang and Hayden Schaeffer. “On the convergence of the SINDy algorithm”.
In: Multiscale Modeling & Simulation 17.3 (2019), pp. 948-972.




STLS convergence properties?

F(Z) = [1Up — O(U)EF + A2 [|vec(E) o - )

Convergence theorem

Suppose that |©(U)||, = 1.

1. The STLS iterates {Z*} converge to a fixed point in at most
N - d steps.




STLS convergence properties?

F(Z) = [1Up — O(U)EF + A2 [|vec(E) o - )

Convergence theorem

Suppose that |©(U)||, = 1.

1. The STLS iterates {Z*} converge to a fixed point in at most
N - d steps.

2. A fixed point of the STLS method is a local minimiser of (2).




STLS convergence properties?

F(Z) = [1Up — O(U)EF + A2 [|vec(E) o - )

Convergence theorem

Suppose that |©(U)||, = 1.

1. The STLS iterates {Z*} converge to a fixed point in at most
N - d steps.

2. A fixed point of the STLS method is a local minimiser of (2).

3. A global minimiser of (2) is a fixed point of the scheme.




STLS convergence properties?

F(Z) = [1Up — O(U)EF + A2 [|vec(E) o - )

Convergence theorem

Suppose that |©(U)||, = 1.

1. The STLS iterates {Z*} converge to a fixed point in at most
N - d steps.

2. A fixed point of the STLS method is a local minimiser of (2).

3. A global minimiser of (2) is a fixed point of the scheme.

4. The iterates {X*} strictly decrease (2) unless stationary.

3Zhang and Schaeffer, “On the convergence of the SINDy algorithm”.



B Example: Simple harmonic oscillator

The target equations are

x(t) = y(t)
y(t) = —0.5x(t).
Result obtained with LASSO, fixing Result obtained with STLS, fixing
A = 1073 and exact derivatives x(t;): A = 0.05 and exact derivatives x(t;):

X y X y
1 0 0 7 1[0 0 T
x| 0  —0.4996 x|0 —0.5
y10.9991 0 yll o0
x| 0 0 x>0 0
Xy 0 0 xy |0 0
v’ o 0 | y20 0 |




B Example with noisy data

NTNU

. _ , X = —0.1x + 2
Target differential equations: X ey
y=—-2x—0.1y

Figure: Gaussian noise with ¢ = 0.1. STLS algorithm with A = 0.05.

x = —0.082 1.97 x = —0.092 1.974
POLY: X 0.082x 4 1.975y TV X 0.092x + 1.974y
y =—1.972x — 0.110y y = —1.981x — 0.107y.



B Constraining the coefficients

NTNU > Suppose we know we are dealing with a planar Hamiltonian system

of the form
X=y
3
{y' — V(). e

where we do not know the potential energy V : R — R.

» Then we could constrain the optimisation problem further, for
example saying that there is no term in y in the second equation.



B Constraining the coefficients

NTNU > Suppose we know we are dealing with a planar Hamiltonian system

of the form
X=y
3
{y' — V(). 3

where we do not know the potential energy V : R — R.

» Then we could constrain the optimisation problem further, for
example saying that there is no term in y in the second equation.

» The same might occur when we know part of the terms on the
right-hand side, conservation laws, or symmetries in the equations.



B Constraining the coefficients

NTNU > Suppose we know we are dealing with a planar Hamiltonian system

of the form
X=y
3
{y' — V(). 3

where we do not know the potential energy V : R — R.

» Then we could constrain the optimisation problem further, for
example saying that there is no term in y in the second equation.

» The same might occur when we know part of the terms on the
right-hand side, conservation laws, or symmetries in the equations.

» To see how to impose the structure in (3), we first rewrite the SINDy
method in vector form.



B Vector version of SINDy

» We use the vec operator, which stacks the columns of a matrix into
a single column vector:

vec([ar ap -+ a))=1[a] ---a]".




B Vector version of SINDy

» We use the vec operator, which stacks the columns of a matrix into
a single column vector:

vec([ar ap -+ a))=1[a] ---a]".

