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Solving initial value problems with neural networks

We aim to solve the autonomous initial value problem (IVP){
ẋ (t) = F (x (t)) ∈ Rd ,

x (0) = x0 ∈ Rd

on the time interval [0,T ].

Using neural networks to approximate x(t) can be useful when

the dimension d is large,

one desires to have a (piecewise) continuous approximate solution,

one wants to also fit some observed data while approximately solving the IVP.

Davide Murari (DAMTP) Solving Hamiltonian equations with SympFlow 2 / 11



Solving initial value problems with neural networks

We aim to solve the autonomous initial value problem (IVP){
ẋ (t) = F (x (t)) ∈ Rd ,

x (0) = x0 ∈ Rd

on the time interval [0,T ].

Using neural networks to approximate x(t) can be useful when

the dimension d is large,

one desires to have a (piecewise) continuous approximate solution,

one wants to also fit some observed data while approximately solving the IVP.

Davide Murari (DAMTP) Solving Hamiltonian equations with SympFlow 2 / 11



Forward invariant sets: Flow map approach

Suppose x(t) ∈ Ω ⊂ Rd , whenever x(0) ∈ Ω, for any t ≥ 0.

We can then work with Nθ : [0,∆t]× Ω → Rd , where1

L (θ) :=
1

Nr

Nr∑
i=1

∥∥∥∥∥ d

dt
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Figure 1: Network trained with ∆t = 1 and applied up to T = 100.

1Sifan Wang and Paris Perdikaris. “Long-time integration of parametric evolution equations with
physics-informed DeepONets”. In: Journal of Computational Physics 475 (2023), p. 111855.
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Canonical Hamiltonian equations

The equations of motion of canonical Hamiltonian systems write

ẋ = J∇H (x) = XH (x) ∈ R2n, J =

[
0 In

−In 0n

]
∈ R2n×2n. (1)

Denoted with ϕH,t : R2n → R2n the exact flow of (1), we have that

d

dt
H (ϕH,t (x0)) = ∇H (ϕH,t (x0))

⊤ J∇H (ϕH,t (x0)) = 0,(
∂ϕH,t (x0)

∂x0

)⊤
J
(
∂ϕH,t (x0)

∂x0

)
= J,

the flow preserves the canonical volume form of R2n.
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The SympFlow

We now build a neural network that approximates ϕH,t : Ω → R2n for a forward invariant
set Ω ⊂ R2n, and t ∈ [0,∆t], while reproducing the qualitative properties of ϕH,t .

We rely on two building blocks, which applied to (q0,p0) ∈ R2n write:

ϕp,t ((q0,p0)) =

[
q0

p0 − (∇qV (t,q0)−∇qV (0,q0))

]
,

ϕq,t ((q0,p0)) =

[
q0 + (∇pK (t,p0)−∇pK (0,p0))

p0

]
.

The SympFlow architecture is defined as

Nθ (t, (q0,p0)) = ϕLp,t ◦ ϕLq,t ◦ · · · ◦ ϕ1p,t ◦ ϕ1q,t ((q0,p0)) .
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Properties of the SympFlow

The SympFlow is symplectic for every time t ∈ R. The building blocks we compose are
exact flows of time-dependent Hamiltonian systems:

ϕip,t ((q,p)) =

[
q

p−
(
∇qV

i (t,q)−∇qV
i (0,q)

)]
=

[
q

p−
∫ t
0 ∇q∂sV

i (s,q) ds

]
= ϕ

Ṽ i ,t
((q,p)) ,

with Ṽ i (t, (q,p)) = ∂tV
i (t,q).

The SympFlow is volume preserving.

The SympFlow is the exact flow of a time-dependent Hamiltonian system.
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Composition of Hamiltonian flows2

Theorem (The Hamiltonian flows are closed under composition)

Let H1,H2 : R× R2n → R be continuously differentiable functions. Then, the map
ϕH2,t ◦ ϕH1,t : R2n → R2n is the exact flow of the time-dependent Hamiltonian system defined
by the Hamiltonian function

H3 (t, x) = H2 (t, x) + H1
(
t, ϕ−1

H2,t
(x)

)
.

