Symplectic Neural Flows

Davide Murari

Department of Applied Mathematics and Theoretical Physics, University of Cambridge.

dm2011@cam.ac.uk

In collaboration with Priscilla Canizares, Carola-Bibiane Schönlieb, Ferdia Sherry, Zakhar Shumaylov

Davide Murari (DAMTP) Symplectic Neural Flows 1/13

• The equations of motion of canonical Hamiltonian systems write

$$\begin{cases} \dot{x} = \mathbb{J}\nabla H(x) = X_H(x) \in \mathbb{R}^{2n} \\ x(0) = x_0 \end{cases}, \quad \mathbb{J} = \begin{bmatrix} 0_n & I_n \\ -I_n & 0_n \end{bmatrix} \in \mathbb{R}^{2n \times 2n}. \tag{1}$$

Davide Murari (DAMTP) Symplectic Neural Flows 2/13

• The equations of motion of canonical Hamiltonian systems write

$$\begin{cases} \dot{x} = \mathbb{J}\nabla H(x) = X_H(x) \in \mathbb{R}^{2n} \\ x(0) = x_0 \end{cases}, \quad \mathbb{J} = \begin{bmatrix} 0_n & I_n \\ -I_n & 0_n \end{bmatrix} \in \mathbb{R}^{2n \times 2n}. \tag{1}$$

• Denoted with $\phi_{H,t}: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ the exact flow of (1), $\phi_{H,t}(x_0) = x(t)$, we have that

•

$$\frac{d}{dt}H(\phi_{H,t}(x_0)) = \nabla H(\phi_{H,t}(x_0))^{\top} \mathbb{J} \nabla H(\phi_{H,t}(x_0)) = 0,$$

Symplectic Neural Flows 2/13

• The equations of motion of canonical Hamiltonian systems write

$$\begin{cases} \dot{x} = \mathbb{J}\nabla H(x) = X_H(x) \in \mathbb{R}^{2n} \\ x(0) = x_0 \end{cases}, \quad \mathbb{J} = \begin{bmatrix} 0_n & I_n \\ -I_n & 0_n \end{bmatrix} \in \mathbb{R}^{2n \times 2n}. \tag{1}$$

• Denoted with $\phi_{H,t}: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ the exact flow of (1), $\phi_{H,t}(x_0) = x(t)$, we have that

•

$$\frac{d}{dt}H(\phi_{H,t}(x_0)) = \nabla H(\phi_{H,t}(x_0))^{\top} \mathbb{J} \nabla H(\phi_{H,t}(x_0)) = 0,$$

•

$$\left(\frac{\partial \phi_{H,t}(x_0)}{\partial x_0}\right)^{\top} \mathbb{J}\left(\frac{\partial \phi_{H,t}(x_0)}{\partial x_0}\right) = \mathbb{J},$$

Davide Murari (DAMTP) Symplectic Neural Flows 2/13

•

• The equations of motion of canonical Hamiltonian systems write

$$\begin{cases} \dot{x} = \mathbb{J}\nabla H(x) = X_H(x) \in \mathbb{R}^{2n} \\ x(0) = x_0 \end{cases}, \quad \mathbb{J} = \begin{bmatrix} 0_n & I_n \\ -I_n & 0_n \end{bmatrix} \in \mathbb{R}^{2n \times 2n}. \tag{1}$$

• Denoted with $\phi_{H,t}: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ the exact flow of (1), $\phi_{H,t}(x_0) = x(t)$, we have that

 $rac{d}{dt}H(\phi_{H,t}(x_0)) =
abla H(\phi_{H,t}(x_0))^ op \mathbb{J}
abla H(\phi_{H,t}(x_0)) = 0,$

 $\left(rac{\partial \phi_{H,t}(\mathsf{x_0})}{\partial \mathsf{x_0}}
ight)^ op \mathbb{J}\left(rac{\partial \phi_{H,t}(\mathsf{x_0})}{\partial \mathsf{x_0}}
ight) = \mathbb{J},$

• the flow preserves the canonical volume form of \mathbb{R}^{2n} .

Davide Murari (DAMTP) Symplectic Neural Flows 2/13

Forward invariant subset of the phase space

• Suppose $x(t) \in \Omega \subset \mathbb{R}^{2n}$, whenever $x(0) \in \Omega$, for any $t \geq 0$.

