

Neural Networks, Differential Equations, and Structure Preservation Davide Murari

PhD thesis defence, Trondheim, September 25, 2024

Supervisory Committee: Elena Celledoni, and Brynjulf Owren **Assessment Committee:** Virginie Ehrlacher, Matthew Colbrook, and Jo Eidsvik

Papers in my thesis

PART 1: Structure preserving deep learning

▶ Dynamical Systems-Based Neural Networks

Celledoni, E., Murari, D., Owren, B., Schönlieb, C. B., & Sherry, F., SIAM Journal of Scientific Computing

▶ Resilient Graph Neural Networks: A Coupled Dynamical Systems Approach

Eliasof, M., Murari, D., Sherry, F., & Schönlieb, C. B., 27TH European Conference on Artificial Intelligence

▶ Predictions Based on Pixel Data: Insights from PDEs and Finite **Differences**

Celledoni, E., Jackaman, J., Murari, D., & Owren, B., Submitted

Papers in my thesis

PART 2: Solving and discovering differential equations

 \blacktriangleright Lie Group integrators for mechanical systems

Celledoni, E., Çokaj, E., Leone, A., Murari, D., & Owren, B., International Journal of Computer Mathematics

▶ Learning Hamiltonians of constrained mechanical systems

Celledoni, E., Leone, A., Murari, D., & Owren, B., Journal of Computational and Applied Mathematics

 \blacktriangleright Neural networks for the approximation of Euler's elastica

Celledoni, E., Çokaj, E., Leone, A., Leyendecker, S., Murari, D., Owren, B., Sato Martín de Almagro, R.T. & Stavole, M., Submitted

▶ Parallel-in-Time Solutions with Extreme Learning Machines

Betcke, M., Kreusser, L.M., & Murari, D., Submitted

Motivation

(a) ChatGPT: "Generate a picture of a monkey winning a marathon"

(b) Misclassification of an image that could harm self-driving cars.

STOP

STOP

GREEN LIGHT

▶ Neural networks can find accurate solutions to many problems but tend not to be interpretable or reproduce desired properties.

Motivation

(a) ChatGPT: "Generate a picture of a monkey winning a marathon"

(b) Misclassification of an image that could harm self-driving cars.

- ▶ Neural networks can find accurate solutions to many problems but tend not to be interpretable or reproduce desired properties.
- \triangleright We will see how to deal with some of these issues by applying the theory of dynamical systems and geometric integration.

$\overline{\bullet}$ **NTNU**

What is a neural network?

▶ A neural network is a parametric map usually composed of building blocks called *layers of the network*:

$$
\mathcal{N}_{\theta}(\mathbf{x}) = f_{\theta_L} \circ \cdots \circ f_{\theta_1}(\mathbf{x}), \ \theta = \{\theta_1, \cdots, \theta_L\}.
$$

NTNI

What is a neural network?

▶ A neural network is a parametric map usually composed of building blocks called *layers of the network*:

$$
\mathcal{N}_{\theta}(\mathbf{x}) = f_{\theta_L} \circ \cdots \circ f_{\theta_1}(\mathbf{x}), \ \theta = \{\theta_1, \cdots, \theta_L\}.
$$

▶ Example: Residual Neural Networks (ResNets)

$$
f_{\theta_i}(\mathbf{x}) = \mathbf{x} + B_i^{\top} \sigma (A_i \mathbf{x} + \mathbf{b}_i) \in \mathbb{R}^d, \ \mathbf{x} \in \mathbb{R}^d,
$$

$$
A_i, B_i \in \mathbb{R}^{h \times d}, \ \mathbf{b}_i \in \mathbb{R}^h, \ \theta_i = \{A_i, B_i, \mathbf{b}_i\}.
$$

$\overline{\bullet}$ **NTNU**

Example of the Euler's elastica

- ▶ Goal: Build an efficient approximate solver of the Euler's elastica
- \blacktriangleright $\;$ <code>Dataset</code>: A set of boundary data ${\pmb{x}}_i = \left(\bm{q}_i^0, \left(\bm{q}_i^0\right)', \bm{q}_i^N, \left(\bm{q}_i^N\right)'\right)$ and the respective approximate solutions \mathbf{v}_i at some grid nodes.
- ▶ Loss function: $\mathcal{L}(\theta) := \frac{1}{M} \sum_{i=1}^{M} ||\mathcal{N}_{\theta}(\mathbf{x}_i) \mathbf{y}_i||_2^2 \rightarrow \mathsf{min}$.

