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> The equations of motion of canonical Hamiltonian systems write

{,-( = JVH(x) = Xpy(x) € R?" J [ 0 /n] c R2n<2n

X(O) = Xp _In 0n

(1)
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> The equations of motion of canonical Hamiltonian systems write

{)’(=JVH(x) = Xp(x) € R2" g { o I

c R2n><2n. 1
X(O) = Xp _In 0n:| ( )

» Denoted with ¢y : R?" — R?" the exact flow of (1), ¢p.¢(x0) = x(t), we have that

»  H(0m4(50)) = Y H(1.4(x0)) IV H(014(x0)) = O
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Canonical Hamiltonian equations

» The equations of motion of canonical Hamiltonian systems write

{)’(:JVH(X) = Xp(x) € R2" e [ 0 In] c R2nx2n, (1)

X(O) = X _In 0n

» Denoted with ¢y : R?" — R?" the exact flow of (1), ¢p.¢(x0) = x(t), we have that

d

> i H(0.6(x0)) = VH(¢H,e(x0)) " IVH(¢H,¢(x0)) = O,
- Odme(x0)\ ' (Omelx0)\ _
( gXoo) J( gxoo>_J’
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Canonical Hamiltonian equations

» The equations of motion of canonical Hamiltonian systems write

{)’(:JVH(X) = Xp(x) € R2" e [ 0 In] c R2nx2n, (1)

X(O) = X _In 0n

» Denoted with ¢y : R?" — R?" the exact flow of (1), ¢p.¢(x0) = x(t), we have that

d

> i H(0.6(x0)) = VH(¢H,e(x0)) " IVH(¢H,¢(x0)) = O,
- Odme(x0)\ ' (Omelx0)\ _
( gXoo) J( gxoo>_J’

» the flow preserves the canonical volume form of R?".
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A one-step numerical method ¢/ : R?" — R2" is symplectic if and only if when applied
to a Hamiltonian system the map " is symplectic, i.e.,

() ()
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Symplectic numerical methods

7

A one-step numerical method ¢/ : R?" — R2" is symplectic if and only if when applied
to a Hamiltonian system the map ¢ is symplectic, i.e.,

(255 (24) -

Symplectic and energy preserving methods

Let x = JVH(x) be a Hamiltonian system with Hamiltonian H and no conserved quanti-
ties other than H. Let ¢" be a symplectic and energy-preserving method for the Hamil-
tonian system. Then ¢ reproduces the exact solution up to a time re-parametrisation.
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Symplectic numerical methods

7

J

A one-step numerical method ¢/ : R?" — R2" is symplectic if and only if when applied
to a Hamiltonian system the map ¢ is symplectic, i.e.,

()1 (5)-

Symplectic and energy preserving methods

Let x = JVH(x) be a Hamiltonian system with Hamiltonian H and no conserved quanti-
ties other than H. Let ¢" be a symplectic and energy-preserving method for the Hamil-
tonian system. Then ¢ reproduces the exact solution up to a time re-parametrisation.

\

Informal theorem

A symplectic method almost conserves the Hamiltonian for an exponentially long time.

\.
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Example: simple harmonic oscillator
Results with Explicit Euler
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» Suppose x(t) € Q C R?", whenever x(0) € Q, for any t > 0.
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Forward invariant subset of the phase space
» Suppose x(t) € Q C R?", whenever x(0) € Q, for any t > 0.

» By the group property of the flow map, we know that

OH,nAt+5t = PH,5t © OHAL © ... © P ar, N €N, 5t € (0,At).

n times

As a consequence, to approximate ¢y ¢ : 0 — Q for any t > 0, we only have to
approximate it for t € [0, At].

Solution

Figure 1: Neural network trained to approximate ¢4 ; for t € [0, At = 1] and applied up to T = 100.

Davide Murari (DAMTP) Symplectic Neural Flows for Modelling and Discovery 5/17



Two learning problems associated to Hamiltonian systems

Unsupervised solution of the Hamiltonian equations

Approximate the flow map ¢p;: Q — Q, for any t > 0, on a compact forward invariant
set Q C R?", given the Hamiltonian energy H : R?>" — R.
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Two learning problems associated to Hamiltonian systems

Unsupervised solution of the Hamiltonian equations

Approximate the flow map ¢p ¢ : 2 — Q, for any t > 0, on a compact forward invariant
set Q C R?", given the Hamiltonian energy H : R?>" — R.

Supervised approximation of an unknown Hamiltonian flow map

Approximate the flow map ¢ : Q — Q, for any t > 0, on a compact forward invariant
set Q C R?", given trajectory segments {(xg,y7, ..., yi) nNzl, Ym & OH.en (X0)-

Davide Murari (DAMTP) Symplectic Neural Flows for Modelling and Discovery 6/17



Two learning problems associated to Hamiltonian systems

Unsupervised solution of the Hamiltonian equations

Approximate the flow map ¢p ¢ : 2 — Q, for any t > 0, on a compact forward invariant
set Q C R?", given the Hamiltonian energy H : R?>" — R.

