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» We aim to solve the autonomous initial value problem (IVP)

x(t) = F (x(t)) € RY,
X(O) =Xp € R

on the time interval [0, T].
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Solving initial value problems with neural networks

» We aim to solve the autonomous initial value problem (IVP)

x(t) = F (x(t)) € RY,
x (0) = xo € R?

on the time interval [0, T].

» Using to approximate x(t) can be useful when
» the dimension d is large,

» one desires to have a (piecewise) continuous approximate solution,

» one wants to also fit some observed data while approximately solving the IVP.
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» Suppose x(t) € Q C RY, whenever x(0) € Q, for any t > 0.

!Sifan Wang and Paris Perdikaris. “Long-time integration of parametric evolution equations with
physics-informed DeepONets". In: Journal of Computational Physics 475 (2023), p. 111855.
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Forward invariant sets: Flow map approach
» Suppose x(t) € Q C RY, whenever x(0) € Q, for any t > 0.

» We can then work with Aj : [0, At] x Q — R?, where!
2

2

Solution

Figure 1: Network trained with At =1 and applied up to T = 100.

'Wang and Perdikaris, “Long-time integration of parametric evolution equations with physics-informed
DeepONets”.
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» The equations of motion of canonical Hamiltonian systems write

0 I

% = IVH (x) = Xy (x) € B?", J:[_I !

] € R2nx2n. (1)

~ Davide Murari (DAMTP)  Solving Hamiltonian equations with SympFlow 4/11



» The equations of motion of canonical Hamiltonian systems write

0 I

% = IVH (x) = Xy (x) € B?", J:[_I !

] € R2nx2n. (1)

» Denoted with ¢y, : R?" — R?" the exact flow of (1), we have that

» @ H (6me (0) = VH (6 (0)) IVH (911 (x0)) = O
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Canonical Hamiltonian equations

» The equations of motion of canonical Hamiltonian systems write

0 I

% = IVH (x) = X (x) € R?", J:[/ !

:| c R2n><2n' (1)

» Denoted with ¢y, : R?" — R?" the exact flow of (1), we have that

- & H (61 (x0)) = VH (6 () IVH (011 (x0)) = 0,
- 1. (x0)\ " | (90m.e (xo)
< %Xo()) J< %Xo(J):J’
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Canonical Hamiltonian equations

» The equations of motion of canonical Hamiltonian systems write

0 I

x=JVH(x) = Xy (x) e R?", J= [/ 0

] € R27x2n. (1)

» Denoted with ¢y, : R?" — R?" the exact flow of (1), we have that

- & H (61 (x0)) = VH (6 () IVH (011 (x0)) = 0,
- 1. (x0)\ " | (90m.e (xo)
< %Xo()) J< %Xo(J):J’

» the flow preserves the canonical volume form of R?".
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» We now build a neural network that approximates ¢y : 2 — R2" for a forward invariant
set Q C R?", and t € [0, At], while reproducing the qualitative properties of ¢y ¢.
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The SympFlow

» We now build a neural network that approximates ¢y : Q — R2" for a forward invariant
set Q C R?", and t € [0, At], while reproducing the qualitative properties of ¢ ;.

» We rely on two building blocks, which applied to (qo, po) € R?” write:

B q
pr,t ((q07 pO)) - |:p0 _ (vq\/ (t,qo()) — qu (0, CIO)):| ’

Sat (0, Po)) = [‘*O + (VoK (t,po) = VK (0, Po))] |

Po

Davide Murari (DAMTP) Solving Hamiltonian equations with SympFlow 5/11



The SympFlow

» We now build a neural network that approximates ¢y : Q — R2" for a forward invariant
set Q C R?", and t € [0, At], while reproducing the qualitative properties of ¢ ;.

» We rely on two building blocks, which applied to (qo, po) € R?” write:

B q
pr,t ((q07 pO)) - |:p0 _ (vq\/ (t,qo()) — qu (0, CIO)):| ’

do + (VpK (t,po) — VpK (0, pO))] )

b (0, Po)) = [ )

» The SympFlow architecture is defined as

N@ (tv (q07 PO)) = ¢|§,t o qbé,t ©---0 ¢|]37t o qb(::,t ((q()v pO)) .
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» The SympFlow is symplectic for every time t € R. The building blocks we compose are
exact flows of time-dependent Hamiltonian systems:

; q
¢p,t ((a,p)) = [p _ (Vq Vi (t,q) — Vq vi (0, q))]

= ¢\7i,t ((q7 p)) )

q
[p ~ Jo VadsV'(s,q) ds]

with Vi(t,(a,p)) = 0:V'(t,q).
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Properties of the SympFlow

» The SympFlow is symplectic for every time t € R. The building blocks we compose are
exact flows of time-dependent Hamiltonian systems:

¢:a,t ((qv p)) = |:D _ (Vq Vi (t, q()] - vq v (07 q)):|

q
- [pfot Va0s Vi (s,q) ds} = ¢yi . ((a,p)),

with Vi(t, (,p)) = 9:V'(t,q).