Neural networks based on dynamical systems

 \blacktriangleright The layer

$$
f_{\theta_i}(\mathbf{x}) = \mathbf{x} + B_i^{\top} \sigma (A_i \mathbf{x} + \mathbf{b}_i) = \mathbf{x} + \mathcal{F}_{\theta_i}(\mathbf{x}) \in \mathbb{R}^d
$$

is an explicit Euler step of size 1 for the initial value problem

$$
\begin{cases}\n\dot{\mathbf{y}}(t) = B_i^\top \sigma(A_i \mathbf{y}(t) + \mathbf{b}_i) = \mathcal{F}_{\theta_i}(\mathbf{y}(t)), \\
\mathbf{y}(0) = \mathbf{x}\n\end{cases}
$$

.

Neural networks based on dynamical systems

 \blacktriangleright The laver

$$
f_{\theta_i}(\mathbf{x}) = \mathbf{x} + B_i^{\top} \sigma (A_i \mathbf{x} + \mathbf{b}_i) = \mathbf{x} + \mathcal{F}_{\theta_i}(\mathbf{x}) \in \mathbb{R}^d
$$

is an explicit Euler step of size 1 for the initial value problem

$$
\begin{cases}\n\dot{\mathbf{y}}(t) = B_i^{\top} \sigma(A_i \mathbf{y}(t) + \mathbf{b}_i) = \mathcal{F}_{\theta_i}(\mathbf{y}(t)), \\
\mathbf{y}(0) = \mathbf{x}\n\end{cases}
$$

.

▶ We can define ResNet-like neural networks by choosing a family of parametric functions $\mathcal{S}_\Theta = \big\{ \mathcal{F}_\theta : \mathbb{R}^d \to \mathbb{R}^d: \ \theta \in \Theta \big\}$ and a numerical method $\Psi^h_{\cal F}$, like explicit Euler defined as $\Psi^h_{\cal F}(\bm x)=\bm x+h{\cal F}(\bm x)$, and set

$$
\mathcal{N}_{\theta}(\textbf{x}) = \Psi_{\mathcal{F}_{\theta_L}}^{h_L} \circ \cdots \circ \Psi_{\mathcal{F}_{\theta_1}}^{h_1}(\textbf{x}), \ \mathcal{F}_{\theta_1}, ..., \mathcal{F}_{\theta_L} \in \mathcal{S}_{\Theta}.
$$

Imposing structure over a neural network

▶ To build networks satisfying a desired property, we can either restrict the parametrisation \mathcal{N}_{θ} or modify the loss function.

Imposing structure over a neural network

- \triangleright To build networks satisfying a desired property, we can either restrict the parametrisation \mathcal{N}_{θ} or modify the loss function.
- ▶ **Restrict the architecture**:

$$
\mathcal{N}_{\theta}(\boldsymbol{x}) = \frac{\widetilde{\mathcal{N}}_{\theta}(\boldsymbol{x})}{\left\|\widetilde{\mathcal{N}}_{\theta}(\boldsymbol{x})\right\|_2}\left\|\boldsymbol{x}\right\|_2.
$$

▶ **Modify the loss function**:

$$
\widetilde{\mathcal{L}}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left\| \mathcal{N}_{\theta}(\mathbf{x}_i) - \mathbf{y}_i \right\|_2^2 + \underbrace{\frac{1}{N} \sum_{i=1}^{N} \left(\|\mathbf{x}_i\|_2 - \|\mathcal{N}_{\theta}(\mathbf{x}_i)\|_2 \right)^2}_{\text{regulariser}}.
$$

Imposing structure over a neural network

- \triangleright To build networks satisfying a desired property, we can either restrict the parametrisation \mathcal{N}_{θ} or modify the loss function.
- ▶ **Restrict the architecture**:

$$
\mathcal{N}_{\theta}(\boldsymbol{x}) = \frac{\widetilde{\mathcal{N}}_{\theta}(\boldsymbol{x})}{\left\|\widetilde{\mathcal{N}}_{\theta}(\boldsymbol{x})\right\|_2}\left\|\boldsymbol{x}\right\|_2.
$$