Supervised approximation of an unknown Hamiltonian flow map

Approximate the flow map ¢ : Q — Q, for any t > 0, on a compact forward invariant
set Q C R?", given trajectory segments {(xg,y7, ..., yi) nNzl, Ym & OH.en (X0)-

\.

Remark: Given the several known qualitative properties of ¢y ;, we want to leverage them
when designing the approximating map.
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» We now build a neural network that approximates ¢+ :  — €2 for a forward invariant
set Q C R?", and t € [0, At], while reproducing the qualitative properties of ¢y ¢.
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The SympFlow

» We now build a neural network that approximates ¢y ¢ : €2 — €2 for a forward invariant
set Q C R2", and t € [0, At], while reproducing the qualitative properties of ¢ ;.

» We rely on two building blocks, which applied to (q, p) € R2" write:

Pp,((a,p)) = p— (Y, V(t,q()l Y, V(0,q))] dq.c((a,p)) = q-+ (VpK(t,P'Z — VpK(0,p)) .
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The SympFlow

» We now build a neural network that approximates ¢y ¢ : €2 — €2 for a forward invariant
set Q C R2", and t € [0, At], while reproducing the qualitative properties of ¢ ;.

» We rely on two building blocks, which applied to (q, p) € R2" write:

Pp,((a,p)) = p— (Y, V(t,q()l Y, V(0,q))] dq.c((a,p)) = q-+ (VpK(t,P'Z — VpK(0,p)) .

» The SympFlow architecture is defined as

No (tv (q07 PO)) = ngl;,t © ¢:Ii,t ©---0 ¢;1),t © (b(l;,t((qm PO))a

with
Vi(t,q) =Ly ooolyoooly ([I]), Ki(t,p)=1(, 0000, 0000, (|P
) = Lo 0} o\ |t] ) P)=Ep o4 A\ |t
loi (x) = Alx + al, £ (x) = Bix+bj, k=1,2,3, i=1,..,L.
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Properties of the SympFlow

» The SympFlow is symplectic for every time t € R. The building blocks we compose are
exact flows of time-dependent Hamiltonian systems:

; q
¢p,t((qv P)) = |:p — (Vq \/i(t, CI) - vq Vi(o’ q)):|

q
= [p — V4 (fof asVi(s, q)ds)] = ¢\~/i7t((qv P))

with Vi(t, (a,p)) = 9:V'(t,q).

Davide Murari (DAMTP) Symplectic Neural Flows for Modelling and Discovery 8/17



Properties of the SympFlow

» The SympFlow is symplectic for every time t € R. The building blocks we compose are

exact flows of time-dependent Hamiltonian systems:

; q
¢p,t((qv P)) = |:p — (Vq \/i(t, CI) - vq Vi(o’ q)):|

q
= [p — V4 (fof asVi(s, q)ds)] = ¢\~/i7t((qv P))

with Vi(t, (a,p)) = 9:V'(t,q).

» The SympFlow is volume preserving.
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Properties of the SympFlow

» The SympFlow is symplectic for every time t € R. The building blocks we compose are
exact flows of time-dependent Hamiltonian systems:

; q
¢p,t((qv P)) = |:p — (Vq \/i(t, CI) - vq Vi(o’ q)):|

q
= [p — V4 (fof asVi(s, q)ds)] = ¢\~/i7t((qv P))

with Vi(t, (a,p)) = 9:V'(t,q).
» The SympFlow is volume preserving.

» The SympFlow is the exact solution of a time-dependent Hamiltonian system.
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Composition of Hamiltonian flows®

Theorem (The Hamiltonian flows are closed under composition)

Let H', H? : R x R>" — R be continuously differentiable functions. Then, the map

P e © Py R2" — R2" js the exact flow of the time-dependent Hamiltonian system defined
by the Hamiltonian function

H3(t,x) = H2(t,x) + H (t, ¢;,§’t(x)) .

» This theorem implies that there is a Hamiltonian function H(Ap) : R x R?" — R such
that

Ny (t,x) = Pr(Ny),t(X)
for every t > 0 and x € R?".

