Dynamics of the N -fold pendulum

Lie group integrators approach to the N -fold pendulum

Part of a joint work with Elena Celledoni, Ergys Çokaj, Andrea Leone and Brynjulf Owren - "Lie Group integrators for mechanical systems." arXiv preprint

Overview of the presentation

In this talk, we go through the following points:
(1) Some elements of the theory of Lie group integrators,
(2) Key points in the derivation of the model for the N -fold pendulum,
(3) Solving its equations of motion with Lie group integrators,
(9) Some numerical experiments.

Basics of Lie group integrators

- They are used to solve differential equations whose solution evolves on a manifold M :

$$
\dot{y}(t)=\left.X\right|_{y(t)}, \quad y\left(t_{0}\right)=y_{0} \in M, \quad X \in \mathfrak{X}(M)
$$

Basics of Lie group integrators

- They are used to solve differential equations whose solution evolves on a manifold M :

$$
\dot{y}(t)=\left.X\right|_{y(t)}, \quad y\left(t_{0}\right)=y_{0} \in M, \quad X \in \mathfrak{X}(M)
$$

- Lie group integrators are based on some choices in the representation of the vector field:
(1) By means of the infinitesimal generator ψ_{*} of a transitive Lie group action $\psi: G \times M \rightarrow M$:

$$
\left.X\right|_{m}=\left.\psi_{*}(f(m))\right|_{m} \forall m \in M, \text { for some } f: M \rightarrow \mathfrak{g}
$$

Basics of Lie group integrators

- They are used to solve differential equations whose solution evolves on a manifold M :

$$
\dot{y}(t)=\left.X\right|_{y(t)}, \quad y\left(t_{0}\right)=y_{0} \in M, \quad X \in \mathfrak{X}(M)
$$

- Lie group integrators are based on some choices in the representation of the vector field:
(1) By means of the infinitesimal generator ψ_{*} of a transitive Lie group action $\psi: G \times M \rightarrow M$:

$$
\left.X\right|_{m}=\left.\psi_{*}(f(m))\right|_{m} \forall m \in M, \text { for some } f: M \rightarrow \mathfrak{g}
$$

(2) By means of a set of frame vector fields $E_{1}, \ldots, E_{d} \in \mathfrak{X}(M)$:

$$
\left.X\right|_{m}=\left.\sum_{i=1}^{d} f_{i}(m) E_{i}\right|_{m}
$$

Basics of Lie group integrators

- They are used to solve differential equations whose solution evolves on a manifold M :

$$
\dot{y}(t)=\left.X\right|_{y(t)}, \quad y\left(t_{0}\right)=y_{0} \in M, \quad X \in \mathfrak{X}(M)
$$

- Lie group integrators are based on some choices in the representation of the vector field:
(1) By means of the infinitesimal generator ψ_{*} of a transitive Lie group action $\psi: G \times M \rightarrow M$:

$$
\left.X\right|_{m}=\left.\psi_{*}(f(m))\right|_{m} \forall m \in M, \text { for some } f: M \rightarrow \mathfrak{g}
$$

(2) By means of a set of frame vector fields $E_{1}, \ldots, E_{d} \in \mathfrak{X}(M)$:

$$
\left.X\right|_{m}=\left.\sum_{i=1}^{d} f_{i}(m) E_{i}\right|_{m} .
$$

(3) By means of the machinery of connections.

Some key facts on Lie group actions

- Definition: Let M be a smooth manifold and (G, \cdot) be a Lie group. The (left) action of the group G on M is a map $\psi: G \times M \rightarrow M$, $\psi(g, m)=\psi_{g}(m)$ such that:
(1) $\psi\left(1_{G}, m\right)=m \quad \forall m \in M$
(2) for any $g \in G$ the map $\psi_{g}: M \rightarrow M$ is a diffeomorphism and
(3) $\forall g, h \in G, \psi_{g} \circ \psi_{h}(m)=\psi_{g \cdot h}(m)$.