▶ **Modify the loss function**:

$$
\widetilde{\mathcal{L}}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \|\mathcal{N}_{\theta}(\mathbf{x}_i) - \mathbf{y}_i\|_2^2 + \underbrace{\frac{1}{N} \sum_{i=1}^{N} (\|\mathbf{x}_i\|_2 - \|\mathcal{N}_{\theta}(\mathbf{x}_i)\|_2)^2}_{\text{regulariser}}.
$$

▶ Not all restrictions are equally effective, e.g. $\mathcal{N}_R(\boldsymbol{x}) = R\boldsymbol{x}$, $R^\top R = I_d$, is norm-preserving but probably not expressive enough.

Structured networks based on dynamical systems $\boxed{\bullet}$

 \triangleright Choose a property $\mathcal P$ that the network has to satisfy, e.g. volume preservation.

NTNU

NTNU

Structured networks based on dynamical systems

- \triangleright Choose a property $\mathcal P$ that the network has to satisfy, e.g. volume preservation.
- \triangleright Choose a family of parametric vector fields S_{Θ} whose solutions satisfy P , e.g.

$$
\mathcal{F}_{\theta}(\mathbf{x}) = \begin{bmatrix} \sigma (A_1 \mathbf{x}_2 + \mathbf{b}_1) \\ \sigma (A_2 \mathbf{x}_1 + \mathbf{b}_2) \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}.
$$

NTNI

Structured networks based on dynamical systems

- \triangleright Choose a property P that the network has to satisfy, e.g. volume preservation.
- \triangleright Choose a family of parametric vector fields S_{Θ} whose solutions satisfy P , e.g.

$$
\mathcal{F}_{\theta}(\mathbf{x}) = \begin{bmatrix} \sigma (A_1 \mathbf{x}_2 + \mathbf{b}_1) \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ \sigma (A_2 \mathbf{x}_1 + \mathbf{b}_2) \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}.
$$

► Choose a numerical method $\Psi_{\mathcal{F}_{\theta}}^{h}$ that preserves the property $\mathcal P$ at a discrete level, e.g.

$$
\Psi_{\mathcal{F}_{\theta}}^{h}(\mathbf{x}) = \begin{bmatrix} \mathbf{x}_1 + h\sigma \left(A_1\mathbf{x}_2 + \mathbf{b}_1 \right) =: \widetilde{\mathbf{x}}_1 \\ \mathbf{x}_2 + h\sigma \left(A_2\widetilde{\mathbf{x}}_1 + \mathbf{b}_2 \right) \end{bmatrix}.
$$

▶ The resulting network $\mathcal{N}_{\theta} = \Psi_{\mathcal{F}_{\theta_L}}^{h_L} \circ \cdots \circ \Psi_{\mathcal{F}_{\theta_L}}^{h_1}$ $\frac{n_1}{\mathcal{F}_{\theta_1}}$ will preserve $\mathcal{P}.$

Approximation properties

 \blacktriangleright The inductive bias provided by modelling the network starting from dynamical systems, allows us to study these models using the theory of numerical analysis and dynamical systems.

Approximation properties

 \blacktriangleright The inductive bias provided by modelling the network starting from dynamical systems, allows us to study these models using the theory of numerical analysis and dynamical systems.

Universal approximation theorem

Let $F: \Omega \subset \mathbb{R}^d \to \mathbb{R}^d$ be a continuous function, with $\Omega \subset \mathbb{R}^d$ a compact set. Then, for every $\varepsilon > 0$, there exists a finite set of gradient vector fields $\nabla V^1, \cdots, \nabla V^L$, sphere-preserving vector fields X_5^1, \cdots, X_5^L , and time steps $h_1, \cdots, h_L \in \mathbb{R}$ such that

$$
\left\|F - \Psi_{\nabla V^L}^{h_L} \circ \Psi_{X_S^L}^{h_L} \circ \ldots \circ \Psi_{\nabla V^1}^{h_1} \circ \Psi_{X_S^1}^{h_1} \right\|_{L^p(\Omega)} < \varepsilon.
$$