This Theorem implies that there is a Hamiltonian function H(Nθ) : R× R2n → R2n such
that

Nθ (t, ·) = ϕH(Nθ),t(·).

2Leonid Polterovich. The Geometry of the Group of Symplectic Diffeomorphisms. Lectures in Mathematics
ETH Zürich. Basel: Springer Basel AG, 2001. isbn: 978-3-7643-6432-8.
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Training of the SympFlow

The SympFlow is based on modelling the scalar-valued potentials Ṽ i , K̃ i : R× Rn → R
with feed-forward neural networks.

To train the overall model Nθ we minimise the loss function

L (θ) =
1

Nr

Nr∑
i=1

∥∥∥∥∥ d

dt
Nθ

(
t, xi0

)∣∣∣∣
t=ti

− J∇H
(
Nθ

(
ti , x

i
0

))∥∥∥∥∥
2

2︸ ︷︷ ︸
Residual term

+
1

Nm

Nm∑
j=1

(
H (Nθ)

(
tj , x

j
)
− H

(
xj
))2

︸ ︷︷ ︸
Hamiltonian matching

,

where we sample ti , tj ∈ [0,∆t], and xi0, x
i ∈ Ω ⊂ R2n.
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Extension of the SympFlow outside of [0,∆t]

Once we have trained Nθ to be reliable for t ∈ [0,∆t], we extend it for longer times as

ψ (t, x0) := ψ̄t−∆t⌊t/∆t⌋ ◦
(
ψ̄∆t

)⌊t/∆t⌋
(x0) ,

for t ∈ [0,+∞) and x0 ∈ Ω ⊂ R2n, where

ψ̄s (x0) := Nθ (s, x0) , s ∈ [0,∆t),(
ψ̄∆t

)k
:= ψ̄∆t ◦ · · · ◦ ψ̄∆t︸ ︷︷ ︸

k times

, k ∈ N.

ψ(t, ·) = ϕ
H̃,t

for the piecewise continuous Hamiltonian

H̃ (t, x) := H (Nθ) (t −∆t⌊t/∆t⌋, x) .
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Simple Harmonic Oscillator

Equations of motion

ẋ = p, ṗ = −x .
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Figure 2: x0 = [1, 0].
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Figure 3: Long time energy behaviour.
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Hénon–Heiles

Equations of motion

ẋ = px , ẏ = py , ṗx = −x − 2xy , ṗy = −y − (x2 − y2).
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Figure 4: x0 = [0.3,−0.3, 0.3, 0.15].
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Figure 5: Long time energy behaviour.
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Physics-informed neural networks

We introduce a parametric map Nθ (·, x0) : [0,T ] → Rd such that Nθ (0, x0) = x0, and
choose its weights so that

L (θ) :=
1

C

C∑
c=1

∥∥∥∥∥ d

dt
Nθ (t, x0)

∣∣∣∣
t=tc

−F (Nθ (tc , x0))

∥∥∥∥∥
2

2

→ min

for some collocation points t1, . . . , tC ∈ [0,T ].

Then, t 7→ Nθ (t, x0) will solve a different IVP{
ẏ (t) = F (y (t)) +

(
d
dtNθ (t, x0)

∣∣
t=t

−F (y (t))
)
∈ Rd ,

y (0) = x0 ∈ Rd ,

where hopefully the residual d
dtNθ (t, x0)

∣∣
t=t

−F (y (t)) is small in some sense.
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Training issues with neural network

Solving a single IVP on [0,T ] with a neural network can take long training time.

The obtained solution can not be used to solve the same ordinary differential equation
with a different initial condition.
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Figure 6: Solution comparison after reaching a loss value of 10−5. The training time is of 87 seconds
(7500 epochs with 1000 new collocation points randomly sampled at each of them).
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Figure 7: Solution comparison after 10000 epochs.


