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@ The equations of motion of canonical Hamiltonian systems write

{x = IVH(x) = Xu(x) € R?" I [ O In

c R2nx2n‘
X(O) = X0 _/n 0n:|

(1)
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@ The equations of motion of canonical Hamiltonian systems write

{x = IVH(x) = Xu(x) € R?" I [ O In

c R2n><2n‘ 1
X(O) = X0 _/n 0n:| ( )

o Denoted with ¢y : R?" — R2" the exact flow of (1), ¢p.+(x0) = x(t), we have that

9 F(1.420)) = VH(011(x0)) "IV H(62(50)) = 0.
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Canonical Hamiltonian equations

@ The equations of motion of canonical Hamiltonian systems write

{x = JVH(x) = Xu(x) € R?" I [on I

c R2n><2n‘ 1
X(O) = X0 _ln On:| ( )

e Denoted with ¢ ¢ : R?" — R2" the exact flow of (1), ¢n.+(x0) = x(t), we have that

°
d

EH(d)H,t(XO)) = VH(¢n,:(x0)) " IVH(¢n,:(x0)) =0,

(M)TJ<M> =17,

8X0 aXO
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Canonical Hamiltonian equations

@ The equations of motion of canonical Hamiltonian systems write

} € R2mx2n, (1)

x = JVH(x) = Xy(x) € R?" I [ 0, In
x(0) = xo 7 |~/ 0,

e Denoted with ¢ ¢ : R?" — R2" the exact flow of (1), ¢n.+(x0) = x(t), we have that

°
d

EH(d)H,t(XO)) = VH(¢n,:(x0)) " IVH(¢n,:(x0)) =0,

(M)TJ<M> =17,

8X0 aXO

o the flow preserves the canonical volume form of R2".
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@ Suppose x(t) € Q C R?", whenever x(0) € Q, for any t > 0.

~ Davide Murari (DAMTP)  Symplectic Neural Flows 3/13



Forward invariant subset of the phase space
@ Suppose x(t) € Q C R?", whenever x(0) € Q, for any t > 0.

@ By the group property of the flow map, we know that

OH,nAt+5t = PH,5t © OHAL © ... © P A, N €N, 5t € (0,At).

n times

As a consequence, to approximate ¢+ : 2 — €2 for any t > 0, we only have to
approximate it for t € [0, At].

Solution

Figure 1: Neural network trained to approximate ¢y, for t € [0, At = 1] and applied up to T = 100.
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Two learning problems associated with Hamiltonian systems

Unsupervised solution of the Hamiltonian equations

Approximate the flow map ¢p;: Q — Q, for any t > 0, on a compact forward invariant
set Q C R?", given the Hamiltonian energy H : R?>" — R.
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Two learning problems associated with Hamiltonian systems

Unsupervised solution of the Hamiltonian equations

Approximate the flow map ¢p ¢ : 2 — Q, for any t > 0, on a compact forward invariant
set Q C R?", given the Hamiltonian energy H : R?>" — R.

Supervised approximation of an unknown Hamiltonian flow map

Approximate the flow map ¢ : Q — Q, for any t > 0, on a compact forward invariant
set Q C R?", given trajectory segments {(x{, ¥/, e Ym) nN:1' Y & OH.en (X7)-
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Two learning problems associated with Hamiltonian systems

Unsupervised solution of the Hamiltonian equations

Approximate the flow map ¢p ¢ : 2 — Q, for any t > 0, on a compact forward invariant
set Q C R?", given the Hamiltonian energy H : R?>" — R.

Supervised approximation of an unknown Hamiltonian flow map

Approximate the flow map ¢ : Q — Q, for any t > 0, on a compact forward invariant
set Q C R?", given trajectory segments {(x{, ¥/, e Ym) nN:1' Y & OH.en (X7)-

\.

Remark: Given the several known qualitative properties of ¢y ;, we want to leverage them
when designing the approximating map.
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@ We now build a neural network that approximates ¢y ¢ : 2 — Q for a forward invariant
set Q C R?", and t € [0, At], while reproducing the qualitative properties of ¢y ¢.
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@ We now build a neural network that approximates ¢y ¢ : 2 — Q for a forward invariant
set Q C R?", and t € [0, At], while reproducing the qualitative properties of ¢y ¢.

@ We rely on two building blocks, which applied to (g, p) € R" write:

+ (VK (t, p) — V,K(0,
0=, 5 guvio.ay] - aella = [ (ToK(ER) = V(O8]
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The SympFlow

@ We now build a neural network that approximates ¢ ; : Q — Q for a forward invariant
set Q C R2", and t € [0, At], while reproducing the qualitative properties of ¢ ;.

