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Motivation

(a) ChatGPT: "Generate a picture of a
monkey winning a marathon"

STOP

GREEN LIGHT

(b)Misclassification of an image that could
harm self-driving cars.

▶ Neural networks can find accurate solutions to many problems but
tend not to be interpretable or reproduce desired properties.

▶ We will see how to deal with some of these issues by applying the
theory of dynamical systems and geometric integration.
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What is a neural network?
▶ A neural network is a parametric map usually composed of

building blocks called layers of the network:

Nθ(x) = fθL ◦ · · · ◦ fθ1(x), θ = {θ1, · · · , θL} .

x Nθ(x)

fθ1 fθ2 fθ3

▶ Example: Residual Neural Networks (ResNets)

fθi (x) = x + B⊤
i σ (Aix + bi ) ∈ Rd , x ∈ Rd ,

Ai ,Bi ∈ Rh×d , bi ∈ Rh, θi = {Ai ,Bi ,bi} .
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Example of the Euler’s elastica
▶ Goal: Build an efficient approximate solver of the Euler’s elastica

▶ Dataset: A set of boundary data x i =
(
q0
i ,
(
q0
i

)′
,qN

i ,
(
qN
i

)′) and the
respective approximate solutions y i at some grid nodes.

▶ Loss function: L (θ) := 1
M

∑M
i=1 ∥Nθ(x i )− y i∥2

2 → min .
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Neural networks based on dynamical systems
▶ The layer

fθi (x) = x + B⊤
i σ (Aix + bi ) = x + Fθi (x) ∈ Rd

is an explicit Euler step of size 1 for the initial value problem{
ẏ(t) = B⊤

i σ(Aiy(t) + bi ) = Fθi (y(t)),
y(0) = x

.

▶ We can define ResNet-like neural networks by choosing a family of
parametric functions SΘ =

{
Fθ : Rd → Rd : θ ∈ Θ

}
and a numerical

methodΨh
F , like explicit Euler defined asΨh

F (x) = x +hF(x), and set

Nθ(x) = ΨhL
FθL

◦ · · · ◦Ψh1
Fθ1

(x), Fθ1 , ...,FθL ∈ SΘ.
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Imposing structure over a neural network
▶ To build networks satisfying a desired property, we can either

restrict the parametrisation Nθ or modify the loss function.

▶ Restrict the architecture:

Nθ(x) =
Ñθ(x)∥∥∥Ñθ(x)

∥∥∥
2

∥x∥2 .

▶ Modify the loss function:

L̃ (θ) =
1
N

N∑
i=1

∥Nθ(x i )− y i∥2
2 +

1
N

N∑
i=1

(∥x i∥2 − ∥Nθ(x i )∥2)
2

︸ ︷︷ ︸
regulariser

.

▶ Not all restrictions are equally effective, e.g. NR(x) = Rx , R⊤R = Id ,
is norm-preserving but probably not expressive enough.
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Structured networks based on dynamical systems
▶ Choose a property P that the network has to satisfy, e.g. volume

preservation.

▶ Choose a family of parametric vector fields SΘ whose solutions
satisfy P , e.g.

Fθ(x) =
[
σ (A1x2 + b1)
σ (A2x1 + b2)

]
, x =

[
x1
x2

]
.
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Structured networks based on dynamical systems
▶ Choose a property P that the network has to satisfy, e.g. volume

preservation.

▶ Choose a family of parametric vector fields SΘ whose solutions
satisfy P , e.g.

Fθ(x) =
[
σ (A1x2 + b1)

0

]
+

[
0

σ (A2x1 + b2)

]
, x =

[
x1
x2

]
.

▶ Choose a numerical method Ψh
Fθ

that preserves the property P at a
discrete level, e.g.

Ψh
Fθ
(x) =

[
x1 + hσ (A1x2 + b1) =: x̃1

x2 + hσ (A2x̃1 + b2)

]
.

▶ The resulting network Nθ = ΨhL
FθL

◦ · · · ◦Ψh1
Fθ1

will preserve P .
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Approximation properties

▶ The inductive bias provided by modelling the network starting from
dynamical systems, allows us to study these models using the
theory of numerical analysis and dynamical systems.

Universal approximation theorem
Let F : Ω ⊂ Rd → Rd be a continuous function, with Ω ⊂ Rd a
compact set. Then, for every ε > 0, there exists a finite set of gra-
dient vector fields ∇V 1, · · · ,∇V L, sphere-preserving vector fields
X 1
S , · · · ,X L

S , and time steps h1, · · · , hL ∈ R such that∥∥∥F −ΨhL
∇V L ◦ΨhL

X L
S

◦ . . . ◦Ψh1
∇V 1 ◦Ψh1

X 1
S

∥∥∥
Lp(Ω)

< ε.
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ccc

Adversarial robustness for
classification tasks
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Description of the problem
Classification problem
LetΩ ⊂ Rd be a set whose points are known to belong to C classes.
Given part of their labels, we want to label the remaining points
with a function Nθ : Rd → RC where we set

predicted class of x = argmax
c=1,...,C

(
Nθ (x)⊤ ec

)
.

Adversarial examples
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How to have guaranteed robustness

▶ Not all correct predictions are equivalent.
▶ Let ℓ (x) = 2 be the correct label for the point x ∈ Ω.
▶ Nθ1 (x) =

[
0.49 0.51 0

]
is not so certain as a prediction.