Adversarial robustness for classification tasks

VTNI

Description of the problem

Classification problem

Let $\Omega \subset \mathbb{R}^d$ be a set whose points are known to belong to C classes. Given part of their labels, we want to label the remaining points with a function $\mathcal{N}_{\theta}:\mathbb{R}^{d}\rightarrow\mathbb{R}^{C}$ where we set

predicted class of
$$
\mathbf{x} = \underset{c=1,\dots,C}{\arg \max} (\mathcal{N}_{\theta}(\mathbf{x})^{\top} \mathbf{e}_c).
$$

NTNI

Description of the problem

Classification problem

Let $\Omega \subset \mathbb{R}^d$ be a set whose points are known to belong to C classes. Given part of their labels, we want to label the remaining points with a function $\mathcal{N}_{\theta}:\mathbb{R}^{d}\rightarrow\mathbb{R}^{C}$ where we set

predicted class of
$$
\mathbf{x} = \underset{c=1,\dots,C}{\arg \max} (\mathcal{N}_{\theta}(\mathbf{x})^{\top} \mathbf{e}_c).
$$

Adversarial examples

How to have guaranteed robustness

- ▶ Not all correct predictions are equivalent.
- \triangleright Let $\ell(x) = 2$ be the correct label for the point $x \in Ω$.
- $\blacktriangleright \mathcal{N}_{\theta_1}(\boldsymbol{x}) = \begin{bmatrix} 0.49 & 0.51 & 0 \end{bmatrix}$ is not so certain as a prediction.
- $\blacktriangleright \mathcal{N}_{\theta_2}(\boldsymbol{x}) = \begin{bmatrix} 0.05 & 0.9 & 0.05 \end{bmatrix}$ there is a higher gap here.

How to have guaranteed robustness

- ▶ Not all correct predictions are equivalent.
- \triangleright Let $\ell(x) = 2$ be the correct label for the point $x \in Ω$.
- $\blacktriangleright \mathcal{N}_{\theta_1}(\boldsymbol{x}) = \begin{bmatrix} 0.49 & 0.51 & 0 \end{bmatrix}$ is not so certain as a prediction.
- $\blacktriangleright \mathcal{N}_{\theta_2}(\boldsymbol{x}) = \begin{bmatrix} 0.05 & 0.9 & 0.05 \end{bmatrix}$ there is a higher gap here.

Margin:
$$
\mathcal{M}_{\mathcal{N}_{\theta}}(x) := \mathcal{N}_{\theta}(x)^{\top} e_{\ell(x)} - \max_{j \neq \ell(x)} \mathcal{N}_{\theta}(x)^{\top} e_j
$$
.

 $\mathcal{M}_{\mathcal{N}_{\theta}}(\pmb{\mathsf{x}}) > 0 \implies \mathcal{N}_{\theta}$ correctly classifies $\pmb{\mathsf{x}}$.

 $\mathcal{M}_{\mathcal{N}_{\theta}}(\mathbf{x}) > \sqrt{2} \text{Lip}(\mathcal{N}_{\theta}) \varepsilon \implies \mathcal{M}_{\mathcal{N}_{\theta}}(\mathbf{x} + \boldsymbol{\eta}) > 0 \,\forall \|\boldsymbol{\eta}\|_2 \leq \varepsilon.$

How to have guaranteed robustness

- ▶ Not all correct predictions are equivalent.
- \triangleright Let $\ell(x) = 2$ be the correct label for the point $x \in Ω$.
- $\blacktriangleright \mathcal{N}_{\theta_1}(\boldsymbol{x}) = \begin{bmatrix} 0.49 & 0.51 & 0 \end{bmatrix}$ is not so certain as a prediction.
- $\blacktriangleright \mathcal{N}_{\theta_2}(\boldsymbol{x}) = \begin{bmatrix} 0.05 & 0.9 & 0.05 \end{bmatrix}$ there is a higher gap here.

Margin:
$$
\mathcal{M}_{\mathcal{N}_{\theta}}(x) := \mathcal{N}_{\theta}(x)^{\top} e_{\ell(x)} - \max_{j \neq \ell(x)} \mathcal{N}_{\theta}(x)^{\top} e_j
$$
.