» The SympFlow is volume preserving.
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Properties of the SympFlow

» The SympFlow is symplectic for every time t € R. The building blocks we compose are

exact flows of time-dependent Hamiltonian systems:

¢:a,t ((qv p)) = |:D _ (Vq Vi (t, q()] - vq v (07 q)):|
q

with Vi(t, (,p)) = 9:V'(t,q).

» The SympFlow is volume preserving.

» The SympFlow is the exact flow of a time-dependent Hamiltonian system.
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- [pfot Va0s Vi (s,q) ds} = ¢yi . ((a,p)),
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Composition of Hamiltonian flows?

Theorem (The Hamiltonian flows are closed under composition)

Let H', H? : R x R>" — R be continuously differentiable functions. Then, the map

P2 e © P R2" — R2" js the exact flow of the time-dependent Hamiltonian system defined
by the Hamiltonian function

H3 (¢, x) = H2 (¢, ) + H* (t, O, (x)) .

2Leonid Polterovich. The Geometry of the Group of Symplectic Diffeomorphisms. Lectures in Mathematics

ETH Ziirich. Basel: Springer Basel AG, 2001. 1sBN: 978-3-7643-6432-8.
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Composition of Hamiltonian flows?

Theorem (The Hamiltonian flows are closed under composition)

Let H', H? : R x R>" — R be continuously differentiable functions. Then, the map

PH2,t © 1y R2" — R2" js the exact flow of the time-dependent Hamiltonian system defined
by the Hamiltonian function

H3 (t, x) = H? (t, x) + H* (t, O, (x)) .

» This Theorem implies that there is a Hamiltonian function H(Np) : R x R?" — R2" such
that

No (t,) = drny),e()-

2Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms.
Davide Murari (DAMTP)
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Training of the SympFlow

» The SympFlow is based on modelling the scalar-valued potentials V', K : R x R" — R
with feed-forward neural networks.

» To train the overall model Ny we minimise the loss function

N 2
1 Y| g : :
()= S e No (6.x6)| - —IVH (N (t1.xh))
"i=1 t=t; 2
1 N . )
+ 5 > (M) (1,¥) — H (¥))",
m j=1

Hamiltonian matching
where we sample t;, t; € [0, At], and xj,x' € Q C R?".
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» Once we have trained Nj to be reliable for t € [0, At], we extend it for longer times as
- - A
Y (t,x0) == Ve At|t/At] © (¢At) /8] (x0)
for t € [0, +00) and xo € Q C R?", where

¥s (xo) == Np (s,%0), s € [0, At),
(&At)k ‘= 1hpr0---0thas, k€N,
—_——

k times
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Extension of the SympFlow outside of [0, At]

» Once we have trained Nj to be reliable for t € [0, At], we extend it for longer times as

¥ (t,%0) == Vr_a[e/ae) © (Vat) A (x0)
for t € [0, 4+00) and xg € Q C R2", where
Vs (x0) := Ny (s,%0), s € [0, At),
(&At)k i=1par ooy, k €N
~———

k times

> Y(t,) = ¢Fl,t for the piecewise continuous Hamiltonian

H(t,x) :=H (Np) (t — At[t/At],x).
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Equations of motion

)'(:p,p':—X.

Solution predicted using SympFlow with Hamiltonian Matching _ Long-time energy behaviour
—— GODEi5 == qSympFlow g P
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Figure 2: xo = [1,0]. Figure 3: Long time energy behaviour.
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Equations of motion

X =Py, YV =Py Px=—X—2xy, py = —y — (x2 = y?).

Solution predicted using SympFlow with Hamiltonian Matching
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Figure 4: xo = [0.3,—0.3,0.3,0.15].

Long-time energy behaviour
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Figure 5: Long time energy behaviour.
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» We introduce a parametric map N (-, o) : [0, T] — R? such that N (0,%0) = Xo, and
choose its weights so that

1 C
c=1

for some collocation points ti,...,tc € [0, T].

2

SN (tx0)|  — F (N (e 50)

t=tc

— min
2




Physics-informed neural networks

» We introduce a parametric map Ap (-, %o) : [0, T] — R? such that Aj (0,x) = Xo, and
choose its weights so that

C 2
1 d .
£(0):=¢ > —Vo (t,x0) - F (Np (te; %0))|| — min
c=1 t=tc 2
for some collocation points ti,...,tc € [0, T].

» Then, t — Ny (t,xo) will solve a different VP

y (1) = F(y (1) + (§No (t.%0)],_, — F (¥ (1)) € R,
y(0) = xo € RY,

where the residual SN} (t,xo)‘t:t — F(y(t)) is small in some sense.



Training issues with neural network

» Solving a single IVP on [0, T] with a neural network can take long training time.

» The obtained solution can not be used to solve the same ordinary differential equation

with a different initial condition.
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Figure 6: Solution comparison after reaching a loss value of 107°. The training time is of 87 seconds
(7500 epochs with 1000 new collocation points randomly sampled at each of them).



Training issues with neural network

» It is hard to solve initial value problems over long time intervals.
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