▶ Nθ2 (x) =
[
0.05 0.9 0.05

]
there is a higher gap here.

Margin: MNθ
(x) := Nθ(x)⊤eℓ(x) − max

j ̸=ℓ(x)
Nθ(x)⊤e j .

MNθ
(x) > 0 =⇒ Nθ correctly classifies x .

MNθ
(x) >

√
2Lip(Nθ)ε =⇒ MNθ

(x + η) > 0∀∥η∥2 ≤ ε.

▶ We constrain the Lipschitz constant of Nθ (and train the network so
it maximises the margin).
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Lipschitz-constrained networks
Contractive maps

Fc
θ (x) = −A⊤

c σ (Acx + bc) , A⊤
c Ac = I ,

Ψhc
Fc

θ
(x) = x − hcA

⊤
c σ (Acx + bc)∥∥∥Ψhc

Fc
θ
(y)−Ψhc

Fc
θ
(x)

∥∥∥
2
≤

√
1 − hc + h2

c ∥y − x∥2 x

σ(x)

Figure: σ(x) = max
{
x , x

2

}
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Lipschitz-constrained networks
▶ To get a 1−Lipschitz neural network we alternate the one-step

methods and restrict the step sizes suitably:

Nθ = Ψh2L
Fc

θ2L
◦Ψh2L−1

Fe
θ2L−1

◦ · · · ◦Ψh2
Fc

θ2
◦Ψh1

Fe
θ1√

1 − h2k + h2
2k (1 + h2k−1) ≤ 1, k = 1, · · · , L.

0.0 0.2 0.4 0.6 0.8 1.0
h2k

0.0

0.1

0.2

h 2
k

1

Figure: Admissible time steps to get a 1−Lipschitz neural network
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Numerical experiment with CIFAR-10
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ccc

Learning tasks involving
dynamical systems
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Definition of the problem
▶ Data:

{(
x0
i , x

1
i , · · · , xM

i

)}
i=1,...,N , x

j
i = ϕjh

F
(
x0
i

)
+ δji , j = 0, · · · ,M , for

an unknown F : Rd → Rd .

▶ Goal 1: Approximate the vector field F

▶ Goal 2: Approximate the map x j
i 7→ x j+1

i , i.e., one step with the
exact flow map ϕh

F .

▶ Generic solution strategy: Introduce a parametric model
Fθ : Rd → Rd , choose a one-step method Ψh

Fθ
: Rd → Rd , and solve

L (θ) =
1

NM

N∑
i=1

M∑
j=1

∥∥∥∥(Ψh
Fθ

)j (
x0
i

)
− x j

i

∥∥∥∥2

2
→ min .

▶ If we know more about F or the geometric properties of the flow
ϕh
F we might want to constrain this procedure.
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Problems we have considered
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(a) Learning the mass preserving flow
map of the SIR model.

(b) Learning the norm-preserving flow
map of the linear advection PDE.
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Initial Condition

(c) Learning the Hamiltonian of
unconstrained systems.
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(d) Learning the Hamiltonian of
constrained systems.
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Constrained Hamiltonian systems

▶ Holonomically constrained Hamiltonian systems can be described
by the differential algebraic equation{

ẏ(t) = J∇H(y(t)), y = (q,p)
g(q) = 0, g : Rd → Rc

, J =

[
0n In
−In 0n

]
.

▶ Its configuration manifold and associated tangent space are

Q =
{
q ∈ Rd : g(q) = 0

}
⊂ Rd , dim (Q) = d − c ,

TqQ =
{
v ∈ Rd : G (q)v = 0

}
.
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Parametrisation of Fθ

▶ The constrained dynamics can be reformulated in the more
geometric way1{

q̇ = P(q)∂pH(q,p)
ṗ = −P(q)⊤∂qH(q,p) +W (q,p)∂pH(q,p),

where P(q) : Rd → TqQ.

▶ We thus set

Fθ(q,p) =
[

P(q)∂pHθ(q,p)
−P(q)⊤∂qHθ(q,p) +W (q,p)∂pHθ(q,p)

]
,

Hθ(q,p) =
1
2
p⊤M−1

θ1
(q)p +Nθ2(q), θ = (θ1, θ2)

1T. Lee, M. Leok, and N H. McClamroch. Global formulations of Lagrangian and
Hamiltonian Dynamics on Manifolds. Vol. 13. Springer, 2017.
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Choice of Ψh
Fθ

x i

Ψh
Fθ,1(x i ) Ψh

Fθ,2(x i )

M

▶ We assumeM is a homogeneous manifold.

▶ We consider the transitive Lie group action φ : G ×M → M, i.e., for
every m1,m2 ∈ M there is g ∈ G with φ(g ,m1) = m2.

▶ For ΨFθ,1 we choose a Lie group method, i.e., a method of the form
Ψh

Fθ,1(x) = φ(g(Fθ, h, x), x), g(Fθ, h, x) ∈ G.
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Experimental results

E1 =
1

NM

N∑
i=1

M∑
j=1

∥∥∥(Ψh
F
)j (

x0
i

)
−
(
Ψh

Fθ

)j (
x0
i

)∥∥∥2

2

E2 =
1
N

N∑
i=1

∣∣∣∣∣H (x i )− Hθ (x i )−
1
N

N∑
l=1

(H (x l)− Hθ (x l))

∣∣∣∣∣
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