Some key facts on Lie group actions

- Definition: Let M be a smooth manifold and (G, \cdot) be a Lie group. The (left) action of the group G on M is a map $\psi: G \times M \rightarrow M$, $\psi(g, m)=\psi_{g}(m)$ such that:
(1) $\psi\left(1_{G}, m\right)=m \quad \forall m \in M$
(2) for any $g \in G$ the map $\psi_{g}: M \rightarrow M$ is a diffeomorphism and
(3) $\forall g, h \in G, \psi_{g} \circ \psi_{h}(m)=\psi_{g \cdot h}(m)$.
- The orbit of $m \in M$ is $\mathcal{O}(m)=\left\{\psi_{g}(m): g \in G\right\} \subseteq M$.
- It is a transitive action if ψ_{g} is surjective for any $g \in M$.
- The infinitesimal generator is defined as

$$
\left.\psi_{*}(\xi)\right|_{m}:=\left.\frac{d}{d t}\right|_{t=0} \psi(\exp (t \xi), m) \in T_{m} M
$$

Some key facts on Lie group actions

- Definition: Let M be a smooth manifold and (G, \cdot) be a Lie group. The (left) action of the group G on M is a map $\psi: G \times M \rightarrow M$, $\psi(g, m)=\psi_{g}(m)$ such that:
(1) $\psi\left(1_{G}, m\right)=m \quad \forall m \in M$
(2) for any $g \in G$ the map $\psi_{g}: M \rightarrow M$ is a diffeomorphism and
(3) $\forall g, h \in G, \psi_{g} \circ \psi_{h}(m)=\psi_{g . h}(m)$.
- The orbit of $m \in M$ is $\mathcal{O}(m)=\left\{\psi_{g}(m): g \in G\right\} \subseteq M$.
- It is a transitive action if ψ_{g} is surjective for any $g \in M$.
- The infinitesimal generator is defined as

$$
\left.\psi_{*}(\xi)\right|_{m}:=\left.\frac{d}{d t}\right|_{t=0} \psi(\exp (t \xi), m) \in T_{m} M
$$

- Some relevant actions for our aims:
(1) $L_{g}(h)=g \cdot h$, (left multiplication - action of G onto itself)
(2) $R_{g}(h)=h \cdot g$, (right multiplication - action of G onto itself)
(3) $\operatorname{Ad}_{g}(\xi)=L_{g} \circ R_{g^{-1}}(\xi)=g \xi g^{-1}$, (adjoint action - action of G onto \mathfrak{g}, $g \in G, \xi \in \mathfrak{g})$

Two classes of Lie group integrators

- Runge-Kutta-Munthe-Kaas (RKMK) methods: The key idea is to transform locally the problem from M to the Lie algebra \mathfrak{g} of a group G acting transitively on it:

We solve this for one timestep Δt, then update y_{n} and repeat up to the final time T

$$
\left\{\begin{array}{l}
\sigma(0)=0 \in \mathfrak{g} \\
\dot{\sigma}(t)=\operatorname{dexp} \\
\sigma(t) \circ f \circ \psi\left(\exp (\sigma(t)), y_{n}\right) \in T_{\sigma(t)} \mathfrak{g}, \quad n=0, \ldots, N-1 \\
y(t)=\psi\left(\exp (\sigma(t)), y_{n}\right) \in M .
\end{array}\right.
$$

Two classes of Lie group integrators

- Runge-Kutta-Munthe-Kaas (RKMK) methods: The key idea is to transform locally the problem from M to the Lie algebra \mathfrak{g} of a group G acting transitively on it:

We solve this for one timestep Δt, then update y_{n} and repeat up to the final time T

$$
\left\{\begin{array}{l}
\sigma(0)=0 \in \mathfrak{g}, \\
\dot{\sigma}(t)=\operatorname{dexp}_{\sigma(t)}^{-1} \circ f \circ \psi\left(\exp (\sigma(t)), y_{n}\right) \in T_{\sigma(t) \mathfrak{g}}, \quad n=0, \ldots, N-1 \\
y(t)=\psi\left(\exp (\sigma(t)), y_{n}\right) \in M
\end{array}\right.
$$

- Commutator free Lie group methods: The main idea is to update the position on the manifold by

$$
y_{n+1}=\psi_{\exp \left(\Delta t \sigma_{1}\right)} \circ \ldots \circ \psi_{\exp \left(\Delta t \sigma_{d}\right)}\left(y_{n}\right)
$$

where the computation of the $\sigma_{i} \in \mathfrak{g}$ does not involve commutators.

