Structure-Preserving Solutions of Hamiltonian Systems Based on Neural Networks

Davide Murari

Department of Applied Mathematics and Theoretical Physics, University of Cambridge.

dm2011@cam.ac.uk

SIAM Conference on Mathematics of Data Science, 21 October 2024 In collaboration with Priscilla Canizares, Carola-Bibiane Schönlieb, Ferdia Sherry, and Zakhar Shumaylov

Davide Murari (DAMTP) [Solving Hamiltonian equations with SympFlow](#page-26-0) 3 and 1/11

Solving initial value problems with neural networks

 \triangleright We aim to solve the autonomous initial value problem (IVP)

$$
\begin{cases}\n\dot{\mathbf{x}}(t) = \mathcal{F}(\mathbf{x}(t)) \in \mathbb{R}^d, \\
\mathbf{x}(0) = \mathbf{x}_0 \in \mathbb{R}^d\n\end{cases}
$$

on the time interval $[0, T]$.

Solving initial value problems with neural networks

 \triangleright We aim to solve the autonomous initial value problem (IVP)

$$
\begin{cases}\n\dot{\mathbf{x}}(t) = \mathcal{F}(\mathbf{x}(t)) \in \mathbb{R}^d, \\
\mathbf{x}(0) = \mathbf{x}_0 \in \mathbb{R}^d\n\end{cases}
$$

on the time interval $[0, T]$.

 \triangleright Using neural networks to approximate $x(t)$ can be useful when

- \blacktriangleright the dimension d is large,
- \triangleright one desires to have a (piecewise) continuous approximate solution,
- \triangleright one wants to also fit some observed data while approximately solving the IVP.

Forward invariant sets: Flow map approach

Suppose $\mathsf{x}(t) \in \Omega \subset \mathbb{R}^d$, whenever $\mathsf{x}(0) \in \Omega$, for any $t \geq 0$.

¹Sifan Wang and Paris Perdikaris. "Long-time integration of parametric evolution equations with physics-informed DeepONets". In: Journal of Computational Physics 475 (2023), p. 111855.

Forward invariant sets: Flow map approach

Suppose $\mathsf{x}(t) \in \Omega \subset \mathbb{R}^d$, whenever $\mathsf{x}(0) \in \Omega$, for any $t \geq 0$.

We can then work with $\mathcal{N}_\theta: [0, \Delta t] \times \Omega \rightarrow \mathbb{R}^d$, where 1

$$
\mathcal{L}(\theta) := \frac{1}{N_r} \sum_{i=1}^{N_r} \left\| \frac{d}{dt} \mathcal{N}_{\theta}\left(t, \mathbf{x}_0^i\right) \bigg|_{t=t_i} - \mathcal{F}\left(\mathcal{N}_{\theta}\left(t_i, \mathbf{x}_0^i\right)\right) \right\|_2^2 \to \min.
$$

Figure 1: Network trained with $\Delta t = 1$ and applied up to $T = 100$.

 1 Wang and Perdikaris, ["Long-time integration of parametric evolution equations with physics-informed](#page-3-0) [DeepONets".](#page-3-0)

▶ The equations of motion of canonical Hamiltonian systems write

$$
\dot{\mathbf{x}} = \mathbb{J}\nabla H(\mathbf{x}) = X_H(\mathbf{x}) \in \mathbb{R}^{2n}, \quad \mathbb{J} = \begin{bmatrix} 0 & I_n \\ -I_n & 0_n \end{bmatrix} \in \mathbb{R}^{2n \times 2n}.
$$
 (1)

▶ The equations of motion of canonical Hamiltonian systems write

$$
\dot{\mathbf{x}} = \mathbb{J}\nabla H(\mathbf{x}) = X_H(\mathbf{x}) \in \mathbb{R}^{2n}, \quad \mathbb{J} = \begin{bmatrix} 0 & I_n \\ -I_n & 0_n \end{bmatrix} \in \mathbb{R}^{2n \times 2n}.
$$
 (1)

