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1.1 Framework

Many mathematicians, physicists, and engineers are occupied with approxi-
mating functions given some observed data or a governing rule that the un-
known function has to satisfy. For example, we can accurately describe many
phenomena thanks to ordinary and partial differential equations (ODEs and
PDEs), such as multi-body physical systems dynamics [61, 82], fluid dynamics
[1, 4], or the spread of a viral infection [20, 43]. However, analytically solv-
ing them is generally impossible, so methods for approximating their solutions
are needed. Further, modern sensors are constantly collecting measurements
in almost any conceivable situation. For example, sensors in a smartwatch can
keep track of relevant parameters like the heart rate or the number of steps a
person walks. In these situations, it is of interest to make predictions based
on the collected data, e.g. to infer if a person is getting sick based on the
collected measurements. Additionally, if a person has watched movies in a
particular genre, streaming companies are interested in recommending other
movies the user might appreciate, i.e., to develop a function approximating the
user’s preferences. These are all different instances of the same problem, with
their respective complexities and techniques developed throughout many years
of research. We can approximate the solutions of differential equations using
numerical methods like the Runge-Kutta methods for ODEs [37, 38, 48, 90],
and the Finite Element Method for PDEs [5, 75, 86]. Techniques like those pre-
sented in [40, 54, 84] help find approximate predictions based on time series
data. Finally, streaming companies can provide good user recommendations
using, for example, low-rank matrix completion algorithms [71, 91].

In recent years, there has been a rise of attention towards neural networks as
methods for function approximation. Generally speaking, a neural network
is a highly flexible parametric map whose parameters are chosen so that the
resulting map accurately solves a task of interest. A few instances of such a
task are solving a differential equation, classifying a set of images, or predict-
ing the next frame of a video. Especially when dealing with high-dimensional
spaces [3, 34, 42], or noisy observations [2, 65], neural networks often lead to
improved results compared to previously developed methods.

The research in this area began with Frank Rosenblatt who developed the per-
ceptron, a non-linear parametric function attempting to replicate the function-
ing of biological neurons [78]. Even though there have been some exciting
developments like Hopfield Neural Networks [45, 64], this research direction
seemed less promising in the 1970s and 1980s, especially after the publica-
tion of the book “Perceptrons” [68]. This book considers a quite restricted
version of Rosenblatt’s perceptron, and the authors prove that these paramet-

2



1.1 Framework

ric models can not implement relatively simple logical functions like XOR.
Of high importance in the development of the field was the paper by Rumel-
hart, Hinton, and Williams [79] where the authors published an experimental
analysis of the Backpropagation algorithm, which is still used nowadays to
find the parameters of neural networks. In the 1990s, the interest in the field
grew quite considerably, both in terms of experimental successes and theoret-
ical understanding, see, e.g. [17, 44, 58, 59, 73]. Neural networks found their
real traction when computing resources, like graphics cards, improved their
time and memory efficiency, leading to impressive results in computer vision,
generative modelling, and several other contexts [30, 32, 42, 53, 55, 87, e.g.].
Experimental results are the drivers of this success. At the same time, we still
have a relatively poor theoretical understanding of why these models work,
when they fail, how to interpret them, and many more questions.

The recent decade has seen an upsurge in the interest of mathematicians in
studying neural networks, and the field of the Mathematics of Deep Learn-
ing is taking shape, see [33]. Several researchers are analysing and designing
networks using both new and well-known techniques from various fields of
mathematics, like numerical analysis, dynamical systems, functional analysis,
or differential geometry. On the other hand, numerous research groups have
been adopting neural networks as tools to solve problems in science, like im-
age denoising or approximating dynamical systems with observed data. This
thesis is particularly relevant to the connections between dynamical systems,
numerical analysis, and neural networks. There are several links between these
subjects of study, and we focus on the following three research questions:

• Can numerical methods for ODEs and PDEs help design neural net-
works?

• Can neural networks be adopted to approximate the equations of motion
of an unknown dynamical system?

• Can neural networks, possibly coupled with other methods from numer-
ical analysis, provide accurate solutions to differential equations?

Outline of this thesis. This thesis is divided into two main parts.

We first consider using dynamical systems and numerical methods to design
neural networks with some desired level of interpretability or some in-built
property of interest, which we call structured neural networks. Paper 1 [16]
introduces our framework for designing structured neural networks. The ex-
perimental part of this paper focuses on enforcing 1−Lipschitz regularity on a
neural network. Paper 2 [26] examines how to reduce the sensitivity to input

3



Introduction

perturbations for Graph Neural Networks. Paper 3 [14] considers the problem
of approximating space-time discretisations of PDEs and presents a strategy to
build norm-preserving neural networks.

The second part of this thesis studies neural networks as tools for solving scien-
tific problems traditionally solved using classical numerical methods. Paper 4
[12] does not involve neural networks but provides the theoretical background
on Lie group numerical methods that we then use in Paper 5 [15] to approxi-
mate the Hamiltonian of constrained mechanical systems. Paper 6 [10] focuses
on the problem of approximating the solution operator sending the boundary
conditions of Euler’s elastica to the corresponding solution. Paper 7 presents
a provably convergent parallel-in-time numerical solver for ODEs, where part
of the algorithm is based on neural networks.

The remaining pages of this introductory chapter present the methods and tech-
niques that we use in the subsequent chapters. This exposition does not aim
to be exhaustive, but we provide a generous list of references to further the
understanding. We start by introducing the basics of neural networks, focus-
ing on several architectures of interest for this thesis. We then present some
geometric numerical methods for ODEs since we use them to build neural net-
works with a specific structure. This background material is followed by a
section dedicated to combining these tools to construct neural networks with
a desired structure and another where we show how to use neural networks to
approximate differential equations and their solutions in a principled manner.
The introduction concludes with a summary of the seven papers in this thesis.

