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Canonical Hamiltonian equations

The equations of motion of canonical Hamiltonian systems write{
ẋ = J∇H(x) = XH(x) ∈ R2n

x(0) = x0
, J =

[
0 In

−In 0n

]
∈ R2n×2n. (1)

Denoted with ϕH,t : R2n → R2n the exact flow of (1), ϕH,t(x0) = x(t), we have that

d

dt
H(ϕH,t(x0)) = ∇H(ϕH,t(x0))

⊤J∇H(ϕH,t(x0)) = 0,(
∂ϕH,t(x0)

∂x0

)⊤
J
(
∂ϕH,t(x0)

∂x0

)
= J,

the flow preserves the canonical volume form of R2n.
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Symplectic numerical methods

A one-step numerical method φh : R2n → R2n is symplectic if and only if when applied
to a Hamiltonian system the map φh is symplectic, i.e.,(

∂φh(x)

∂x

)⊤

J
(
∂φh(x)

∂x

)
= J.

Symplectic and energy preserving methods

Let ẋ = J∇H(x) be a Hamiltonian system with Hamiltonian H and no conserved quanti-
ties other than H. Let φh be a symplectic and energy-preserving method for the Hamil-
tonian system. Then φh reproduces the exact solution up to a time re-parametrisation.

Informal theorem

A symplectic method almost conserves the Hamiltonian for an exponentially long time.
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Example: simple harmonic oscillator
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Forward invariant subset of the phase space

Suppose x(t) ∈ Ω ⊂ R2n, whenever x(0) ∈ Ω, for any t ≥ 0.

By the group property of the flow map, we know that

ϕH,n∆t+δt = ϕH,δt ◦ ϕH,∆t ◦ ... ◦ ϕH,∆t︸ ︷︷ ︸
n times

, n ∈ N, δt ∈ (0,∆t).

As a consequence, to approximate ϕH,t : Ω → Ω for any t ≥ 0, we only have to
approximate it for t ∈ [0,∆t].
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Figure 1: Neural network trained to approximate ϕH,t for t ∈ [0,∆t = 1] and applied up to T = 100.
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Two learning problems associated to Hamiltonian systems

Unsupervised solution of the Hamiltonian equations

Approximate the flow map ϕH,t : Ω → Ω, for any t ≥ 0, on a compact forward invariant
set Ω ⊂ R2n, given the Hamiltonian energy H : R2n → R.

Supervised approximation of an unknown Hamiltonian flow map

Approximate the flow map ϕH,t : Ω → Ω, for any t ≥ 0, on a compact forward invariant
set Ω ⊂ R2n, given trajectory segments {(xn0, yn1 , ..., ynM)}Nn=1, y

n
m ≈ ϕH,tnm(x

n
0).

Remark: Given the several known qualitative properties of ϕH,t , we want to leverage them
when designing the approximating map.
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The SympFlow

We now build a neural network that approximates ϕH,t : Ω → Ω for a forward invariant
set Ω ⊂ R2n, and t ∈ [0,∆t], while reproducing the qualitative properties of ϕH,t .

We rely on two building blocks, which applied to (q,p) ∈ R2n write:

ϕp,t((q,p)) =

[
q

p− (∇qV (t,q)−∇qV (0,q))

]
, ϕq,t((q,p)) =

[
q+ (∇pK (t,p)−∇pK (0,p))

p

]
.

The SympFlow architecture is defined as

Nθ (t, (q0,p0)) = ϕLp,t ◦ ϕLq,t ◦ · · · ◦ ϕ1p,t ◦ ϕ1q,t((q0,p0)),

with

V i (t,q) = ℓθi
3
◦ σ ◦ ℓθi

2
◦ σ ◦ ℓθi

1

([
q
t

])
, K i (t,p) = ℓρi

3
◦ σ ◦ ℓρi

2
◦ σ ◦ ℓρi

1

([
p
t

])
ℓθi

k
(x) = Ai

kx + aik , ℓρi
k
(x) = B i

kx + bik , k = 1, 2, 3, i = 1, ..., L.
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Properties of the SympFlow

The SympFlow is symplectic for every time t ∈ R. The building blocks we compose are
exact flows of time-dependent Hamiltonian systems:

ϕip,t((q,p)) =

[
q

p−
(
∇qV

i (t,q)−∇qV
i (0,q)

)]
=

[
q

p−∇q

(∫ t
0 ∂sV

i (s,q)ds
)] = ϕ

Ṽ i ,t
((q,p)),

with Ṽ i (t, (q,p)) = ∂tV
i (t,q).

The SympFlow is volume preserving.

The SympFlow is the exact solution of a time-dependent Hamiltonian system.
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Ṽ i ,t
((q,p)),
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Composition of Hamiltonian flows1

Theorem (The Hamiltonian flows are closed under composition)

Let H1,H2 : R× R2n → R be continuously differentiable functions. Then, the map
ϕH2,t ◦ ϕH1,t : R2n → R2n is the exact flow of the time-dependent Hamiltonian system defined
by the Hamiltonian function

H3(t, x) = H2(t, x) + H1
(
t, ϕ−1

H2,t
(x)

)
.

This theorem implies that there is a Hamiltonian function H(Nθ) : R× R2n → R such
that

Nθ (t, x) = ϕH(Nθ),t(x)

for every t ≥ 0 and x ∈ R2n.