Denoted with $\phi_{H,t}:\mathbb{R}^{2n}\to\mathbb{R}^{2n}$ the exact flow of [\(1\)](#page-5-0), we have that

$$
\mathbf{H} \left(\phi_{H,t} \left(\mathbf{x}_0 \right) \right) = \nabla H \left(\phi_{H,t} \left(\mathbf{x}_0 \right) \right)^\top \mathbb{J} \nabla H \left(\phi_{H,t} \left(\mathbf{x}_0 \right) \right) = 0,
$$

▶ The equations of motion of canonical Hamiltonian systems write

$$
\dot{\mathbf{x}} = \mathbb{J}\nabla H(\mathbf{x}) = X_H(\mathbf{x}) \in \mathbb{R}^{2n}, \quad \mathbb{J} = \begin{bmatrix} 0 & I_n \\ -I_n & 0_n \end{bmatrix} \in \mathbb{R}^{2n \times 2n}.
$$
 (1)

Denoted with $\phi_{H,t}:\mathbb{R}^{2n}\to\mathbb{R}^{2n}$ the exact flow of [\(1\)](#page-5-0), we have that

$$
\frac{d}{dt}H(\phi_{H,t}(\mathbf{x}_0)) = \nabla H(\phi_{H,t}(\mathbf{x}_0))^{\top} \mathbb{J} \nabla H(\phi_{H,t}(\mathbf{x}_0)) = 0,
$$

$$
\left(\frac{\partial \phi_{H,t}(\mathbf{x}_0)}{\partial \mathbf{x}_0}\right)^{\top} \mathbb{J} \left(\frac{\partial \phi_{H,t}(\mathbf{x}_0)}{\partial \mathbf{x}_0}\right) = \mathbb{J},
$$

▶ The equations of motion of canonical Hamiltonian systems write

$$
\dot{\mathbf{x}} = \mathbb{J}\nabla H(\mathbf{x}) = X_H(\mathbf{x}) \in \mathbb{R}^{2n}, \quad \mathbb{J} = \begin{bmatrix} 0 & I_n \\ -I_n & 0_n \end{bmatrix} \in \mathbb{R}^{2n \times 2n}.
$$
 (1)

Denoted with $\phi_{H,t}:\mathbb{R}^{2n}\to\mathbb{R}^{2n}$ the exact flow of [\(1\)](#page-5-0), we have that

$$
\frac{d}{dt}H(\phi_{H,t}(\mathbf{x}_0)) = \nabla H(\phi_{H,t}(\mathbf{x}_0))^{\top} \mathbb{J} \nabla H(\phi_{H,t}(\mathbf{x}_0)) = 0,
$$

$$
\left(\frac{\partial \phi_{H,t}(\mathbf{x}_0)}{\partial \mathbf{x}_0}\right)^{\top} \mathbb{J} \left(\frac{\partial \phi_{H,t}(\mathbf{x}_0)}{\partial \mathbf{x}_0}\right) = \mathbb{J},
$$

the flow preserves the canonical volume form of $\mathbb{R}^{2n}.$

The SympFlow

We now build a neural network that approximates $\phi_{H,t} : \Omega \to \mathbb{R}^{2n}$ for a forward invariant set $\Omega\subset\mathbb{R}^{2n}$, and $t\in[0,\Delta t]$, while reproducing the qualitative properties of $\phi_{H,t}.$