This operator also satisfies vec(ABC) = (CT ® A)vec(B), and hence

vec(O(U)X) = (Iy ® O(U)) vec(X) =: (U)o € R™7.

More explicitly, ©(U) is of the form




B Vector version of SINDy

NTNU » We use the vec operator, which stacks the columns of a matrix into
a single column vector:

vec([ar a -+ a))=[a] ---a]]".
This operator also satisfies vec(ABC) = (C" @ A)vec(B). So,
vec(O(U)X) = (ly ® O(U)) vee(X) =: (U)o € R™4.

» Since ||A||r = ||vec(A)]|2, the LASSO formulation can be rewritten as

~ 2
Find arg min ||&(U)o — u,,H2 Aol

ocRN-d

where u, := vec(Up).



The constrained STLS algorithm*

» With the vector notation, one of the STLS iterates is of the form

ok = arg min

ocRN-d
st. Cke =d*, CckeRrwNd

- 2
(U)o — upH2

which admits a unique solution if ~
rank(C¥) = r,, and rank <[@élkj)}> =N-d.

4Jean-Christophe Loiseau and Steven L Brunton. “Constrained sparse Galerkin
regression”. In: Journal of Fluid Mechanics 838 (2018), pp. 42-67.




B Back to planar Hamiltonian systems...

> Say that we want to discover x = —V’(x) with V(x) = x*/4. We can
then include prior information as Co = d where

o] o
0|, d=|o].
|-l
y

X O = O X-
< oo o
— o oo
X O O O <




B Back to planar Hamiltonian systems...

> Say that we want to discover x = —V’(x) with V(x) = x*/4. We can
then include prior information as Co = d where

X O =) O X-
o oo

—= o oo

X O O oKX

y
> At each step, we can then solve

ok = arg min
ocRNd

<[5l




B Constraining the model in the presence of noise

We now perturb the exact derivatives x(t;) to v; = x(t;) + € with
ex ~N(0,0%), k =1,...,d, and see how the reconstructed models are.

The target equations are x = y, y = —0.5x.




B Constraining the model in the presence of noise

We now perturb the exact derivatives x(t;) to v; = x(t;) + € with
ex ~N(0,0%), k =1,...,d, and see how the reconstructed models are.

The target equations are x = y, y = —0.5x.

The orange matrices are obtained with constrained models, while the
blue ones are unconstrained:

o=10"3 oc=10"3 o=10"7? oc=10"2
1 { 0 0 —‘ 0 0 { 0 0 —‘ 0 0.112
x| 0 —0.500 | 0 —0.500 | O —0.500 | 0 —0.500
y I 1.000 0 I 1.000 0 I 1.000 0 I 1.000 0
x2 I 0 0 I ’ 0 0 ’ I 0 0 I ’ 0 —-0.112|"
xy| O 0 | 0 0 | 0 0 | 0 0
y? L 0 0 J 0 0 L 0 0 J 0 —0.223




Analysis of the recovered dynamics

0 0.112 |1
0  —0.500|x
s_ |1000 0y x=y
0 —0.112|x Y =—05x+c(l— x2—2y?), c~0.112.
0 0 Xy
0 —0.223 y2

The additional term vanishes on the energy level set of the initial
condition xo = [1, 0], which is the ellipse
{(x,y) cR?: H(x,y) = y2/2 +x2/4 = 1/4} )

Difference of the produced solutions with o = 102

10-2 == Constrained
== Unconstrained

.
10?




B SINDy for discrete dynamical systems

NTNU

» What if we want to approximate a map F : RY — R? defining the
discrete dynamics xy1 = F(xx)?



B SINDy for discrete dynamical systems

NTNU

» What if we want to approximate a map F : RY — R? defining the
discrete dynamics xy1 = F(xx)?

» In this case, we do not need the derivative matrix U,, but we work
with the dataset

U=I[x1 - xm]T, U =[x2 - xmﬂ]T e R™9,



B SINDy for discrete dynamical systems

NTNU

» What if we want to approximate a map F : RY — R? defining the
discrete dynamics xy1 = F(xx)?