1Leonid Polterovich. The Geometry of the Group of Symplectic Diffeomorphisms. Lectures in Mathematics
ETH Zürich. Basel: Springer Basel AG, 2001. isbn: 978-3-7643-6432-8.
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Extension of the SympFlow outside of [0,∆t]

Once we have trained Nθ to be reliable for t ∈ [0,∆t], we extend it for longer times as

ψ (t, x0) := ψ̄t−∆t⌊t/∆t⌋ ◦
(
ψ̄∆t

)⌊t/∆t⌋
(x0) ,

for t ∈ [0,+∞) and x0 ∈ Ω ⊂ R2n, where

ψ̄s (x0) := Nθ (s, x0) , s ∈ [0,∆t),(
ψ̄∆t

)k
:= ψ̄∆t ◦ · · · ◦ ψ̄∆t︸ ︷︷ ︸

k times

, k ∈ N.

ψ(t, ·) = ϕ
H̃,t

for the piecewise continuous Hamiltonian

H̃ (t, x) := H (Nθ) (t −∆t⌊t/∆t⌋, x) .
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Universal Approximation Theorem

Theorem

Let H : R× Ω → R, Ω ⊂ R2n compact, be a continuously differentiable function. For any
ε > 0, there is a SympFlow ψ̄t such that

sup
t∈[0,∆t]
x∈Ω

∥∥ψ̄t(x)− ϕH,t(x)
∥∥
∞ < ε.
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Training of the SympFlow to solve ẋ(t) = XH(x(t))

The SympFlow is based on modelling the scalar-valued potentials Ṽ i , K̃ i : R× Rn → R
with feed-forward neural networks.

To train the overall model Nθ we minimise the loss function

L(θ) = 1

Nr

Nr∑
i=1

∥∥∥∥∥ d

dt
Nθ

(
t, xi0

)∣∣∣∣
t=ti

− J∇H
(
Nθ

(
ti , x

i
0

))∥∥∥∥∥
2

2︸ ︷︷ ︸
Residual term

+
1

Nm

Nm∑
j=1

(
H(Nθ)(tj , x

j)− H(xj)
)2

︸ ︷︷ ︸
Hamiltonian matching

,

where we sample ti , tj ∈ [0,∆t], and xi0, x
i ∈ Ω ⊂ R2n.
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Supervised training of the SympFlow to approximate ϕH,t

To train the overall model Nθ we minimise the loss function

L(θ) = 1

NM

N∑
n=1

M∑
m=1

∥Nθ (t
n
m, x

n
0)− ynm∥22 ,

where xn0 ∈ Ω ⊂ R2n, and ynm ≈ ϕH,tnm(x
n
0).
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Training data
N = 200 initial conditions of M = 50 time samples each
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Simple Harmonic Oscillator (unsupervised)

Equations of motion

ẋ = p, ṗ = −x .
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Simple Harmonic Oscillator (supervised)

10 50 100 150 200

N

10−3

10−1

V
a
lu

es
Relative Norm and Energy at ∆t

10 50 100 150 200

N

10−2

100

Relative Norm and Energy at 10∆t

10 50 100 150 200

N

10−2

10−1

100

Ralative Norm and Energy at 100∆t

Error (MLP) Error (SympFlow) Energy (MLP) Energy (SympFlow)

(a) Fixed M = 50 and ε = 0.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

ε

10−3

10−1

V
al

u
es

Relative Norm and Energy at ∆t

0.00 0.05 0.10 0.15 0.20 0.25 0.30

ε

10−3

10−2

10−1

Relative Norm and Energy at 10∆t

0.00 0.05 0.10 0.15 0.20 0.25 0.30

ε

10−2

10−1

100

Ralative Norm and Energy at 100∆t

Error (MLP) Error (SympFlow) Energy (MLP) Energy (SympFlow)

(b) Fixed N = 100 and M = 50.
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Hénon–Heiles (unsupervised)

Equations of motion

ẋ = px , ẏ = py , ṗx = −x − 2xy , ṗy = −y − (x2 − y2).
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Figure 3: Unsupervised experiment — Hénon–Heiles: Comparison of the Poincaré sections and the
energy behaviour up to time T = 1000.
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Future extensions

Improve the efficiency of the method by replacing gradients of MLPs with some other
alternatives (Topic of a Summer Project in Cambridge that Zak and I proposed).

Extend the approach to capture parametric dependencies, and apply this procedure for
parameter identification.

Improve our theoretical understanding of the dynamics exactly solved by the SympFlow.

Apply the method to higher dimensional systems.
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Physics-informed neural networks

We introduce a parametric map Nθ (·, x0) : [0,T ] → Rd such that Nθ (0, x0) = x0, and
choose its weights so that

L(θ) := 1

C

C∑
c=1

∥∥∥∥∥ d

dt
Nθ (t, x0)

∣∣∣∣
t=tc

−F (Nθ (tc , x0))

∥∥∥∥∥
2

2

→ min

for some collocation points t1, . . . , tC ∈ [0,T ].

Then, t 7→ Nθ (t, x0) will solve a different IVP{
ẏ (t) = F (y (t)) +

(
d
dtNθ (t, x0)

∣∣
t=t

−F (y (t))
)
∈ Rd ,

y (0) = x0 ∈ Rd ,

where hopefully the residual d
dtNθ (t, x0)

∣∣
t=t

−F (y (t)) is small in some sense.
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Training issues with neural network

Solving a single IVP on [0,T ] with a neural network can take long training time.

The obtained solution can not be used to solve the same ordinary differential equation
with a different initial condition.

0 2 4 6 8 10
t

−1.0

−0.5

0.0

0.5

1.0

S
ol

u
ti

on

q ref.

p ref.

q pred.

p pred.

Figure 4: Solution comparison after reaching a loss value of 10−5. The training time is of 87 seconds
(7500 epochs with 1000 new collocation points randomly sampled at each of them).



Training issues with neural network

It is hard to solve initial value problems over long time intervals.
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Figure 5: Solution comparison after 10000 epochs.