The SympFlow

- We now build a neural network that approximates $\phi_{H,t} : \Omega \to \mathbb{R}^{2n}$ for a forward invariant set $\Omega\subset\mathbb{R}^{2n}$, and $t\in[0,\Delta t]$, while reproducing the qualitative properties of $\phi_{H,t}.$
- We rely on two building blocks, which applied to $(\mathbf{q}_0, \mathbf{p}_0) \in \mathbb{R}^{2n}$ write:

$$
\phi_{\mathbf{p},t} ((\mathbf{q}_0, \mathbf{p}_0)) = \begin{bmatrix} \mathbf{q}_0 \\ \mathbf{p}_0 - (\nabla_{\mathbf{q}} V(t, \mathbf{q}_0) - \nabla_{\mathbf{q}} V(0, \mathbf{q}_0)) \end{bmatrix},
$$

$$
\phi_{\mathbf{q},t} ((\mathbf{q}_0, \mathbf{p}_0)) = \begin{bmatrix} \mathbf{q}_0 + (\nabla_{\mathbf{p}} K(t, \mathbf{p}_0) - \nabla_{\mathbf{p}} K(0, \mathbf{p}_0)) \\ \mathbf{p}_0 \end{bmatrix}.
$$

The SympFlow

- We now build a neural network that approximates $\phi_{H,t} : \Omega \to \mathbb{R}^{2n}$ for a forward invariant set $\Omega\subset\mathbb{R}^{2n}$, and $t\in[0,\Delta t]$, while reproducing the qualitative properties of $\phi_{H,t}.$
- We rely on two building blocks, which applied to $(\mathbf{q}_0, \mathbf{p}_0) \in \mathbb{R}^{2n}$ write:

$$
\phi_{\mathbf{p},t} ((\mathbf{q}_0, \mathbf{p}_0)) = \begin{bmatrix} \mathbf{q}_0 \\ \mathbf{p}_0 - (\nabla_{\mathbf{q}} V(t, \mathbf{q}_0) - \nabla_{\mathbf{q}} V(0, \mathbf{q}_0)) \end{bmatrix},
$$

$$
\phi_{\mathbf{q},t} ((\mathbf{q}_0, \mathbf{p}_0)) = \begin{bmatrix} \mathbf{q}_0 + (\nabla_{\mathbf{p}} K(t, \mathbf{p}_0) - \nabla_{\mathbf{p}} K(0, \mathbf{p}_0)) \\ \mathbf{p}_0 \end{bmatrix}.
$$

▶ The SympFlow architecture is defined as

$$
\mathcal{N}_{\theta}\left(t, \left(\mathbf{q}_0, \mathbf{p}_0\right)\right) = \phi_{\mathbf{p},t}^L \circ \phi_{\mathbf{q},t}^L \circ \cdots \circ \phi_{\mathbf{p},t}^1 \circ \phi_{\mathbf{q},t}^1\left(\left(\mathbf{q}_0, \mathbf{p}_0\right)\right).
$$

Properties of the SympFlow

► The SympFlow is symplectic for every time $t \in \mathbb{R}$ **. The building blocks we compose are** exact flows of time-dependent Hamiltonian systems:

$$
\phi_{\mathbf{p},t}^{i}((\mathbf{q},\mathbf{p})) = \begin{bmatrix} \mathbf{q} \\ \mathbf{p} - (\nabla_{\mathbf{q}}V^{i}(t,\mathbf{q}) - \nabla_{\mathbf{q}}V^{i}(0,\mathbf{q})) \end{bmatrix}
$$

$$
= \begin{bmatrix} \mathbf{q} \\ \mathbf{p} - \int_{0}^{t} \nabla_{\mathbf{q}} \partial_{s}V^{i}(s,\mathbf{q}) ds \end{bmatrix} = \phi_{\widetilde{V}^{i},t}((\mathbf{q},\mathbf{p})),
$$

with $\widetilde{V}^i(t, (\mathbf{q}, \mathbf{p})) = \partial_t V^i(t, \mathbf{q}).$