 $\mathcal{M}_{\mathcal{N}_{\theta}}(\pmb{\mathsf{x}}) > 0 \implies \mathcal{N}_{\theta}$ correctly classifies $\pmb{\mathsf{x}}$.

 $\mathcal{M}_{\mathcal{N}_{\theta}}(\mathbf{x}) > \sqrt{2} \text{Lip}(\mathcal{N}_{\theta}) \varepsilon \implies \mathcal{M}_{\mathcal{N}_{\theta}}(\mathbf{x} + \boldsymbol{\eta}) > 0 \,\forall \|\boldsymbol{\eta}\|_2 \leq \varepsilon.$

 \triangleright We constrain the Lipschitz constant of \mathcal{N}_{θ} (and train the network so it maximises the margin).

VTNI

$\overline{\mathbf{O}}$ **NTNU**

Lipschitz-constrained networks

Contractive maps

$$
\mathcal{F}_{\theta}^{c}(\mathbf{x})=-A_{c}^{\top}\sigma\left(A_{c}\mathbf{x}+\mathbf{b}_{c}\right),\ A_{c}^{\top}A_{c}=I,
$$

$$
\Psi_{\mathcal{F}_{\theta}^{c}}^{h_{c}}(\boldsymbol{x})=\boldsymbol{x}-h_{c}\boldsymbol{A}_{c}^{\top}\sigma\left(\boldsymbol{A}_{c}\boldsymbol{x}+\boldsymbol{b}_{c}\right)
$$

$$
\left\|\Psi_{\mathcal{F}_{\theta}^{c}}^{h_{c}}(\mathbf{y})-\Psi_{\mathcal{F}_{\theta}^{c}}^{h_{c}}(\mathbf{x})\right\|_{2} \leq \sqrt{1-h_{c}+h_{c}^{2}}\left\|\mathbf{y}-\mathbf{x}\right\|_{2}
$$

$\overline{\mathbf{O}}$ **NTNU**

Lipschitz-constrained networks

Contractive maps

$$
\mathcal{F}_{\theta}^{c}(\mathbf{x})=-A_{c}^{\top}\sigma\left(A_{c}\mathbf{x}+\mathbf{b}_{c}\right),\ A_{c}^{\top}A_{c}=I,
$$

$$
\Psi_{\mathcal{F}_{\theta}^{c}}^{h_{c}}(\mathbf{x})=\mathbf{x}-h_{c}A_{c}^{\top}\sigma\left(A_{c}\mathbf{x}+\mathbf{b}_{c}\right)
$$

$$
\left\|\Psi_{\mathcal{F}_{\theta}^{c}}^{h_{c}}(\mathbf{y})-\Psi_{\mathcal{F}_{\theta}^{c}}^{h_{c}}(\mathbf{x})\right\|_{2} \leq \sqrt{1-h_{c}+h_{c}^{2}}\left\|\mathbf{y}-\mathbf{x}\right\|_{2}
$$

Expansive maps

$$
\mathcal{F}_{\theta}^{e}(\mathbf{x}) = A_{e}^{\top} \sigma (A_{e} \mathbf{x} + \mathbf{b}_{e}), \ A_{e}^{\top} A_{e} = I,
$$

$$
\Psi_{\mathcal{F}_{\theta}^{e}}^{h_{e}}(\mathbf{x}) = \mathbf{x} + h_{e} A_{e}^{\top} \sigma (A_{e} \mathbf{x} + \mathbf{b}_{e})
$$

$$
\left\| \Psi_{\mathcal{F}_{\theta}^{e}}^{h_{e}}(\mathbf{y}) - \Psi_{\mathcal{F}_{\theta}^{e}}^{h_{e}}(\mathbf{x}) \right\|_{2} \leq (1 + h_{e}) \left\| \mathbf{y} - \mathbf{x} \right\|_{2}
$$