» In this case, we do not need the derivative matrix U,, but we work
with the dataset
:|T

U=I[x1 - xu] , U=[x2 - xmﬂ]T e R™9,

» We can still apply the same procedure as SINDy for continuous

systems, but to these new data matrices:

in [|[U, —O(U)Z|% + A Dy, A>0.
):er%wde (UNZ|[e [[vec(X)Il;



SINDy for parametric differential equations

» What we have seen up to now extends to dynamical systems that
depend on a parameter p € RP.

» We can rewrite

X = X(X,[J,)
as
fo=0.

» SINDy can then be applied to (4) using the new state variable

[




B SINDy for non-autonomous differential equations

NTNU

» A similar reasoning applies to explicitly time-dependent differential
equations.

» We can rewrite

x = X(x,t)

as
x = X(x,t) (5)
t=1

» SINDy can then be applied to (5) using the new state variable

z:m.



Some limitations and
extensions of SINDy




Curse of dimensionality

As the dimension d grows, the set of basis functions one has to
consider will grow quickly. For example dim(P¢) = (kgd), which for
d =6and k =5 is already 462.

>Kathleen Champion et al. “Data-driven discovery of coordinates and governing
equations”. In: Proceedings of the National Academy of Sciences 116.45 (2019),
pp. 22445-22451; Brunton, Proctor, and Kutz, “Discovering governing equations from
data by sparse identification of nonlinear dynamical systems”.




B Curse of dimensionality>

NTNU

As the dimension d grows, the set of basis functions one has to
consider will grow quickly. For example dim(P¢) = (“.¢), which for
d =6and k =5 is already 462.

A common solution to this problem is to start with a truncated SVD:
Ul=~W, V] — xx~WV,a, acR.

Then, one can apply the SINDy algorithm in the variable a, and
x(t) ~ W, a(t).

>Champion et al., “Data-driven discovery of coordinates and governing equations”;
Brunton, Proctor, and Kutz, “Discovering governing equations from data by sparse
identification of nonlinear dynamical systems”.




Approximating the derivatives

The SINDy algorithm depends on having an accurate approxima-
tion of the exact derivative matrix U,.

®Hayden Schaeffer and Scott G McCalla. “Sparse model selection via integral terms”.
In: Physical Review E 96.2 (2017), p. 023302.




B Approximating the derivatives

NTNU

The SINDy algorithm depends on having an accurate approxima-
tion of the exact derivative matrix U,.

A solution® can be to work with the integral version of the differential

equation:
= /0 X(x(t))dt

We can then proceed similarly to the SINDy algorithm and write

xi(tm) — xi(0 ZZ,dd(tm dj(tm)%/omﬁ(x(t))dt.

bSchaeffer and McCalla, “Sparse model selection via integral terms”.



References

ﬁ Brunton, Steven L, Joshua L Proctor, and ] Nathan Kutz. “Discovering governing equations
from data by sparse identification of nonlinear dynamical systems". In: Proceedings of the
national academy of sciences 113.15 (2016), pp. 3932-3937.

ﬁ Champion, Kathleen et al. “Data-driven discovery of coordinates and governing equations”.
In: Proceedings of the National Academy of Sciences 116.45 (2019), pp. 22445-22451.

Kaptanoglu, Alan A et al. “PySINDy: A comprehensive Python package for robust sparse
system identification”. In: arXiv preprint arXiv:2111.08481 (2021).

Loiseau, Jean-Christophe and Steven L Brunton. “Constrained sparse Galerkin regression”. In:
Journal of Fluid Mechanics 838 (2018), pp. 42-67.

Schaeffer, Hayden and Scott G McCalla. “Sparse model selection via integral terms”. In:
Physical Review E 96.2 (2017), p. 023302.

) & & )

Zhang, Linan and Hayden Schaeffer. “On the convergence of the SINDy algorithm”. In:
Multiscale Modeling & Simulation 17.3 (2019), pp. 948-972.




THANK YOU FOR
THE ATTENTION




Limitation: Knowledge of the terms to include in the
dictionary

The quality of the recovered system depends on our knowledge of
what basis functions to include in ©(U), which can generally not
be inferred just based on data.




