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Overview of the presentation

In this talk, we go through the following points:

1 Some elements of the theory of Lie group integrators,

2 Key points in the derivation of the model for the N-fold pendulum,

3 Solving its equations of motion with Lie group integrators,

4 Some numerical experiments.
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Basics of Lie group integrators

They are used to solve differential equations whose solution evolves
on a manifold M:

ẏ(t) = X |y(t), y(t0) = y0 ∈ M, X ∈ X(M).

Lie group integrators are based on some choices in the representation
of the vector field:

1 By means of the infinitesimal generator ψ∗ of a transitive Lie group
action ψ : G ×M → M:

X |m = ψ∗(f (m))|m ∀m ∈ M, for some f : M → g

2 By means of a set of frame vector fields E1, ...,Ed ∈ X(M):

X |m =
d∑

i=1

fi (m)Ei |m.

3 By means of the machinery of connections.
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Some key facts on Lie group actions

Definition: Let M be a smooth manifold and (G , ·) be a Lie group.
The (left) action of the group G on M is a map ψ : G ×M → M,
ψ(g ,m) = ψg (m) such that:

1 ψ (1G ,m) = m ∀m ∈ M
2 for any g ∈ G the map ψg : M → M is a diffeomorphism and
3 ∀g , h ∈ G , ψg ◦ ψh(m) = ψg ·h(m).

The orbit of m ∈ M is O(m) = {ψg (m) : g ∈ G} ⊆ M.
It is a transitive action if ψg is surjective for any g ∈ M.
The infinitesimal generator is defined as

ψ∗(ξ)|m :=
d

dt

∣∣∣
t=0

ψ(exp(tξ),m) ∈ TmM

Some relevant actions for our aims:
1 Lg (h) = g · h, (left multiplication - action of G onto itself)
2 Rg (h) = h · g , (right multiplication - action of G onto itself)
3 Adg (ξ) = Lg ◦Rg−1 (ξ) = gξg−1, (adjoint action - action of G onto g,

g ∈ G , ξ ∈ g)
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Two classes of Lie group integrators

Runge–Kutta–Munthe–Kaas (RKMK) methods: The key idea is
to transform locally the problem from M to the Lie algebra g of a
group G acting transitively on it:

We solve this for one timestep ∆t, then update yn and repeat up to
the final time T
σ(0) = 0 ∈ g,

σ̇(t) = dexp−1
σ(t) ◦ f ◦ ψ(exp(σ(t)), yn) ∈ Tσ(t)g, n = 0, ...,N − 1

y(t) = ψ(exp(σ(t)), yn) ∈ M.

Commutator free Lie group methods: The main idea is to update
the position on the manifold by

yn+1 = ψexp(∆tσ1) ◦ ... ◦ ψexp(∆tσd )(yn)

where the computation of the σi ∈ g does not involve commutators.

Dynamics of the N-fold pendulum 5 / 19



Two classes of Lie group integrators

Runge–Kutta–Munthe–Kaas (RKMK) methods: The key idea is
to transform locally the problem from M to the Lie algebra g of a
group G acting transitively on it:

We solve this for one timestep ∆t, then update yn and repeat up to
the final time T
σ(0) = 0 ∈ g,

σ̇(t) = dexp−1
σ(t) ◦ f ◦ ψ(exp(σ(t)), yn) ∈ Tσ(t)g, n = 0, ...,N − 1

y(t) = ψ(exp(σ(t)), yn) ∈ M.

Commutator free Lie group methods: The main idea is to update
the position on the manifold by

yn+1 = ψexp(∆tσ1) ◦ ... ◦ ψexp(∆tσd )(yn)

where the computation of the σi ∈ g does not involve commutators.

Dynamics of the N-fold pendulum 5 / 19



Variable stepsize for RKMK methods

One approach is based on the use of an embedded Runge-Kutta pair.

In RKMK methods we are just updating on a manifold, while the real
time integration, locally, happens on a linear space g.

So variable stepsize in this context can be applied using an embedded
RK pair on the local integration on g.

If we adopt a RK pair of order (p, p̂) and the one timestep
approximations obtained with these RK methods on g are σ1, σ̂1, we
can use en = ‖σ1 − σ̂1‖ as an estimate of the local truncation error.
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Idea in the derivation of the vector field

Lagrangian of the system: L : (TS2)N → R,

L(q,ω) = T (q,ω)− U(q) =

=
1

2

N∑
i ,j=1

( N∑
k=max{i ,j}

mk

)
LiLjω

T
i q̂

T
i q̂jωj −

N∑
i=1

( N∑
j=i

mj

)
gLie

T
3 qi ,

where q = (q1, ..., qN), ω = (ω1, ..., ωN).

For the case N = 1, we can consider the variations of the curve

q : [a, b]→ S2

thanks to an ε−family of curves

qε : [a, b]→ S2, qε(t) := exp
(
εγ̂(t)

)
· q(t),

and then, via Hamilton’s principle, we can obtain the Euler-Lagrange
equations on (TS2), where γ(t) ∈ Tq(t)S

2 is an arbitrary curve with
γ(a) = γ(b) = 0.
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Vector field of the N-fold pendulum

Repeating a similar idea, we can get to the system of ODEs for the
N-fold spherical pendulum, where the i−th pair of 6 equations reads:

q̇i = ωi × qi ,

(R(q)ω̇)i =

 N∑
j=1
j 6=i

M(q)ij |ωj |2q̂iqj −
( N∑

j=i

mj

)
gLi q̂ie3

 .