@ We rely on two building blocks, which applied to (g, p) € R?" write:

op,e((q,p)) = P—(VqV(t,q‘)]—VqV(O,q)) . bq.t((q,p)) = q+(VpK(t,pl))prK(O,p)) .

@ The SympFlow architecture is defined as

No (t,(qo0, po)) = @5 ;0 ¢ o+ 0L, 0k (g0, o)),

with
Vi(t,q) =ty ool oaoly (|T), Ki(t,p)=1,0000, 0000, (|P
4) = oy 0} o\ ¢ ) 'P) = Lp) A o\ |t
Lo (x) = Ajx + aj, £y (x) = Bix + bj, k=1,2,3, i=1,..,L.
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@ The SympFlow is symplectic for every time t € R. The building blocks we compose are
exact flows of time-dependent Hamiltonian systems:

; q
¢p,e((q:P)) = [p — (VqVi(t,q) — VqVi(0, q))}

q
B [P -V (J50ViGs, q)ds)] = oyi.((a,p)),

with Vi(t,(q,p)) = 0:VI(t, q).
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Properties of the SympFlow

@ The SympFlow is symplectic for every time t € R. The building blocks we compose are

exact flows of time-dependent Hamiltonian systems:

Qb;),t((q) P)) = |:P _ (qui(t’ q‘)7 _ vq Vi(O, q)):|

— 9 =
= p— vq (fot 85 Vi(S, q)dS) = qbVi’t((qa p))a

with V(t, (q,p)) = 3:V/(t, q).

@ The SympFlow is volume preserving.
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Properties of the SympFlow

@ The SympFlow is symplectic for every time t € R. The building blocks we compose are
exact flows of time-dependent Hamiltonian systems:

Qb;),t((q) P)) = |:p _ (qui(t’ q‘)7 _ vq Vi(O, q)):|

— 9 =
= p— vq (fot 85 Vi(S, q)dS) = qbVi’t((qa p))a

with Vi(t, (q,p)) = 9:V(t, q).
@ The SympFlow is volume preserving.

@ The SympFlow is the exact solution of a time-dependent Hamiltonian system.
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Composition of Hamiltonian flows

Theorem (The Hamiltonian flows are closed under composition)

Let H', H? : R x R?" — R be twice-continuously differentiable functions. Then, the map

GH2.t © Pyt R?" — R?" s the exact flow of the time-dependent Hamiltonian system defined
by the Hamiltonian function

H3(t, x) = H2(t, x) + H* (t, (f);%’t(x)) .

@ This theorem implies that there is a Hamiltonian function H(Np) : R x R?" — R such
that

No (t,x) = dp(n),e (%)
for every t > 0 and x € R?".
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@ Once we have trained Ny to be reliable for t € [0, At], we extend it for longer times as
- - A
Y (t,x0) := Ve At|t/At] © (¢At) /8] (x0),
for t € [0,4+00) and xg € Q C R?", where

¥s (x0) == Ny (s,%0), s € [0,At),
(&At)k ‘= 1ppr0---0thas, k€N,
——

k times
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Extension of the SympFlow outside of [0, At]

@ Once we have trained Ny to be reliable for t € [0, At], we extend it for longer times as

¥ (t,%0) = Ve_ne(t/at) © (Pat) A (x0),
for t € [0, +00) and xo € Q C R?", where
s (x0) == Ny (s,x0), s € [0,At),
(&At)k i=1par o oy, k EN.
~———

k times

e Y(t,) = ¢Fl,t for the piecewise continuous Hamiltonian

H(t,x) :==H (Np) (t — At[t/At],x).
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Let H:R x R?? — R be twice-continuously differentiable, and Q C R?>" a compact and
forward invariant set. For any € > 0, there is a SympFlow 1 such that

sup ||1/_)t(x) - ng,u.,J_b(x)”(>o <e.
te[0,At]
xeN
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@ To train the overall model NVp : R x R?? — R??, which could be a SympFlow or a generic

neural network, we minimise the loss function

2

L(0) = —Ng t,x5) —IVH (N (ti. %))

t=t;

2

where we sample t; € [0, At], and x} € Q C R?".
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Equations of motion

XZP?F.):_X'

MLP just residual

MLP just residual

1.0 107"
0.5 ES 1071
—— ODE45 | 1054
= 0049 === Network 6
= 1077+
—0.5 1 = —— Energy ODE45
= -9 === Energy Network
~1.04
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Figure 2: Unsupervised

t

SympFlow just residual
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experiment — Simple Harmonic Oscillator. Comparison of the orbits and
the energy behaviour up to time T = 1000.
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Equations of motion

XZPX? }.’:Py, pX:_X_2Xya py:_y_(x2_y2).