Properties of the SympFlow

► The SympFlow is symplectic for every time $t \in \mathbb{R}$. The building blocks we compose are exact flows of time-dependent Hamiltonian systems:

$$
\phi_{\mathbf{p},t}^{i} \left((\mathbf{q}, \mathbf{p}) \right) = \begin{bmatrix} \mathbf{q} \\ \mathbf{p} - \left(\nabla_{\mathbf{q}} V^{i} \left(t, \mathbf{q} \right) - \nabla_{\mathbf{q}} V^{i} \left(0, \mathbf{q} \right) \right) \end{bmatrix}
$$

$$
= \begin{bmatrix} \mathbf{q} \\ \mathbf{p} - \int_{0}^{t} \nabla_{\mathbf{q}} \partial_{s} V^{i} \left(s, \mathbf{q} \right) ds \end{bmatrix} = \phi_{\widetilde{V}^{i},t} \left((\mathbf{q}, \mathbf{p}) \right),
$$

with $\widetilde{V}^i(t, (\mathbf{q}, \mathbf{p})) = \partial_t V^i(t, \mathbf{q}).$

 \blacktriangleright The SympFlow is volume preserving.

Properties of the SympFlow

► The SympFlow is symplectic for every time $t \in \mathbb{R}$. The building blocks we compose are exact flows of time-dependent Hamiltonian systems:

$$
\phi_{\mathbf{p},t}^{i} \left((\mathbf{q}, \mathbf{p}) \right) = \begin{bmatrix} \mathbf{q} \\ \mathbf{p} - \left(\nabla_{\mathbf{q}} V^{i} \left(t, \mathbf{q} \right) - \nabla_{\mathbf{q}} V^{i} \left(0, \mathbf{q} \right) \right) \end{bmatrix}
$$

$$
= \begin{bmatrix} \mathbf{q} \\ \mathbf{p} - \int_{0}^{t} \nabla_{\mathbf{q}} \partial_{s} V^{i} \left(s, \mathbf{q} \right) ds \end{bmatrix} = \phi_{\widetilde{V}^{i},t} \left((\mathbf{q}, \mathbf{p}) \right),
$$

with $\widetilde{V}^i(t, (\mathbf{q}, \mathbf{p})) = \partial_t V^i(t, \mathbf{q}).$

- ▶ The SympFlow is volume preserving.
- \blacktriangleright The SympFlow is the exact flow of a time-dependent Hamiltonian system.

Theorem (The Hamiltonian flows are closed under composition)

Let $H^1, H^2: \mathbb{R} \times \mathbb{R}^{2n} \to \mathbb{R}$ be continuously differentiable functions. Then, the map $\phi_{H^2,t}\circ \phi_{H^1,t}:\R^{2n}\to \R^{2n}$ is the exact flow of the time-dependent Hamiltonian system defined by the Hamiltonian function

$$
H^{3}(t,x) = H^{2}(t,x) + H^{1}(t, \phi_{H^{2},t}^{-1}(x)).
$$

² Leonid Polterovich. The Geometry of the Group of Symplectic Diffeomorphisms. Lectures in Mathematics ETH Zürich. Basel: Springer Basel AG, 2001. ISBN: 978-3-7643-6432-8.

Theorem (The Hamiltonian flows are closed under composition)

Let $H^1, H^2: \mathbb{R} \times \mathbb{R}^{2n} \to \mathbb{R}$ be continuously differentiable functions. Then, the map $\phi_{H^2,t}\circ \phi_{H^1,t}:\R^{2n}\to \R^{2n}$ is the exact flow of the time-dependent Hamiltonian system defined by the Hamiltonian function

$$
H^{3}(t,x) = H^{2}(t,x) + H^{1}(t, \phi_{H^{2},t}^{-1}(x)).
$$

This Theorem implies that there is a Hamiltonian function $\mathcal{H}(\mathcal{N}_{\theta}) : \mathbb{R} \times \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ such that

$$
\mathcal{N}_{\theta}\left(t,\cdot\right)=\phi_{\mathcal{H}\left(\mathcal{N}_{\theta}\right),t}(\cdot).
$$