Lipschitz-constrained networks

▶ To get a ¹−Lipschitz neural network we alternate the one-step methods and restrict the step sizes suitably:

$$
\mathcal{N}_{\theta} = \Psi_{\mathcal{F}_{\theta_{2L}}^c}^{h_{2L}} \circ \Psi_{\mathcal{F}_{\theta_{2L-1}}^e}^{h_{2L-1}} \circ \cdots \circ \Psi_{\mathcal{F}_{\theta_{2}}^c}^{h_{2}} \circ \Psi_{\mathcal{F}_{\theta_{1}}^e}^{h_{1}}
$$

$$
\sqrt{1 - h_{2k} + h_{2k}^2} (1 + h_{2k-1}) \leq 1, \ k = 1, \cdots, L.
$$

Figure: Admissible time steps to get a 1−Lipschitz neural network

Numerical experiment with CIFAR-10

 $\overline{\textbf{O}}$ **NTNU**

Learning tasks involving dynamical systems

 \blacktriangleright Data: $\left\{(\mathbf{x}_i^0, \mathbf{x}_i^1, \cdots, \mathbf{x}_i^M)\right\}_{i=1,\ldots,N'}$ $\mathbf{x}_i^j = \phi_{\mathcal{F}}^{jh}$ $\frac{d\mathcal{F}}{\mathcal{F}}\left(\boldsymbol{x}_{i}^{0}\right)+\boldsymbol{\delta}_{i}^{0}$ j_i , $j = 0, \cdots, M$, for an unknown $\mathcal{F}:\mathbb{R}^d\to\mathbb{R}^d$.

- \blacktriangleright Data: $\left\{(\mathbf{x}_i^0, \mathbf{x}_i^1, \cdots, \mathbf{x}_i^M)\right\}_{i=1,\ldots,N'}$ $\mathbf{x}_i^j = \phi_{\mathcal{F}}^{jh}$ $\frac{d\mathcal{F}}{\mathcal{F}}\left(\boldsymbol{x}_{i}^{0}\right)+\boldsymbol{\delta}_{i}^{0}$ j_i , $j = 0, \cdots, M$, for an unknown $\mathcal{F}:\mathbb{R}^d\to\mathbb{R}^d$.
- \triangleright **Goal 1**: Approximate the vector field \mathcal{F}

- \blacktriangleright Data: $\left\{(\mathbf{x}_i^0, \mathbf{x}_i^1, \cdots, \mathbf{x}_i^M)\right\}_{i=1,\ldots,N'}$ $\mathbf{x}_i^j = \phi_{\mathcal{F}}^{jh}$ $\frac{d\mathcal{F}}{\mathcal{F}}\left(\boldsymbol{x}_{i}^{0}\right)+\boldsymbol{\delta}_{i}^{0}$ j_i , $j = 0, \cdots, M$, for an unknown $\mathcal{F}:\mathbb{R}^d\to\mathbb{R}^d$.
- \triangleright **Goal 1**: Approximate the vector field \mathcal{F}
- **Goal 2:** Approximate the map x_i^j $j \atop i \mapsto \mathbf{x}_i^{j+1}$ j^{++} , i.e., one step with the exact flow map $\phi_{\mathcal{F}}^{h}.$

- \blacktriangleright Data: $\left\{(\mathbf{x}_i^0, \mathbf{x}_i^1, \cdots, \mathbf{x}_i^M)\right\}_{i=1,\ldots,N'}$ $\mathbf{x}_i^j = \phi_{\mathcal{F}}^{jh}$ $\frac{d\mathcal{F}}{\mathcal{F}}\left(\boldsymbol{x}_{i}^{0}\right)+\boldsymbol{\delta}_{i}^{0}$ j_i , $j = 0, \cdots, M$, for an unknown $\mathcal{F}:\mathbb{R}^d\to\mathbb{R}^d$.
- \triangleright **Goal 1**: Approximate the vector field \mathcal{F}
- **Goal 2:** Approximate the map x_i^j $j \atop i \mapsto \mathbf{x}_i^{j+1}$ j^{++} , i.e., one step with the exact flow map $\phi_{\mathcal{F}}^{h}.$
- ▶ **Generic solution strategy**: Introduce a parametric model $\mathcal{F}_{\theta}:\mathbb{R}^d\to\mathbb{R}^d$, choose a one-step method $\Psi_{\mathcal{F}_{\theta}}^h:\mathbb{R}^d\to\mathbb{R}^d$, and solve

$$
\mathcal{L}\left(\theta\right)=\frac{1}{NM}\sum_{i=1}^{N}\sum_{j=1}^{M}\left\|\left(\Psi_{\mathcal{F}_{\theta}}^{h}\right)^{j}\left(\mathbf{x}_{i}^{0}\right)-\mathbf{x}_{i}^{j}\right\|_{2}^{2}\rightarrow\min.
$$