Variable stepsize for RKMK methods

- One approach is based on the use of an embedded Runge-Kutta pair.
- In RKMK methods we are just updating on a manifold, while the real time integration, locally, happens on a linear space \mathfrak{g}.
- So variable stepsize in this context can be applied using an embedded RK pair on the local integration on \mathfrak{g}.
- If we adopt a RK pair of order (p, \hat{p}) and the one timestep approximations obtained with these RK methods on \mathfrak{g} are $\sigma_{1}, \hat{\sigma}_{1}$, we can use $e_{n}=\left\|\sigma_{1}-\hat{\sigma}_{1}\right\|$ as an estimate of the local truncation error.

Idea in the derivation of the vector field

- Lagrangian of the system: $L:\left(T S^{2}\right)^{N} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
& L(\boldsymbol{q}, \boldsymbol{\omega})=T(\boldsymbol{q}, \boldsymbol{\omega})-U(\boldsymbol{q})= \\
& =\frac{1}{2} \sum_{i, j=1}^{N}\left(\sum_{k=\max \{i, j\}}^{N} m_{k}\right) L_{i} L_{j} \omega_{i}^{T} \hat{q}_{i}^{T} \hat{q}_{j} \omega_{j}-\sum_{i=1}^{N}\left(\sum_{j=i}^{N} m_{j}\right) g L_{i} e_{3}^{T} q_{i},
\end{aligned}
$$

where $\boldsymbol{q}=\left(q_{1}, \ldots, q_{N}\right), \boldsymbol{\omega}=\left(\omega_{1}, \ldots, \omega_{N}\right)$.

Idea in the derivation of the vector field

- Lagrangian of the system: $L:\left(T S^{2}\right)^{N} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
& L(\boldsymbol{q}, \boldsymbol{\omega})=T(\boldsymbol{q}, \boldsymbol{\omega})-U(\boldsymbol{q})= \\
& =\frac{1}{2} \sum_{i, j=1}^{N}\left(\sum_{k=\max \{i, j\}}^{N} m_{k}\right) L_{i} L_{j} \omega_{i}^{T} \hat{q}_{i}^{T} \hat{q}_{j} \omega_{j}-\sum_{i=1}^{N}\left(\sum_{j=i}^{N} m_{j}\right) g L_{i} e_{3}^{T} q_{i},
\end{aligned}
$$

where $\boldsymbol{q}=\left(q_{1}, \ldots, q_{N}\right), \boldsymbol{\omega}=\left(\omega_{1}, \ldots, \omega_{N}\right)$.

- For the case $N=1$, we can consider the variations of the curve

$$
q:[a, b] \rightarrow S^{2}
$$

thanks to an ε-family of curves

$$
q^{\varepsilon}:[a, b] \rightarrow S^{2}, q^{\varepsilon}(t):=\exp (\widehat{\varepsilon(t)}) \cdot q(t)
$$

and then, via Hamilton's principle, we can obtain the Euler-Lagrange equations on $\left(T S^{2}\right)$, where $\gamma(t) \in T_{q(t)} S^{2}$ is an arbitrary curve with $\gamma(a)=\gamma(b)=0$.