 $2P$ Polterovich, [The Geometry of the Group of Symplectic Diffeomorphisms](#page-15-0). Davide Murari (DAMTP) [Solving Hamiltonian equations with SympFlow](#page-0-0) 3000 Solving Hamiltonian equations with SympFlow

Training of the SympFlow

- The SympFlow is based on modelling the scalar-valued potentials $\widetilde{V}^i, \widetilde{K}^i : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ with feed-forward neural networks.
- \triangleright To train the overall model \mathcal{N}_{θ} we minimise the loss function

$$
\mathcal{L}(\theta) = \underbrace{\frac{1}{N_r} \sum_{i=1}^{N_r} \left\| \frac{d}{dt} \mathcal{N}_{\theta} (t, \mathbf{x}_0^i) \right\|_{t=t_i} - \mathbb{J} \nabla H (\mathcal{N}_{\theta} (t_i, \mathbf{x}_0^i)) \right\|_2^2}_{\text{Residual term}} + \underbrace{\frac{1}{N_m} \sum_{j=1}^{N_m} (\mathcal{H} (\mathcal{N}_{\theta}) (t_j, \mathbf{x}^j) - \mathcal{H} (\mathbf{x}^j))^2}_{\text{Hamiltonian matching}},
$$

where we sample $t_i,t_j\in[0,\Delta t]$, and $\mathsf{x}_0^i,\mathsf{x}^i\in\Omega\subset\mathbb{R}^{2n}$.

Extension of the SympFlow outside of $[0, \Delta t]$

 \triangleright Once we have trained \mathcal{N}_{θ} to be reliable for $t \in [0, \Delta t]$, we extend it for longer times as

$$
\psi(t,\mathbf{x_0}) := \bar{\psi}_{t-\Delta t \lfloor t/\Delta t \rfloor} \circ (\bar{\psi}_{\Delta t})^{\lfloor t/\Delta t \rfloor}(\mathbf{x_0}),
$$

for $t\in[0,+\infty)$ and $\mathbf{x}_0\in\Omega\subset\mathbb{R}^{2n}$, where

$$
\bar{\psi}_{s}(\mathbf{x}_{0}) := \mathcal{N}_{\theta}(s, \mathbf{x}_{0}), \ s \in [0, \Delta t),
$$

$$
(\bar{\psi}_{\Delta t})^{k} := \underbrace{\bar{\psi}_{\Delta t} \circ \cdots \circ \bar{\psi}_{\Delta t}}_{k \text{ times}}, \ k \in \mathbb{N}.
$$

Extension of the SympFlow outside of $[0, \Delta t]$

 \triangleright Once we have trained \mathcal{N}_{θ} to be reliable for $t \in [0, \Delta t]$, we extend it for longer times as

$$
\psi(t,\mathbf{x_0}) := \bar{\psi}_{t-\Delta t \lfloor t/\Delta t \rfloor} \circ (\bar{\psi}_{\Delta t})^{\lfloor t/\Delta t \rfloor}(\mathbf{x_0}),
$$

for $t\in[0,+\infty)$ and $\mathbf{x}_0\in\Omega\subset\mathbb{R}^{2n}$, where

$$
\bar{\psi}_{s}(\mathbf{x}_{0}) := \mathcal{N}_{\theta}(s, \mathbf{x}_{0}), \ s \in [0, \Delta t),
$$

$$
(\bar{\psi}_{\Delta t})^{k} := \underbrace{\bar{\psi}_{\Delta t} \circ \cdots \circ \bar{\psi}_{\Delta t}}_{k \text{ times}}, \ k \in \mathbb{N}.
$$

 $\psi(t,\cdot) = \phi_{\widetilde H,t}$ for the piecewise continuous Hamiltonian

$$
\widetilde{H}(t,\mathbf{x}):=\mathcal{H}(\mathcal{N}_{\theta})(t-\Delta t\lfloor t/\Delta t \rfloor,\mathbf{x}).
$$

Simple Harmonic Oscillator

Equations of motion

$$
\dot{x}=p, \ \dot{p}=-x.
$$

Figure 2:
$$
x_0 = [1, 0]
$$
.