Symplectic Neural Flows 3 / 13

Forward invariant subset of the phase space

- Suppose $x(t) \in \Omega \subset \mathbb{R}^{2n}$, whenever $x(0) \in \Omega$, for any $t \geq 0$.
- By the group property of the flow map, we know that

$$\phi_{H,n\Delta t+\delta t} = \phi_{H,\delta t} \circ \underbrace{\phi_{H,\Delta t} \circ ... \circ \phi_{H,\Delta t}}_{n \text{ times}}, \ n \in \mathbb{N}, \ \delta t \in (0,\Delta t).$$

As a consequence, to approximate $\phi_{H,t}:\Omega\to\Omega$ for any $t\geq 0$, we only have to approximate it for $t\in[0,\Delta t]$.

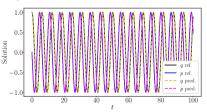


Figure 1: Neural network trained to approximate $\phi_{H,t}$ for $t \in [0, \Delta t = 1]$ and applied up to T = 100.

Davide Murari (DAMTP) Symplectic Neural Flows 3/13

Two learning problems associated with Hamiltonian systems

Unsupervised solution of the Hamiltonian equations

Approximate the flow map $\phi_{H,t}:\Omega\to\Omega$, for any $t\geq 0$, on a compact forward invariant set $\Omega\subset\mathbb{R}^{2n}$, given the Hamiltonian energy $H:\mathbb{R}^{2n}\to\mathbb{R}$.

Davide Murari (DAMTP) Symplectic Neural Flows 4/13

Two learning problems associated with Hamiltonian systems

Unsupervised solution of the Hamiltonian equations

Approximate the flow map $\phi_{H,t}:\Omega\to\Omega$, for any $t\geq0$, on a compact forward invariant set $\Omega \subset \mathbb{R}^{2n}$, given the Hamiltonian energy $H: \mathbb{R}^{2n} \to \mathbb{R}$.

Supervised approximation of an unknown Hamiltonian flow map

Approximate the flow map $\phi_{H,t}:\Omega\to\Omega$, for any $t\geq0$, on a compact forward invariant set $\Omega \subset \mathbb{R}^{2n}$, given trajectory segments $\{(x_0^n, y_1^n, ..., y_M^n)\}_{n=1}^N$, $y_m^n \approx \phi_{H,t^n}(x_0^n)$.

Symplectic Neural Flows 4 / 13

Two learning problems associated with Hamiltonian systems

Unsupervised solution of the Hamiltonian equations

Approximate the flow map $\phi_{H,t}:\Omega\to\Omega$, for any $t\geq 0$, on a compact forward invariant set $\Omega\subset\mathbb{R}^{2n}$, given the Hamiltonian energy $H:\mathbb{R}^{2n}\to\mathbb{R}$.

Supervised approximation of an unknown Hamiltonian flow map

Approximate the flow map $\phi_{H,t}:\Omega\to\Omega$, for any $t\geq 0$, on a compact forward invariant set $\Omega\subset\mathbb{R}^{2n}$, given trajectory segments $\{(x_0^n,y_1^n,...,y_M^n)\}_{n=1}^N$, $y_m^n\approx\phi_{H,t_m^n}(x_0^n)$.

Remark: Given the several known qualitative properties of $\phi_{H,t}$, we want to leverage them when designing the approximating map.

Davide Murari (DAMTP) Symplectic Neural Flows 4/13

The SympFlow

• We now build a neural network that approximates $\phi_{H,t}: \Omega \to \Omega$ for a forward invariant set $\Omega \subset \mathbb{R}^{2n}$, and $t \in [0, \Delta t]$, while reproducing the qualitative properties of $\phi_{H,t}$.

Davide Murari (DAMTP) Symplectic Neural Flows 5/13

The SympFlow

- We now build a neural network that approximates $\phi_{H,t}:\Omega\to\Omega$ for a forward invariant set $\Omega \subset \mathbb{R}^{2n}$, and $t \in [0, \Delta t]$, while reproducing the qualitative properties of $\phi_{H,t}$.
- We rely on two building blocks, which applied to $(q, p) \in \mathbb{R}^{2n}$ write:

$$\phi_{p,t}((q,p)) = \begin{bmatrix} q \\ p - (\nabla_q V(t,q) - \nabla_q V(0,q)) \end{bmatrix}, \ \phi_{q,t}((q,p)) = \begin{bmatrix} q + (\nabla_p K(t,p) - \nabla_p K(0,p)) \\ p \end{bmatrix}.$$