Vector field of the N -fold pendulum

- Repeating a similar idea, we can get to the system of ODEs for the N -fold spherical pendulum, where the i-th pair of 6 equations reads:

$$
\dot{q}_{i}=\omega_{i} \times q_{i}
$$

$$
(R(\boldsymbol{q}) \dot{\omega})_{i}=\left[\sum_{\substack{j=1 \\ j \neq i}}^{N} M(\boldsymbol{q})_{i j}\left|\omega_{j}\right|^{2} \hat{q}_{i} q_{j}-\left(\sum_{j=i}^{N} m_{j}\right) g L_{i} \hat{q}_{i} e_{3}\right]
$$

- Here the symmetric block matrices $M(\boldsymbol{q})$ and $R(\boldsymbol{q})$ are so that

$$
\begin{aligned}
& M(\boldsymbol{q})_{i i}=\left(\sum_{j=i}^{N} m_{j}\right) L_{i}^{2} l_{3}, \quad M(\boldsymbol{q})_{i j}=\left(\sum_{k=j}^{N} m_{k}\right) L_{i} L_{j} l_{3}=M(\boldsymbol{q})_{j i}, i<j, \\
& R(\boldsymbol{q})_{i i}=\left(\sum_{j=i}^{N} m_{j}\right) L_{i}^{2} l_{3}, \quad R(\boldsymbol{q})_{i j}=\left(\sum_{k=j}^{N} m_{k}\right) L_{i} L_{j} \hat{q}_{i}^{T} \hat{q}_{j}=R(\boldsymbol{q})_{j i}, i<j .
\end{aligned}
$$

where by $A_{i j}$ we refer to the $(i, j) 3 \times 3$ block matrix in A.

The Ad action of $S E(3)$

- We consider the Lie group $G=S E(3)=S O(3) \ltimes \mathbb{R}^{3}$.

The Ad action of $S E(3)$

- We consider the Lie group $G=S E(3)=S O(3) \ltimes \mathbb{R}^{3}$.
- The Ad-action of $S E(3)$ on $\mathfrak{s e}(3)$, writes

$$
\begin{gathered}
A d: S E(3) \times \mathfrak{s e}(3) \rightarrow \mathfrak{s e}(3), \\
\operatorname{Ad}((R, r),(u, v))=(R u, R v+r \times R u),
\end{gathered}
$$

where we recall $A d_{g} \xi:=L_{g} \circ R_{g-1}(\xi), g \in S E(3), \xi \in \mathfrak{s e}(3)$.

The Ad action of $S E(3)$

- We consider the Lie group $G=S E(3)=S O(3) \ltimes \mathbb{R}^{3}$.
- The Ad-action of $S E(3)$ on $\mathfrak{s e}(3)$, writes

$$
\begin{gathered}
A d: S E(3) \times \mathfrak{s e}(3) \rightarrow \mathfrak{s e}(3), \\
\operatorname{Ad}((R, r),(u, v))=(R u, R v+r \times R u),
\end{gathered}
$$

where we recall $A d_{g} \xi:=L_{g} \circ R_{g^{-1}}(\xi), g \in S E(3), \xi \in \mathfrak{s e}(3)$.

- Since $\mathfrak{s e}(3) \simeq \mathbb{R}^{6}$, the Ad-action allows us to define the following Lie group action on \mathbb{R}^{6}

$$
\psi: S E(3) \times \mathbb{R}^{6} \rightarrow \mathbb{R}^{6}, \quad \psi((R, r),(u, v))=(R u, R v+r \times R u) .
$$

The Ad action of $S E(3)$

- We consider the Lie group $G=S E(3)=S O(3) \ltimes \mathbb{R}^{3}$.
- The Ad-action of $S E(3)$ on $\mathfrak{s e}(3)$, writes

$$
\begin{gathered}
A d: S E(3) \times \mathfrak{s e}(3) \rightarrow \mathfrak{s e}(3), \\
\operatorname{Ad}((R, r),(u, v))=(R u, R v+r \times R u),
\end{gathered}
$$

where we recall $A d_{g} \xi:=L_{g} \circ R_{g-1}(\xi), g \in S E(3), \xi \in \mathfrak{s e}(3)$.