Figure 3: Long time energy behaviour.

Davide Murari (DAMTP) [Solving Hamiltonian equations with SympFlow](#page-0-0) 10 / 11

Hénon–Heiles

Equations of motion

$$
\dot{x} = p_x, \ \dot{y} = p_y, \ \dot{p}_x = -x - 2xy, \ \dot{p}_y = -y - (x^2 - y^2).
$$

Figure 4:
$$
\mathbf{x}_0 = [0.3, -0.3, 0.3, 0.15]
$$

Figure 5: Long time energy behaviour.

Davide Murari (DAMTP) [Solving Hamiltonian equations with SympFlow](#page-0-0) 11/11 11 / 11

THANK YOU FOR THE ATTENTION

dm2011@cam.ac.uk

Physics-informed neural networks

We introduce a parametric map $\mathcal{N}_{\theta} \left(\cdot, \mathbf{x}_0 \right) : [0, T] \to \mathbb{R}^d$ such that $\mathcal{N}_{\theta} \left(0, \mathbf{x}_0 \right) = \mathbf{x}_0$, and choose its weights so that

$$
\mathcal{L}(\theta) := \frac{1}{C} \sum_{c=1}^{C} \left\| \frac{d}{dt} \mathcal{N}_{\theta}(t, \mathbf{x}_{0}) \right\|_{t=t_{c}} - \mathcal{F}(\mathcal{N}_{\theta}(t_{c}, \mathbf{x}_{0})) \right\|_{2}^{2} \rightarrow \min
$$

for some collocation points $t_1, \ldots, t_C \in [0, T]$.

Physics-informed neural networks

We introduce a parametric map $\mathcal{N}_{\theta} \left(\cdot, \mathbf{x}_0 \right) : [0, T] \to \mathbb{R}^d$ such that $\mathcal{N}_{\theta} \left(0, \mathbf{x}_0 \right) = \mathbf{x}_0$, and choose its weights so that

$$
\mathcal{L}(\theta) := \frac{1}{C} \sum_{c=1}^{C} \left\| \frac{d}{dt} \mathcal{N}_{\theta}(t, \mathbf{x}_{0}) \right\|_{t=t_{c}} - \mathcal{F}(\mathcal{N}_{\theta}(t_{c}, \mathbf{x}_{0})) \right\|_{2}^{2} \rightarrow \min
$$

for some collocation points $t_1, \ldots, t_C \in [0, T]$.

► Then, $t \mapsto \mathcal{N}_{\theta} (t, \mathbf{x}_0)$ will solve a different IVP

$$
\begin{cases}\n\dot{\mathbf{y}}(t) = \mathcal{F}(\mathbf{y}(t)) + \left(\frac{d}{dt}\mathcal{N}_{\theta}(t,\mathbf{x}_0)\right)_{t=t} - \mathcal{F}(\mathbf{y}(t))\n\end{cases}\in \mathbb{R}^d,
$$
\n
$$
(\mathbf{y}(0) = \mathbf{x}_0 \in \mathbb{R}^d,
$$

where hopefully the residual $\left.\frac{d}{dt}\mathcal{N}_{\theta}\left(t,\mathbf{x}_0\right)\right|_{t=t}-\mathcal{F}\left(\mathbf{y}\left(t\right)\right)$ is small in some sense.

Training issues with neural network

- \triangleright Solving a single IVP on [0, T] with a neural network can take long training time.
- The obtained solution can not be used to solve the same ordinary differential equation ь with a different initial condition.

Figure 6: Solution comparison after reaching a loss value of 10⁻⁵. The training time is of 87 seconds (7500 epochs with 1000 new collocation points randomly sampled at each of them).

Training issues with neural network

It is hard to solve initial value problems over long time intervals.