Here the symmetric block matrices M(q) and R(q) are so that

M(q)ii =
( N∑

j=i

mj

)
L2
i I3, M(q)ij =

( N∑
k=j

mk

)
LiLj I3 = M(q)ji , i < j ,

R(q)ii =
( N∑

j=i

mj

)
L2
i I3, R(q)ij =

( N∑
k=j

mk

)
LiLj q̂

T
i q̂j = R(q)ji , i < j .

where by Aij we refer to the (i , j) 3× 3 block matrix in A.
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The Ad action of SE (3)

We consider the Lie group G = SE (3) = SO(3) nR3.

The Ad-action of SE (3) on se(3), writes

Ad : SE (3)× se(3)→ se(3),

Ad((R, r), (u, v)) = (Ru,Rv + r × Ru),

where we recall Adgξ := Lg ◦ Rg−1 (ξ), g ∈ SE (3), ξ ∈ se(3).

Since se(3) ' R6, the Ad-action allows us to define the following Lie
group action on R6

ψ : SE (3)× R6 → R6, ψ((R, r), (u, v)) = (Ru,Rv + r × Ru).

Infinitesimal generator of the action:

ψ∗((u, v))|(q,ω) = (u × q, v × q + u × ω)
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Particular orbits of this action

For a point (q, ω) ∈ R6 such that ωTq = 0 and (R, r) ∈ SE (3), we
have that

(q̄, ω̄) := ψ(R,r)(q, ω) = (Rq,Rω + r × Rq)

is such that ω̄T q̄ = 0.

If we see the tangent bundle to the 2−sphere of radius r > 0, TS2
r , as

a submanifold of R6, we can write

TS2
r := {(q, ω) ∈ R6 : ωTq = 0, |q| = r} ⊂ R6.

This implies that

O((q, ω)) = {m ∈ R6 : ∃g ∈ SE (3) s.t. ψg (q, ω) = m} ⊂ TS2
‖q‖

if qTω = 0.
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Visual representation of the action
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Transitivity of the restriction of the action

It is even true that O((q, ω)) = TS2 for any (q, ω) ∈ TS2, i.e. the
restriction to TS2 of ψ is transitive.

More precisely, for any pair m1 = (q1, ω1),m2 = (q2, ω2) ∈ TS2, there
is (at least) a g = (R, r) ∈ SE (3) such that

ψg (m1) = m2.

To verify that, just set

1 R such that Rq1 = q2,

2 r = v − Ru ∈ R3, where

ω1 = u × q1,

ω2 = v × q2
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Extension by direct product structure

We can extend this action to the case N > 1.

We consider the group G = (SE (3))N equipped with a direct product
structure, i.e. let

δ(1) = (δ
(1)
1 , ..., δ

(1)
N ), δ(2) = (δ

(2)
1 , ..., δ

(2)
N ) ∈ G ,

denoted with ∗ the semidirect product of SE (3) and with ◦ the group
product of G , we set

δ(1) ◦ δ(2) := (δ
(1)
1 ∗ δ(2)

1 , ..., δ
(1)
N ∗ δ

(2)
N ) ∈ G .

The same idea goes behind the definition of exp : g→ G and
dexpσ : g→ g, for σ ∈ g.

We denote with q = (q1, ..., qN) ∈ (S2)N and
ω = (ω1, ..., ωN) ∈ Tq1S

2 × ...TqNS
2.
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Summary of the situation we obtained

Phase space: M = (TS2)N

i−th pair of components in the vector field:

q̇i = ωi × qi , (R(q)ω̇)i =
N∑
j=1
j 6=i

Mij |ωj |2q̂iqj −
( N∑

j=i

mj

)
gLi q̂ie3 = gi (q,ω)

Group action: g = (R1, r1, ...,RN , rN) ∈ SE(3)N , m = (q1, ω1, ..., qN , ωN) ∈ M:

ψ(g ,m) = (R1q1,R1ω1 + r1 × R1q1, ...,RNqN ,RNωN + rN × RNqN)

Infinitesimal generator:

ψ∗(ξ)|m = (u1 × q1, u1 × ω1 + v1 × q1, ..., uN × qN , uN × ωN + vN × qN),

where ξ = [u1, v1, ..., uN , vN ] ∈ se(3)N and m = (q1, ω1, ..., qN , ωN) ∈ (TS2)N .
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Representation via the infinitesimal generator

We now have that

(R(q)ω̇)i =
N∑
j=1
j 6=i

Mij |ωj |2q̂iqj −
( N∑

j=i

mj

)
gLi q̂ie3 = gi (q,ω) ∈ TqiS

2

R(q) is invertible and it defines a linear invertible map on
Tq1S

2 × ...TqNS
2. So (R(q)−1g(q,ω))i := hi (q,ω) ∈ TqiS

2 too.

So there is an ai : M → R3 such that hi (q,ω) = ai (q,ω)× qi , a
possible choice is to set ai (q,ω) = qi × hi (q,ω).

Therefore, if we set f : (TS2)N → (se(3))N as

f (q,ω) = (ω1, a1(q,ω), ..., ωN , aN(q,ω))

follows ψ∗(f (q,ω))|(q,ω) = F |(q,ω), where F ∈ X(M) is the vector
field defining the dynamics of the N-fold pendulum.
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Preservation of the configuration manifold
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Experiments with variable stepsize
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Another studied mechanical system

Configuration manifold: Q = R3 × (SO(3))2 ×
(
S2
)2

Phase space: M = TQ
Group acting transitively: Ḡ = R6 × (TSO(3))2 × (SE (3))2
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Thanks for the attention
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