- Since $\mathfrak{s e}(3) \simeq \mathbb{R}^{6}$, the Ad-action allows us to define the following Lie group action on \mathbb{R}^{6}

$$
\psi: S E(3) \times \mathbb{R}^{6} \rightarrow \mathbb{R}^{6}, \quad \psi((R, r),(u, v))=(R u, R v+r \times R u)
$$

- Infinitesimal generator of the action:

$$
\left.\psi_{*}((u, v))\right|_{(q, \omega)}=(u \times q, v \times q+u \times \omega)
$$

Particular orbits of this action

- For a point $(q, \omega) \in \mathbb{R}^{6}$ such that $\omega^{T} q=0$ and $(R, r) \in S E(3)$, we have that

$$
(\bar{q}, \bar{\omega}):=\psi_{(R, r)}(q, \omega)=(R q, R \omega+r \times R q)
$$

is such that $\bar{\omega}^{T} \bar{q}=0$.

Particular orbits of this action

- For a point $(q, \omega) \in \mathbb{R}^{6}$ such that $\omega^{T} q=0$ and $(R, r) \in S E(3)$, we have that

$$
(\bar{q}, \bar{\omega}):=\psi_{(R, r)}(q, \omega)=(R q, R \omega+r \times R q)
$$

is such that $\bar{\omega}^{T} \bar{q}=0$.

- If we see the tangent bundle to the $2-$ sphere of radius $r>0, T S_{r}^{2}$, as a submanifold of \mathbb{R}^{6}, we can write

$$
T S_{r}^{2}:=\left\{(q, \omega) \in \mathbb{R}^{6}: \omega^{T} q=0,|q|=r\right\} \subset \mathbb{R}^{6}
$$

Particular orbits of this action

- For a point $(q, \omega) \in \mathbb{R}^{6}$ such that $\omega^{T} q=0$ and $(R, r) \in S E(3)$, we have that

$$
(\bar{q}, \bar{\omega}):=\psi_{(R, r)}(q, \omega)=(R q, R \omega+r \times R q)
$$

is such that $\bar{\omega}^{T} \bar{q}=0$.

- If we see the tangent bundle to the $2-$ sphere of radius $r>0, T S_{r}^{2}$, as a submanifold of \mathbb{R}^{6}, we can write

$$
T S_{r}^{2}:=\left\{(q, \omega) \in \mathbb{R}^{6}: \omega^{T} q=0,|q|=r\right\} \subset \mathbb{R}^{6}
$$

- This implies that

$$
\mathcal{O}((q, \omega))=\left\{m \in \mathbb{R}^{6}: \exists g \in S E(3) \text { s.t. } \psi_{g}(q, \omega)=m\right\} \subset T S_{\|q\|}^{2}
$$

if $q^{T} \omega=0$.

Visual representation of the action

Transitivity of the restriction of the action

- It is even true that $\mathcal{O}((q, \omega))=T S^{2}$ for any $(q, \omega) \in T S^{2}$, i.e. the restriction to $T S^{2}$ of ψ is transitive.

Transitivity of the restriction of the action

- It is even true that $\mathcal{O}((q, \omega))=T S^{2}$ for any $(q, \omega) \in T S^{2}$, i.e. the restriction to $T S^{2}$ of ψ is transitive.
- More precisely, for any pair $m_{1}=\left(q_{1}, \omega_{1}\right), m_{2}=\left(q_{2}, \omega_{2}\right) \in T S^{2}$, there is (at least) a $g=(R, r) \in S E(3)$ such that

$$
\psi_{g}\left(m_{1}\right)=m_{2}
$$

Transitivity of the restriction of the action

- It is even true that $\mathcal{O}((q, \omega))=T S^{2}$ for any $(q, \omega) \in T S^{2}$, i.e. the restriction to $T S^{2}$ of ψ is transitive.
- More precisely, for any pair $m_{1}=\left(q_{1}, \omega_{1}\right), m_{2}=\left(q_{2}, \omega_{2}\right) \in T S^{2}$, there is (at least) a $g=(R, r) \in S E(3)$ such that

$$
\psi_{g}\left(m_{1}\right)=m_{2}
$$

- To verify that, just set
(1) R such that $R q_{1}=q_{2}$,
(2) $r=v-R u \in \mathbb{R}^{3}$, where
- $\omega_{1}=u \times q_{1}$,
- $\omega_{2}=v \times q_{2}$

Extension by direct product structure

- We can extend this action to the case $N>1$.