VTNI

- \blacktriangleright Data: $\left\{(\mathbf{x}_i^0, \mathbf{x}_i^1, \cdots, \mathbf{x}_i^M)\right\}_{i=1,\ldots,N'}$ $\mathbf{x}_i^j = \phi_{\mathcal{F}}^{jh}$ $\frac{d\mathcal{F}}{\mathcal{F}}\left(\boldsymbol{x}_{i}^{0}\right)+\boldsymbol{\delta}_{i}^{0}$ j_i , $j = 0, \cdots, M$, for an unknown $\mathcal{F}:\mathbb{R}^d\to\mathbb{R}^d$.
- \triangleright **Goal 1**: Approximate the vector field \mathcal{F}
- **Goal 2:** Approximate the map x_i^j $j \atop i \mapsto \mathbf{x}_i^{j+1}$ j^{++} , i.e., one step with the exact flow map $\phi_{\mathcal{F}}^{h}.$
- ▶ **Generic solution strategy**: Introduce a parametric model $\mathcal{F}_{\theta}:\mathbb{R}^d\to\mathbb{R}^d$, choose a one-step method $\Psi_{\mathcal{F}_{\theta}}^h:\mathbb{R}^d\to\mathbb{R}^d$, and solve

$$
\mathcal{L}\left(\theta\right)=\frac{1}{NM}\sum_{i=1}^{N}\sum_{j=1}^{M}\left\|\left(\Psi_{\mathcal{F}_{\theta}}^{h}\right)^{j}\left(\boldsymbol{x}_{i}^{0}\right)-\boldsymbol{x}_{i}^{j}\right\|_{2}^{2}\rightarrow\min.
$$

 \blacktriangleright If we know more about F or the geometric properties of the flow $\phi^h_{\cal F}$ we might want to constrain this procedure.

Problems we have considered

<mark>(a)</mark> Learning the mass preserving flow map of the SIR model.

(c) Learning the Hamiltonian of unconstrained systems.

(b) Learning the norm-preserving flow map of the linear advection PDE.

(d) Learning the Hamiltonian of constrained systems.

 \bullet

NTNU

Constrained Hamiltonian systems

▶ Holonomically constrained Hamiltonian systems can be described by the differential algebraic equation

$$
\begin{cases}\n\dot{\mathbf{y}}(t) = \mathbb{J} \nabla H(\mathbf{y}(t)), & \mathbf{y} = (\mathbf{q}, \mathbf{p}) \\
g(\mathbf{q}) = 0, & g: \mathbb{R}^d \to \mathbb{R}^c\n\end{cases}, \quad \mathbb{J} = \begin{bmatrix} 0_n & I_n \\
-I_n & 0_n \end{bmatrix}.
$$

▶ Its configuration manifold and associated tangent space are

$$
Q = \left\{ \boldsymbol{q} \in \mathbb{R}^d : g(\boldsymbol{q}) = 0 \right\} \subset \mathbb{R}^d, \dim(Q) = d - c,
$$

$$
T_{\boldsymbol{q}} Q = \left\{ \boldsymbol{v} \in \mathbb{R}^d : G(\boldsymbol{q}) \boldsymbol{v} = 0 \right\}.
$$

Parametrisation of \mathcal{F}_{θ}

 \blacktriangleright The constrained dynamics can be reformulated in the more geometric way¹

$$
\begin{cases} \dot{\mathbf{q}} = P(\mathbf{q}) \partial_{\mathbf{p}} H(\mathbf{q}, \mathbf{p}) \\ \dot{\mathbf{p}} = -P(\mathbf{q})^{\top} \partial_{\mathbf{q}} H(\mathbf{q}, \mathbf{p}) + W(\mathbf{q}, \mathbf{p}) \partial_{\mathbf{p}} H(\mathbf{q}, \mathbf{p}), \end{cases}
$$

where $P(\boldsymbol{q}): \mathbb{R}^d \to \mathcal{T}_{\boldsymbol{q}} \mathcal{Q}.$

¹ T. Lee, M. Leok, and N H. McClamroch. *Global formulations of Lagrangian and Hamiltonian Dynamics on Manifolds*. Vol. 13. Springer, 2017.