!Leonid Polterovich. The Geometry of the Group of Symplectic Diffeomorphisms. Lectures in Mathematics

ETH Ziirich. Basel: Springer Basel AG, 2001. 1sBN: 978-3-7643-6432-8.
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» Once we have trained N to be reliable for t € [0, At], we extend it for longer times as
= = A
Y (t,xo0) = ¢t—At[t/AtJ o (¢At) /Al (x0)
for t € [0, +00) and xg € Q C R?", where

s (x0) := Ny (s,%0) , s € [0, At),
(Pae) = daco--odae, keN.
N el

k times
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Extension of the SympFlow outside of [0, At]

» Once we have trained N to be reliable for ¢t € [0, At], we extend it for longer times as

- - A
Y (t,x0) = T/Jt—AtLt/Atj o (wAt) /Al (x0)
for t € [0, +00) and xo € Q C R?", where
Vs (x0) := Ny (5,%0), s €[0,At),
(J’At)k ‘=1paro---otar, k€N
— ——

k times

> Y(t,-) = qb&t for the piecewise continuous Hamiltonian

H(t,x) :== H (Np) (t — At|t/At],x).
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Let H-RxQ—R, QC Rz_" compact, be a continuously differentiable function. For any
€ > 0, there is a SympFlow ; such that

sup || te(x) — dre(x)]| < =
tle’sz
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Training of the SympFlow to solve x(t) = Xy(x(t))

» The SympFlow is based on modelling the scalar-valued potentials V/, K’ : R x R” — R
with feed-forward neural networks.

» To train the overall model Ny we minimise the loss function

N 2
1 | d : :
LO) = || No (txh)| = IVH (N (i, x}))
N, & || dt — ,

N
1 & 2
FZ N9 tjva) H(XJ)) ’
mJ:1

Hamiltonian matching
where we sample t;, t; € [0, At], and x{,x' € Q C R?".
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» To train the overall model Ay we minimise the loss function
;] NoM
2
£(0) = 57 > D INa (7. %3) = yill2.
n=1 m=1
where x§ € Q C R?", and y7, ~ ¢py,n (X]).

Training data
N =200 initial conditions of M = 50 time samples each

-15 -10 -05 00 05 10 15
a
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Equations of motion

).(:p,[.):—X.

Long-time energy behaviour

Solution predicted using SympFlow with Hamiltonian Matching o
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Relative Norm and Energy at At

Relative Norm and Energy at 10A¢

Ralative Norm and Energy at 100A¢
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Equations of motion

X =Py, V= Py Px=—X—2xy, py = —y — (x2 = y?).

SympFlow just residual SympFlow just residual
0.44 0.50
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024 0.25 5 el A
|
Sy 4 < 0.00 A =107 A
0.0 Y = 10 :
024 —— Energy ODE45 —0.25 1 Z 0-7 b — BEneray ODE5
——- Energy Network > = ——- Energy Network
—0.4 +— T T d T T T T —0.50 T T T T T T T
—0.25 0.00 0.25 10t 10° 10* 10% 103 0.0 0.5 10t 100 10t 102 103
ay t ay t

Figure 3: Unsupervised experiment — Hénon—Heiles: Comparison of the Poincaré sections and the
energy behaviour up to time T = 1000.
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Future extensions

» Improve the efficiency of the method by replacing gradients of MLPs with some other
alternatives (Topic of a Summer Project in Cambridge that Zak and | proposed).

» Extend the approach to capture parametric dependencies, and apply this procedure for
parameter identification.

> Improve our theoretical understanding of the dynamics exactly solved by the SympFlow.

» Apply the method to higher dimensional systems.
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THANK YOU FOR THE ATTENTION

davidemurari.com/sympflow to read the paper



https://davidemurari.com/sympflow

» We introduce a parametric map N (-, o) : [0, T] — R? such that N (0,%0) = Xo, and
choose its weights so that

1 C
c=1

for some collocation points ti,...,tc € [0, T].

2

%Ng(t,Xo) —f(Ng (tc,xo))

t=tc

— min
2




Physics-informed neural networks

» We introduce a parametric map Ap (-, %o) : [0, T] — R? such that Aj (0,x) = Xo, and
choose its weights so that

Ng t, Xo — .7:(./\/9 (tc,xo))

t=tc

— min
2

for some collocation points ti,...,tc € [0, T].

» Then, t — Ny (t,xo) will solve a different VP

y (1) = F(y (1) + (§No (t.%0)],_, — F (¥ (1)) € R,
y(0) = xo € RY,

where the residual SN} (t,xo)‘t:t — F(y(t)) is small in some sense.



Training issues with neural network

» Solving a single IVP on [0, T] with a neural network can take long training time.

» The obtained solution can not be used to solve the same ordinary differential equation

with a different initial condition.

Solution

— qref.

— pref.
q pred

—== ppred.

10

Figure 4: Solution comparison after reaching a loss value of 1075. The training time is of 87 seconds
(7500 epochs with 1000 new collocation points randomly sampled at each of them).



Training issues with neural network

» It is hard to solve initial value problems over long time intervals.
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