Extension by direct product structure

- We can extend this action to the case $N>1$.
- We consider the group $G=(S E(3))^{N}$ equipped with a direct product structure, i.e. let

$$
\delta^{(1)}=\left(\delta_{1}^{(1)}, \ldots, \delta_{N}^{(1)}\right), \delta^{(2)}=\left(\delta_{1}^{(2)}, \ldots, \delta_{N}^{(2)}\right) \in G
$$

denoted with $*$ the semidirect product of $\operatorname{SE}(3)$ and with \circ the group product of G, we set

$$
\delta^{(1)} \circ \delta^{(2)}:=\left(\delta_{1}^{(1)} * \delta_{1}^{(2)}, \ldots, \delta_{N}^{(1)} * \delta_{N}^{(2)}\right) \in G
$$

Extension by direct product structure

- We can extend this action to the case $N>1$.
- We consider the group $G=(S E(3))^{N}$ equipped with a direct product structure, i.e. let

$$
\delta^{(1)}=\left(\delta_{1}^{(1)}, \ldots, \delta_{N}^{(1)}\right), \delta^{(2)}=\left(\delta_{1}^{(2)}, \ldots, \delta_{N}^{(2)}\right) \in G
$$

denoted with $*$ the semidirect product of $\operatorname{SE}(3)$ and with \circ the group product of G, we set

$$
\delta^{(1)} \circ \delta^{(2)}:=\left(\delta_{1}^{(1)} * \delta_{1}^{(2)}, \ldots, \delta_{N}^{(1)} * \delta_{N}^{(2)}\right) \in G
$$

- The same idea goes behind the definition of $\exp : \mathfrak{g} \rightarrow G$ and $\operatorname{dexp}_{\sigma}: \mathfrak{g} \rightarrow \mathfrak{g}$, for $\sigma \in \mathfrak{g}$.

Extension by direct product structure

- We can extend this action to the case $N>1$.
- We consider the group $G=(S E(3))^{N}$ equipped with a direct product structure, i.e. let

$$
\delta^{(1)}=\left(\delta_{1}^{(1)}, \ldots, \delta_{N}^{(1)}\right), \delta^{(2)}=\left(\delta_{1}^{(2)}, \ldots, \delta_{N}^{(2)}\right) \in G
$$

denoted with $*$ the semidirect product of $\operatorname{SE}(3)$ and with \circ the group product of G, we set

$$
\delta^{(1)} \circ \delta^{(2)}:=\left(\delta_{1}^{(1)} * \delta_{1}^{(2)}, \ldots, \delta_{N}^{(1)} * \delta_{N}^{(2)}\right) \in G
$$

- The same idea goes behind the definition of $\exp : \mathfrak{g} \rightarrow G$ and $\operatorname{dexp}_{\sigma}: \mathfrak{g} \rightarrow \mathfrak{g}$, for $\sigma \in \mathfrak{g}$.
- We denote with $\boldsymbol{q}=\left(q_{1}, \ldots, q_{N}\right) \in\left(S^{2}\right)^{N}$ and $\boldsymbol{\omega}=\left(\omega_{1}, \ldots, \omega_{N}\right) \in T_{q_{1}} S^{2} \times \ldots T_{q_{N}} S^{2}$.

Summary of the situation we obtained

- Phase space: $M=\left(T S^{2}\right)^{N}$

Summary of the situation we obtained

- Phase space: $M=\left(T S^{2}\right)^{N}$
- i-th pair of components in the vector field:

$$
\dot{q}_{i}=\omega_{i} \times q_{i}, \quad(R(\boldsymbol{q}) \dot{\omega})_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{N} M_{i j}\left|\omega_{j}\right|^{2} \hat{q}_{i} q_{j}-\left(\sum_{j=i}^{N} m_{j}\right) g L_{i} \hat{q}_{i} e_{3}=g_{i}(\boldsymbol{q}, \omega)
$$