Parametrisation of \mathcal{F}_{θ}

 \blacktriangleright The constrained dynamics can be reformulated in the more geometric way¹

$$
\begin{cases} \dot{\mathbf{q}} = P(\mathbf{q}) \partial_{\mathbf{p}} H(\mathbf{q}, \mathbf{p}) \\ \dot{\mathbf{p}} = -P(\mathbf{q})^{\top} \partial_{\mathbf{q}} H(\mathbf{q}, \mathbf{p}) + W(\mathbf{q}, \mathbf{p}) \partial_{\mathbf{p}} H(\mathbf{q}, \mathbf{p}), \end{cases}
$$

where $P(\boldsymbol{q}): \mathbb{R}^d \to \mathcal{T}_{\boldsymbol{q}} \mathcal{Q}.$

 \blacktriangleright We thus set

$$
\mathcal{F}_{\theta}(\boldsymbol{q},\boldsymbol{p}) = \begin{bmatrix} P(\boldsymbol{q})\partial_{\boldsymbol{p}}H_{\theta}(\boldsymbol{q},\boldsymbol{p}) \\ -P(\boldsymbol{q})^{\top}\partial_{\boldsymbol{q}}H_{\theta}(\boldsymbol{q},\boldsymbol{p}) + W(\boldsymbol{q},\boldsymbol{p})\partial_{\boldsymbol{p}}H_{\theta}(\boldsymbol{q},\boldsymbol{p}) \end{bmatrix},
$$

$$
H_{\theta}(\boldsymbol{q},\boldsymbol{p}) = \frac{1}{2}\boldsymbol{p}^{\top}M_{\theta_{1}}^{-1}(\boldsymbol{q})\boldsymbol{p} + \mathcal{N}_{\theta_{2}}(\boldsymbol{q}), \ \theta = (\theta_{1},\theta_{2})
$$

1 Lee, Leok, and McClamroch, *[Global formulations of Lagrangian and Hamiltonian](#page-36-0) [Dynamics on Manifolds](#page-36-0)*.

 \blacktriangleright We assume M is a homogeneous manifold.

- \blacktriangleright We assume M is a homogeneous manifold.
- **▶ We consider the transitive Lie group action** φ : $\mathcal{G} \times \mathcal{M} \rightarrow \mathcal{M}$, i.e., for every $m_1, m_2 \in \mathcal{M}$ there is $g \in \mathcal{G}$ with $\varphi(g, m_1) = m_2$.

- \triangleright We assume M is a homogeneous manifold.
- **►** We consider the transitive Lie group action $\varphi : \mathcal{G} \times \mathcal{M} \to \mathcal{M}$, i.e., for every $m_1, m_2 \in \mathcal{M}$ there is $g \in \mathcal{G}$ with $\varphi(g, m_1) = m_2$.
- \blacktriangleright For $\Psi_{\mathcal{F}_{\theta},1}$ we choose a Lie group method, i.e., a method of the form $\Psi_{\mathcal{F}_{\theta},1}^{h}(\textbf{x}) = \varphi(g(\mathcal{F}_{\theta},h,\textbf{x}),\textbf{x}),\,g(\mathcal{F}_{\theta},h,\textbf{x})\in\mathcal{G}.$

Experimental results

Medians over the 5 repeated experiments

$$
\mathcal{E}_1 = \frac{1}{NM}\sum_{i=1}^N\sum_{j=1}^M\left\|\left(\Psi_{\mathcal{F}}^h\right)^j\left(\mathbf{x}_i^0\right) - \left(\Psi_{\mathcal{F}_{\theta}}^h\right)^j\left(\mathbf{x}_i^0\right)\right\|_2^2
$$

$$
\mathcal{E}_2 = \frac{1}{N} \sum_{i=1}^N \left| H(\mathbf{x}_i) - H_{\theta}(\mathbf{x}_i) - \frac{1}{N} \sum_{l=1}^N \left(H(\mathbf{x}_l) - H_{\theta}(\mathbf{x}_l) \right) \right|
$$

 $\overline{\mathbf{C}}$ **NTNU**

THANK YOU FOR THE ATTENTION