Limitation: Knowledge of the terms to include in the
dictionary

The quality of the recovered system depends on our knowledge of
what basis functions to include in ©(U), which can generally not
be inferred just based on data.

A solution' could be to use general enough parametric models like
Neural ODEs

x(t) = Ny(x(1)), 6 € RP,
to get a first approximation of the right-hand side. We could then do

sparse regression over this approximate model to get a more
interpretable approximation, as in SINDy.

! Christopher Rackauckas et al. “Universal differential equations for scientific machine learning”



Example in higher dimensions’

z A - vortex shedding Uy - POD mode 1

Limit cycle

88

B- mean flow .uy - POD mode 2

C - unstable fixed point

Slow
manifold

N ORI

-10123456738

Figure: Low-rank dynamics underlying the periodic vortex shedding behind a
circular cylinder at low Reynolds number, Re = 100.

X = pux —wy + Axz
y = wx + py + Ayz
7= -z —x%—y?).

! Brunton, Proctor, and Kutz, “Discovering governing equations from data by sparse identification of nonlinear dynamical
systems”.




B Some alternative methods to SINDy

» Symbolic regression with » Hybrid approaches, like Al
evolutionary algorithms’. Feynman?3.

x®

» Symbolic regression with
transformers?.

! Miles Cranmer. “Interpretable machine learning for science with PySR and SymbolicRegression. jI".

2Stéphane d'Ascoli et al. “Odeformer: Symbolic regression of dynamical systems with transformers”.

3Silviu-Marian Udrescu and Max Tegmark. “Al Feynman: A physics-inspired method for symbolic regression”.



PDE-FIND'
B » Similarly to SINDy, we could discover the right-hand side of the PDE

dru(x,t) = N (u, Oxu, Oxxu, ...), x € RY,

! Samuel H Rudy et al. “Data-driven discovery of partial differential equations”.



PDE-FIND'
B » Similarly to SINDy, we could discover the right-hand side of the PDE
dru(x,t) = N (u, Oxu, Oxxu, ...), x € RY,
» This time, the dataset is a vector u € RM'N where
u=vec(U), Upm~u(xntym), n=1,..,N, m=1,.., M,

for a spatio-temporal grid {(x,, tn)} of Q x [0, T], Q c RY.

! Samuel H Rudy et al. “Data-driven discovery of partial differential equations”.



PDE-FIND'
B » Similarly to SINDy, we could discover the right-hand side of the PDE
dru(x,t) = N (u, Oxu, Oxxu, ...), x € RY,
» This time, the dataset is a vector u € RM'N where
u=vec(U), Upm~u(xntym), n=1,..,N, m=1,.., M,

for a spatio-temporal grid {(x,, tn)} of Q x [0, T], Q c RY.
» The candidate matrix becomes

O(u) = [1 u u, u® uy ] c RV-MxK
and we have to deal with a sparse regression of the form

min |lu; — O(u)o |5 + AR(o).
ocRK

! Samuel H Rudy et al. “Data-driven discovery of partial differential equations”.



	References

	anm1: 
	1.99: 
	1.98: 
	1.97: 
	1.96: 
	1.95: 
	1.94: 
	1.93: 
	1.92: 
	1.91: 
	1.90: 
	1.89: 
	1.88: 
	1.87: 
	1.86: 
	1.85: 
	1.84: 
	1.83: 
	1.82: 
	1.81: 
	1.80: 
	1.79: 
	1.78: 
	1.77: 
	1.76: 
	1.75: 
	1.74: 
	1.73: 
	1.72: 
	1.71: 
	1.70: 
	1.69: 
	1.68: 
	1.67: 
	1.66: 
	1.65: 
	1.64: 
	1.63: 
	1.62: 
	1.61: 
	1.60: 
	1.59: 
	1.58: 
	1.57: 
	1.56: 
	1.55: 
	1.54: 
	1.53: 
	1.52: 
	1.51: 
	1.50: 
	1.49: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.99: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