MLP just residual MLP just residual SympFlow just residual SympFlow just residual
] 10° 4 — 0.50 4
0.50 BRI B - —— Energy ODE45 =" —
S
0.95 1 § 10°4 === Energy Network I,' 0.25 4 % 107 4
| 10°4 1
< 0.00 N ,,,\...w"" < 0.00 1 =107% 1
Tt S
~0.25 1 3 e /\/wr(/ —0.25 4 2l —— Energy ODE45
= = === Energy Network
—0.50 —0.50 1
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ay t ay t

Figure 3: Unsupervised experiment — Hénon—Heiles: Comparison of the Poincaré sections and the
energy behaviour up to time T = 1000.
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Future extensions

Improve the efficiency of the method by replacing gradients of MLPs with some other
alternatives (Topic of a Summer Project that will start in a couple of weeks).

Extend the approach to capture parametric dependencies, and apply this procedure for
parameter identification.

Improve our theoretical understanding of the dynamics exactly solved by the SympFlow.

Apply the method to higher dimensional systems.
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THANK YOU FOR THE ATTENTION

davidemurari.com/sympflow to read the paper



https://davidemurari.com/sympflow

@ To train the overall model Ny we minimise the loss function

£(6) = NMZZHM) th ) — vl

n=1 m=1

where xJ € Q CR?", and y[1 & ¢py 0 (x§).

N =200 initial c dl ofM= smmesampleseacn
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o We introduce a parametric map Nj (-, x0) : [0, T] — R such that N (0, xg) = xo, and
choose its weights so that

1 C
c=1

for some collocation points ti,...,tc € [0, T].

2

ENo(tr0)|  — F (N (e 0))

t=tc

— min
2




Physics-informed neural networks

o We introduce a parametric map N (-, xp) : [0, T] — R? such that Aj (0, xp) = xo, and
choose its weights so that

C 2
1 d .
£(0) = ¢ > Vo (t0)| = F(No(te, %0))|| = min
c=1 t=tc 2
for some collocation points ti,...,tc € [0, T].

@ Then, t — Ny (t,xo) will solve a different VP

y(t) = F(y () + (ENy (t.%0)|,, — F (v (1)) € R,
y(0) = xp € RY,

where the residual SN} (t,xo)|t:t — F(y (t)) is small in some sense.



Training issues with neural network

@ Solving a single IVP on [0, T] with a neural network can take long training time.

@ The obtained solution can not be used to solve the same ordinary differential equation

with a different initial condition.

Solution

— qref.

— pref.
q pred

—== ppred.

10

Figure 5: Solution comparison after reaching a loss value of 1075, The training time is of 87 seconds
(7500 epochs with 1000 new collocation points randomly sampled at each of them).



Training issues with neural network

@ It is hard to solve initial value problems over long time intervals.
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q pred.
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A one-step numerical method ¢/ : R?" — R2" is symplectic if and only if when applied
to a Hamiltonian system the map " is symplectic, i.e.,

(225




Symplectic numerical methods

7

A one-step numerical method ¢/ : R?" — R2" is symplectic if and only if when applied
to a Hamiltonian system the map " is symplectic, i.e.,

(325 (5)-

Symplectic and energy preserving methods

Let x = JVH(x) be a Hamiltonian system with Hamiltonian H and no conserved quan-
tities other than H. Let ¢" be a symplectic and energy-preserving method for the Hamil-
tonian system. Then " reproduces the exact solution up to a time re-parametrisation.




Symplectic numerical methods

e )

A one-step numerical method ¢/ : R?" — R2" is symplectic if and only if when applied
to a Hamiltonian system the map " is symplectic, i.e.,

(325 (5)-

Symplectic and energy preserving methods

Let x = JVH(x) be a Hamiltonian system with Hamiltonian H and no conserved quan-
tities other than H. Let ¢" be a symplectic and energy-preserving method for the Hamil-
tonian system. Then " reproduces the exact solution up to a time re-parametrisation.

Informal theorem

A symplectic method almost conserves the Hamiltonian for an exponentially long time.




Example: simple harmonic oscillator

Results with Explicit Euler
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