Summary of the situation we obtained

- Phase space: $M=\left(T S^{2}\right)^{N}$
- i-th pair of components in the vector field:

$$
\dot{q}_{i}=\omega_{i} \times q_{i}, \quad(R(\boldsymbol{q}) \dot{\omega})_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{N} M_{i j}\left|\omega_{j}\right|^{2} \hat{q}_{i} q_{j}-\left(\sum_{j=i}^{N} m_{j}\right) g L_{i} \hat{q}_{i} e_{3}=g_{i}(\boldsymbol{q}, \omega)
$$

- Group action: $g=\left(R_{1}, r_{1}, \ldots, R_{N}, r_{N}\right) \in S E(3)^{N}, m=\left(q_{1}, \omega_{1}, \ldots, q_{N}, \omega_{N}\right) \in M$:

$$
\psi(g, m)=\left(R_{1} q_{1}, R_{1} \omega_{1}+r_{1} \times R_{1} q_{1}, \ldots, R_{N} q_{N}, R_{N} \omega_{N}+r_{N} \times R_{N} q_{N}\right)
$$

Summary of the situation we obtained

- Phase space: $M=\left(T S^{2}\right)^{N}$
- i-th pair of components in the vector field:

$$
\dot{q}_{i}=\omega_{i} \times q_{i}, \quad(R(\boldsymbol{q}) \dot{\omega})_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{N} M_{i j}\left|\omega_{j}\right|^{2} \hat{q}_{i} q_{j}-\left(\sum_{j=i}^{N} m_{j}\right) g L_{i} \hat{q}_{i} e_{3}=g_{i}(\boldsymbol{q}, \omega)
$$

- Group action: $g=\left(R_{1}, r_{1}, \ldots, R_{N}, r_{N}\right) \in S E(3)^{N}, m=\left(q_{1}, \omega_{1}, \ldots, q_{N}, \omega_{N}\right) \in M$:

$$
\psi(g, m)=\left(R_{1} q_{1}, R_{1} \omega_{1}+r_{1} \times R_{1} q_{1}, \ldots, R_{N} q_{N}, R_{N} \omega_{N}+r_{N} \times R_{N} q_{N}\right)
$$

- Infinitesimal generator:

$$
\left.\psi_{*}(\xi)\right|_{m}=\left(u_{1} \times q_{1}, u_{1} \times \omega_{1}+v_{1} \times q_{1}, \ldots, u_{N} \times q_{N}, u_{N} \times \omega_{N}+v_{N} \times q_{N}\right),
$$

where $\xi=\left[u_{1}, v_{1}, \ldots, u_{N}, v_{N}\right] \in \mathfrak{s e}(3)^{N}$ and $m=\left(q_{1}, \omega_{1}, \ldots, q_{N}, \omega_{N}\right) \in\left(T S^{2}\right)^{N}$.

Representation via the infinitesimal generator

- We now have that

$$
(R(\boldsymbol{q}) \dot{\omega})_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{N} M_{i j}\left|\omega_{j}\right|^{2} \hat{q}_{i} q_{j}-\left(\sum_{j=i}^{N} m_{j}\right) g L_{i} \hat{q}_{i} e_{3}=g_{i}(\boldsymbol{q}, \omega) \in T_{q_{i}} S^{2}
$$

Representation via the infinitesimal generator

- We now have that

$$
(R(\boldsymbol{q}) \dot{\omega})_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{N} M_{i j}\left|\omega_{j}\right|^{2} \hat{q}_{i} q_{j}-\left(\sum_{j=i}^{N} m_{j}\right) g L_{i} \hat{q}_{i} e_{3}=g_{i}(\boldsymbol{q}, \omega) \in T_{q_{i}} S^{2}
$$

- $R(\boldsymbol{q})$ is invertible and it defines a linear invertible map on $T_{q_{1}} S^{2} \times \ldots T_{q_{N}} S^{2}$. So $\left(R(\boldsymbol{q})^{-1} g(\boldsymbol{q}, \boldsymbol{\omega})\right)_{i}:=h_{i}(\boldsymbol{q}, \boldsymbol{\omega}) \in T_{q_{i}} S^{2}$ too.