Symplectic Neural Flows 5/13

The SympFlow

- We now build a neural network that approximates $\phi_{H,t}: \Omega \to \Omega$ for a forward invariant set $\Omega \subset \mathbb{R}^{2n}$, and $t \in [0, \Delta t]$, while reproducing the qualitative properties of $\phi_{H,t}$.
- We rely on two building blocks, which applied to $(q, p) \in \mathbb{R}^{2n}$ write:

$$\phi_{p,t}((q,p)) = \begin{bmatrix} q \\ p - (\nabla_q V(t,q) - \nabla_q V(0,q)) \end{bmatrix}, \ \phi_{q,t}((q,p)) = \begin{bmatrix} q + (\nabla_p K(t,p) - \nabla_p K(0,p)) \\ p \end{bmatrix}.$$

• The SympFlow architecture is defined as

$$\mathcal{N}_{\theta}\left(t,(q_0,p_0)\right) = \phi_{p,t}^L \circ \phi_{q,t}^L \circ \cdots \circ \phi_{p,t}^1 \circ \phi_{q,t}^1((q_0,p_0)),$$

with

$$\begin{split} V^i(t,q) &= \ell_{\theta_3^i} \circ \sigma \circ \ell_{\theta_2^i} \circ \sigma \circ \ell_{\theta_1^i} \left(\begin{bmatrix} q \\ t \end{bmatrix} \right), \ K^i(t,p) = \ell_{\rho_3^i} \circ \sigma \circ \ell_{\rho_2^i} \circ \sigma \circ \ell_{\rho_1^i} \left(\begin{bmatrix} p \\ t \end{bmatrix} \right) \\ \ell_{\theta_k^i}(x) &= A_k^i x + a_k^i, \ \ell_{\rho_k^i}(x) = B_k^i x + b_k^i, \ k = 1,2,3, \ i = 1,...,L. \end{split}$$

Davide Murari (DAMTP) Symplectic Neural Flows 5/13

Properties of the SympFlow

• The SympFlow is symplectic for every time $t \in \mathbb{R}$. The building blocks we compose are exact flows of time-dependent Hamiltonian systems:

$$\phi_{p,t}^{i}((q,p)) = \begin{bmatrix} q \\ p - (\nabla_q V^i(t,q) - \nabla_q V^i(0,q)) \end{bmatrix}$$
$$= \begin{bmatrix} q \\ p - \nabla_q (\int_0^t \partial_s V^i(s,q) ds) \end{bmatrix} = \phi_{\widetilde{V}^i,t}((q,p)),$$

with $\widetilde{V}^i(t,(q,p)) = \partial_t V^i(t,q)$.

Davide Murari (DAMTP) Symplectic Neural Flows 6/13

Properties of the SympFlow

• The SympFlow is symplectic for every time $t \in \mathbb{R}$. The building blocks we compose are exact flows of time-dependent Hamiltonian systems:

$$\phi_{p,t}^{i}((q,p)) = \begin{bmatrix} q \\ p - (\nabla_q V^i(t,q) - \nabla_q V^i(0,q)) \end{bmatrix}$$
$$= \begin{bmatrix} q \\ p - \nabla_q (\int_0^t \partial_s V^i(s,q) ds) \end{bmatrix} = \phi_{\widetilde{V}^i,t}((q,p)),$$

with
$$\widetilde{V}^i(t,(q,p)) = \partial_t V^i(t,q)$$
.

• The SympFlow is volume preserving.

Davide Murari (DAMTP) Symplectic Neural Flows 6/13

Properties of the SympFlow

• The SympFlow is symplectic for every time $t \in \mathbb{R}$. The building blocks we compose are exact flows of time-dependent Hamiltonian systems:

$$\phi_{p,t}^{i}((q,p)) = \begin{bmatrix} q \\ p - (\nabla_q V^{i}(t,q) - \nabla_q V^{i}(0,q)) \end{bmatrix}$$
$$= \begin{bmatrix} q \\ p - \nabla_q (\int_0^t \partial_s V^{i}(s,q) ds) \end{bmatrix} = \phi_{\widetilde{V}^{i},t}((q,p)),$$

with
$$\widetilde{V}^i(t,(q,p)) = \partial_t V^i(t,q)$$
.

- The SympFlow is volume preserving.
- The SympFlow is the exact solution of a time-dependent Hamiltonian system.