Representation via the infinitesimal generator

- We now have that

$$
(R(\boldsymbol{q}) \dot{\omega})_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{N} M_{i j}\left|\omega_{j}\right|^{2} \hat{q}_{i} q_{j}-\left(\sum_{j=i}^{N} m_{j}\right) g L_{i} \hat{q}_{i} e_{3}=g_{i}(\boldsymbol{q}, \omega) \in T_{q_{i}} S^{2}
$$

- $R(\boldsymbol{q})$ is invertible and it defines a linear invertible map on $T_{q_{1}} S^{2} \times \ldots T_{q_{N}} S^{2}$. So $\left(R(\boldsymbol{q})^{-1} g(\boldsymbol{q}, \boldsymbol{\omega})\right)_{i}:=h_{i}(\boldsymbol{q}, \boldsymbol{\omega}) \in T_{q_{i}} S^{2}$ too.
- So there is an $a_{i}: M \rightarrow \mathbb{R}^{3}$ such that $h_{i}(\boldsymbol{q}, \boldsymbol{\omega})=a_{i}(\boldsymbol{q}, \boldsymbol{\omega}) \times q_{i}$, a possible choice is to set $a_{i}(\boldsymbol{q}, \boldsymbol{\omega})=q_{i} \times h_{i}(\boldsymbol{q}, \boldsymbol{\omega})$.

Representation via the infinitesimal generator

- We now have that

$$
(R(\boldsymbol{q}) \dot{\omega})_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{N} M_{i j}\left|\omega_{j}\right|^{2} \hat{q}_{i} q_{j}-\left(\sum_{j=i}^{N} m_{j}\right) g L_{i} \hat{q}_{i} e_{3}=g_{i}(\boldsymbol{q}, \omega) \in T_{q_{i}} S^{2}
$$

- $R(\boldsymbol{q})$ is invertible and it defines a linear invertible map on $T_{q_{1}} S^{2} \times \ldots T_{q_{N}} S^{2}$. So $\left(R(\boldsymbol{q})^{-1} g(\boldsymbol{q}, \boldsymbol{\omega})\right)_{i}:=h_{i}(\boldsymbol{q}, \boldsymbol{\omega}) \in T_{q_{i}} S^{2}$ too.
- So there is an $a_{i}: M \rightarrow \mathbb{R}^{3}$ such that $h_{i}(\boldsymbol{q}, \boldsymbol{\omega})=a_{i}(\boldsymbol{q}, \boldsymbol{\omega}) \times q_{i}$, a possible choice is to set $a_{i}(\boldsymbol{q}, \boldsymbol{\omega})=q_{i} \times h_{i}(\boldsymbol{q}, \boldsymbol{\omega})$.
- Therefore, if we set $f:\left(T S^{2}\right)^{N} \rightarrow(\mathfrak{s e}(3))^{N}$ as

$$
f(\boldsymbol{q}, \boldsymbol{\omega})=\left(\omega_{1}, a_{1}(\boldsymbol{q}, \boldsymbol{\omega}), \ldots, \omega_{N}, a_{N}(\boldsymbol{q}, \boldsymbol{\omega})\right)
$$

follows $\left.\psi_{*}(f(\boldsymbol{q}, \boldsymbol{\omega}))\right|_{(\boldsymbol{q}, \omega)}=\left.F\right|_{(\boldsymbol{q}, \omega)}$, where $F \in \mathfrak{X}(M)$ is the vector field defining the dynamics of the N -fold pendulum.

Preservation of the configuration manifold

$$
1-q_{i}(t)^{\top} q_{i}(t)
$$

Experiments with variable stepsize

Comparison of stepsize variation with $\mathbf{N}=\mathbf{2}$ pendulums

Another studied mechanical system

Configuration manifold: $Q=\mathbb{R}^{3} \times(S O(3))^{2} \times\left(S^{2}\right)^{2}$ Phase space: $M=T Q$
Group acting transitively: $\bar{G}=\mathbb{R}^{6} \times(\mathrm{TSO}(3))^{2} \times(S E(3))^{2}$

Thanks for the attention