Davide Murari (DAMTP) Symplectic Neural Flows 6/13

Composition of Hamiltonian flows

Theorem (The Hamiltonian flows are closed under composition)

Let $H^1, H^2: \mathbb{R} \times \mathbb{R}^{2n} \to \mathbb{R}$ be twice-continuously differentiable functions. Then, the map $\phi_{H^2,t} \circ \phi_{H^1,t}: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is the exact flow of the time-dependent Hamiltonian system defined by the Hamiltonian function

$$H^3(t,x) = H^2(t,x) + H^1(t,\phi_{H^2,t}^{-1}(x)).$$

• This theorem implies that there is a Hamiltonian function $\mathcal{H}(\mathcal{N}_{\theta}): \mathbb{R} \times \mathbb{R}^{2n} \to \mathbb{R}$ such that

$$\mathcal{N}_{\theta}(t, x) = \phi_{\mathcal{H}(\mathcal{N}_{\theta}), t}(x)$$

for every $t \geq 0$ and $x \in \mathbb{R}^{2n}$.

Davide Murari (DAMTP) Symplectic Neural Flows 7/13

Extension of the SympFlow outside of $[0, \Delta t]$

ullet Once we have trained \mathcal{N}_{θ} to be reliable for $t\in[0,\Delta t]$, we extend it for longer times as

$$\psi\left(t,x_0
ight) := ar{\psi}_{t-\Delta t \lfloor t/\Delta t
floor} \circ \left(ar{\psi}_{\Delta t}
ight)^{\lfloor t/\Delta t
floor} \left(x_0
ight),$$
 for $t \in [0,+\infty)$ and $x_0 \in \Omega \subset \mathbb{R}^{2n}$, where $ar{\psi}_s\left(x_0
ight) := \mathcal{N}_{ heta}\left(s,x_0
ight), \; s \in [0,\Delta t), \ \left(ar{\psi}_{\Delta t}
ight)^k := \underbrace{ar{\psi}_{\Delta t} \circ \cdots \circ ar{\psi}_{\Delta t}}_{k \; ext{times}}, \; k \in \mathbb{N}.$

Davide Murari (DAMTP) Symplectic Neural Flows 8/13

Extension of the SympFlow outside of $[0, \Delta t]$

ullet Once we have trained \mathcal{N}_{θ} to be reliable for $t \in [0, \Delta t]$, we extend it for longer times as

$$\psi\left(t,x_0
ight) := ar{\psi}_{t-\Delta t \lfloor t/\Delta t
floor} \circ \left(ar{\psi}_{\Delta t}
ight)^{\lfloor t/\Delta t
floor} \left(x_0
ight),$$
 for $t \in [0,+\infty)$ and $x_0 \in \Omega \subset \mathbb{R}^{2n}$, where $ar{\psi}_s\left(x_0
ight) := \mathcal{N}_{ heta}\left(s,x_0
ight), \; s \in [0,\Delta t),$ $\left(ar{\psi}_{\Delta t}
ight)^k := \underbrace{ar{\psi}_{\Delta t} \circ \cdots \circ ar{\psi}_{\Delta t}}_{k \; ext{times}}, \; k \in \mathbb{N}.$

• $\psi(t,\cdot) = \phi_{\widetilde{H}_t}$ for the piecewise continuous Hamiltonian

$$\widetilde{H}(t,\mathsf{x}) := \mathcal{H}\left(\mathcal{N}_{ heta}
ight) \left(t - \Delta t \lfloor t/\Delta t
floor, \mathsf{x}
ight).$$

Davide Murari (DAMTP) Symplectic Neural Flows 8/13

Universal Approximation Theorem

Theorem

Let $H: \mathbb{R} \times \mathbb{R}^{2d} \to \mathbb{R}$ be twice-continuously differentiable, and $\Omega \subset \mathbb{R}^{2n}$ a compact and forward invariant set. For any $\varepsilon > 0$, there is a SympFlow $\bar{\psi}_t$ such that

$$\sup_{\substack{t \in [0,\Delta t] \\ x \in \Omega}} \left\| \bar{\psi}_t(x) - \phi_{H,t}(x) \right\|_{\infty} < \varepsilon.$$

Davide Murari (DAMTP) Symplectic Neural Flows 9/13

Training of the SympFlow to solve $\dot{x}(t) = X_H(x(t))$

• To train the overall model $\mathcal{N}_{\theta}: \mathbb{R} \times \mathbb{R}^{2d} \to \mathbb{R}^{2d}$, which could be a SympFlow or a generic neural network, we minimise the loss function

$$\mathcal{L}(heta) = rac{1}{N_r} \sum_{i=1}^{N_r} \left\| rac{d}{dt} \mathcal{N}_{ heta} \left(t, x_0^i
ight)
ight|_{t=t_i} - \mathbb{J}
abla H \left(\mathcal{N}_{ heta} \left(t_i, x_0^i
ight)
ight)
ight\|_2^2$$

where we sample $t_i \in [0, \Delta t]$, and $x_0^i \in \Omega \subset \mathbb{R}^{2n}$.

Davide Murari (DAMTP) Symplectic Neural Flows 10/13

Equations of motion

$$\dot{x} = p, \ \dot{p} = -x.$$

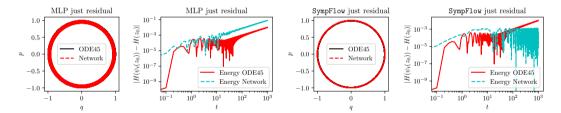


Figure 2: **Unsupervised experiment** — **Simple Harmonic Oscillator.** Comparison of the orbits and the energy behaviour up to time T = 1000.

Davide Murari (DAMTP) Symplectic Neural Flows 11/13

Equations of motion

$$\dot{x} = p_x, \ \dot{y} = p_y, \ \dot{p}_x = -x - 2xy, \ \dot{p}_y = -y - (x^2 - y^2).$$

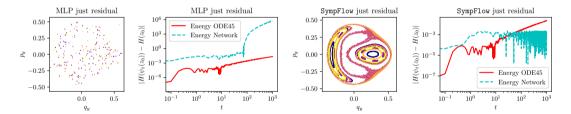


Figure 3: **Unsupervised experiment** — **Hénon–Heiles:** Comparison of the Poincaré sections and the energy behaviour up to time T = 1000.

Davide Murari (DAMTP) Symplectic Neural Flows 12/13

Future extensions

- Improve the efficiency of the method by replacing gradients of MLPs with some other alternatives (Topic of a Summer Project that will start in a couple of weeks).
- Extend the approach to capture parametric dependencies, and apply this procedure for parameter identification.
- Improve our theoretical understanding of the dynamics exactly solved by the SympFlow.
- Apply the method to higher dimensional systems.

THANK YOU FOR THE ATTENTION

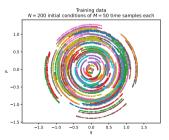
davidemurari.com/sympflow to read the paper

Supervised training of the SympFlow to approximate $\phi_{H,t}$

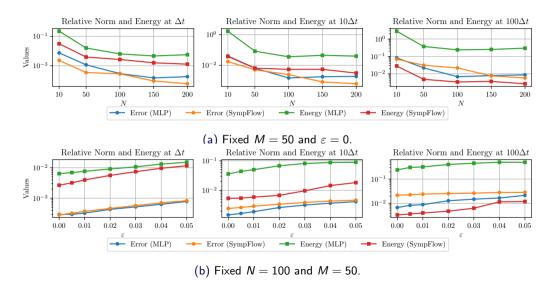
ullet To train the overall model $\mathcal{N}_{ heta}$ we minimise the loss function

$$\mathcal{L}(\theta) = \frac{1}{NM} \sum_{n=1}^{N} \sum_{m=1}^{M} \left\| \mathcal{N}_{\theta} \left(t_{m}^{n}, \mathsf{x}_{0}^{n} \right) - \mathsf{y}_{m}^{n} \right\|_{2}^{2},$$

where $x_0^n \in \Omega \subset \mathbb{R}^{2n}$, and $y_m^n \approx \phi_{H,t_m^n}(x_0^n)$.



Simple Harmonic Oscillator (supervised)



Physics-informed neural networks

• We introduce a parametric map $\mathcal{N}_{\theta}\left(\cdot,x_{0}\right):[0,T]\to\mathbb{R}^{d}$ such that $\mathcal{N}_{\theta}\left(0,x_{0}\right)=x_{0}$, and choose its weights so that

$$\mathcal{L}(heta) := rac{1}{C} \sum_{c=1}^{C} \left\| rac{d}{dt} \mathcal{N}_{ heta}\left(t, x_{0}
ight)
ight|_{t=t_{c}} - \mathcal{F}\left(\mathcal{N}_{ heta}\left(t_{c}, x_{0}
ight)
ight)
ight\|_{2}^{2}
ightarrow \min$$

for some collocation points $t_1, \ldots, t_C \in [0, T]$.

Physics-informed neural networks

• We introduce a parametric map $\mathcal{N}_{\theta}(\cdot, x_0) : [0, T] \to \mathbb{R}^d$ such that $\mathcal{N}_{\theta}(0, x_0) = x_0$, and choose its weights so that

$$\mathcal{L}(heta) := rac{1}{C} \sum_{c=1}^{C} \left\| rac{d}{dt} \mathcal{N}_{ heta}\left(t, x_{0}
ight)
ight|_{t=t_{c}} - \mathcal{F}\left(\mathcal{N}_{ heta}\left(t_{c}, x_{0}
ight)
ight)
ight\|_{2}^{2}
ightarrow ext{min}$$

for some collocation points $t_1, \ldots, t_C \in [0, T]$.

• Then, $t \mapsto \mathcal{N}_{\theta}(t, x_0)$ will solve a different IVP

$$\begin{cases} \dot{y}\left(t\right) = \mathcal{F}\left(y\left(t\right)\right) + \left(\frac{d}{dt}\mathcal{N}_{\theta}\left(t, x_{0}\right)\right|_{t=t} - \mathcal{F}\left(y\left(t\right)\right)\right) \in \mathbb{R}^{d}, \\ y\left(0\right) = x_{0} \in \mathbb{R}^{d}, \end{cases}$$

where hopefully the residual $\frac{d}{dt}\mathcal{N}_{\theta}\left(t,x_{0}\right)\big|_{t=t}-\mathcal{F}\left(y\left(t\right)\right)$ is small in some sense.

Training issues with neural network

- Solving a single IVP on [0, T] with a neural network can take long training time.
- The obtained solution can not be used to solve the same ordinary differential equation with a different initial condition.

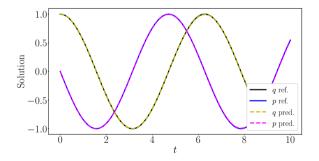
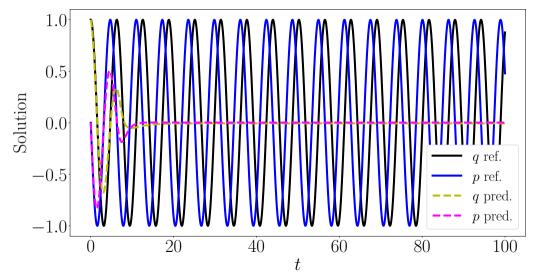


Figure 5: Solution comparison after reaching a loss value of 10^{-5} . The training time is of 87 seconds (7500 epochs with 1000 new collocation points randomly sampled at each of them).

Training issues with neural network

• It is hard to solve initial value problems over long time intervals.



Symplectic numerical methods

A one-step numerical method $\varphi^h:\mathbb{R}^{2n}\to\mathbb{R}^{2n}$ is symplectic if and only if when applied to a Hamiltonian system the map φ^h is symplectic, i.e.,

$$\left(\frac{\partial \varphi^h(x)}{\partial x}\right)^{\top} \mathbb{J}\left(\frac{\partial \varphi^h(x)}{\partial x}\right) = \mathbb{J}.$$

Symplectic numerical methods

A one-step numerical method $\varphi^h:\mathbb{R}^{2n}\to\mathbb{R}^{2n}$ is symplectic if and only if when applied to a Hamiltonian system the map φ^h is symplectic, i.e.,

$$\left(\frac{\partial \varphi^h(x)}{\partial x}\right)^{\top} \mathbb{J}\left(\frac{\partial \varphi^h(x)}{\partial x}\right) = \mathbb{J}.$$

Symplectic and energy preserving methods

Let $\dot{x} = \mathbb{J}\nabla H(x)$ be a Hamiltonian system with Hamiltonian H and no conserved quantities other than H. Let φ^h be a symplectic and energy-preserving method for the Hamiltonian system. Then φ^h reproduces the exact solution up to a time re-parametrisation.

Symplectic numerical methods

A one-step numerical method $\varphi^h:\mathbb{R}^{2n}\to\mathbb{R}^{2n}$ is symplectic if and only if when applied to a Hamiltonian system the map φ^h is symplectic, i.e.,

$$\left(\frac{\partial \varphi^h(x)}{\partial x}\right)^{\top} \mathbb{J}\left(\frac{\partial \varphi^h(x)}{\partial x}\right) = \mathbb{J}.$$

Symplectic and energy preserving methods

Let $\dot{x} = \mathbb{J} \nabla H(x)$ be a Hamiltonian system with Hamiltonian H and no conserved quantities other than H. Let φ^h be a symplectic and energy-preserving method for the Hamiltonian system. Then φ^h reproduces the exact solution up to a time re-parametrisation.

Informal theorem

A symplectic method almost conserves the Hamiltonian for an exponentially long time.

Example: simple harmonic oscillator