The introduction chapter includes a few numerical examples with associated
code available at the corresponding GitHub repository1.

1.2 Basics of neural networks

This section aims to mathematically define what is a neural network. Further,
we focus on the neural network architectures, i.e., parametrisation strategies,
that we utilise in the included papers.

Neural networks (NNs) are a class of machine learning methods. They can be
defined as parametric maps, that we denote with Nθ, depending on a set of pa-
rameters θ belonging to some space Θ. The space Θ can be a linear space or a
non-linear manifold. Throughout, we will always refer to Nθ as a map between
two linear spaces, i.e., Nθ :Rd →Rc for some c,d ∈N. Indeed, even when Nθ

acts on points belonging to a non-linear submanifold M of Rd , we always

1https://github.com/davidemurari/examplesIntroduction
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1.2 Basics of neural networks

embed M in Rd and express its points in terms of their ambient space coor-
dinates. NNs are generally expressed as the composition Nθ = FθL ◦ · · · ◦Fθ1 ,
θ = (

θ1, ...,θL
)
, of L parametric maps Fθi

:Rdi−1 →Rdi , i = 1, ...,L, where d0 = d
and dL = c. L is the number of layers of the network, and it is usual to have
the layers Fθi to be similarly parametrised. More explicitly, these layers tend
to consist of linear maps after which a scalar function σ : R→ R, called the
activation function, is applied to each of the input entries. Common exam-
ples of these activation functions are ReLU(x) = max{0, x}, LeakyReLU(x) =
max{ax, x} for a ∈ (0,1), the sigmoid function σ(x) = 1/(1+exp(−x)), and the
hyperbolic tangent σ(x) = tanh(x). Motivated by the resemblance of these (ar-
tificial) neural networks to biological ones, we call neurons the components of
the vectors obtained while processing the input vector with the network layers.
Furthermore, we call neural network architecture the parametrisation strategy
adopted to design the L layers. Choosing the right architecture for a particu-
lar problem is crucial, as it defines the search space in which the approximate
solution to the problem will be found. When the number of layers L is larger
than two, we refer to Nθ as a deep neural network. Deep Learning is the area
of machine learning focused on deep networks.

Once a model Nθ is chosen, i.e., an architecture is fixed, one needs to find
a good set of parameters θ that allow for Nθ to solve sufficiently accurately
the task of interest. The selection of the parameters is generally the result of
the approximate solution of an optimisation problem where a cost function,
more commonly called loss function, is minimised. This phase is called neural
network training.

The loss function can combine multiple terms that might or might not depend
on data. If the loss depends on data, we refer to the learning task as super-
vised learning, otherwise as semi-supervised or unsupervised learning. In the
simplest case of aiming to get an approximate function Nθ∗ that fits as best

as possible a set of input-output pairs
{(

xn ,yn = f
(
xn

))}N

n=1
related to an un-

known function f : Rd → Rc , one of the most common choices for the loss
function is called mean squared error and is expressed as

L(
θ
)= 1

N

N∑
n=1

∥∥∥Nθ

(
xn

)−yn

∥∥∥2

2
→ min. (1.2.1)

The loss function in (1.2.1) or slight modifications are adopted in most of the
papers in this thesis. Another loss function we use is the cross-entropy loss,
which is commonly chosen for classification tasks as those considered in Chap-
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ters 2 and 3. The cross-entropy loss consists of

L(
θ
)=− 1

N

N∑
n=1

c∑
j=1

yn, j log
(
pn, j

)
, pn, j =

exp
(
Nθ

(
xn

)
j

)
∑c

k=1 exp
(
Nθ

(
xn

)
k

) , (1.2.2)

where c is the number of classes partitioning the dataset, and yn is a vector
of C entries yn, j where only the one corresponding to the correct class of xn

takes value 1, while the others are all zeros. Most of the tasks considered in
the papers are supervised learning tasks. One exception is made in Chapter 8,
where we design neural networks aiming to solve a differential equation only
given the equation itself. We comment on the loss function adopted for this
problem in Section 1.5.3.

We dedicate a considerable part of this thesis to designing neural networks that
have a desired structure. We elaborate on what we mean by “structure” later in
the introduction. But first, let us present the architectures we work with. We
start with Fully Connected Neural Networks (FCNNs) that are fundamental
in Chapters 6, 7, and 8. The introduction to FCNNs also covers the basics of
Extreme Learning Machines (ELMs), which are FCNNs with some weights set
to random values rather than being optimised. ELMs are used in Chapter 8. In
Chapters 2 and 4, we consider Convolutional Neural Networks (CNNs). CNNs
have weights that inherently encode translation equivariance, i.e., symmetry.
We then move to Graph Neural Networks (GNNs), considered in Chapter 3,
where the techniques adopted to design CNNs for grid-structured datasets are
extended to graph-structured datasets.

While the architectures introduced above differ in how the weights are re-
stricted, neural networks can also be categorised according to how the input
is utilised by the layers Fθi . There are two significant classes for this the-
sis: Feedforward Neural Networks and Residual Neural Networks (ResNets).
There is no particular restriction on how the parameters get involved in feed-
forward neural networks. On the other hand, ResNets are based on layers of
the form

Fθi (x) = x+Fθi (x) , (1.2.3)

where Fθi is a parametric function preserving the dimension of the input x. In
other words, ResNets rely on layers where the parameters come into play only
in the residual term Fθi (x) = Fθi (x)−x. Due to this restriction on the updates,
one layer of a ResNet has coinciding input and output dimensions. This way
of processing the input has been introduced in [42] to overcome the drawbacks
of feedforward neural networks, for which deeper networks generally tend to
lead to worse performance, contrary to what one would expect.

6



1.2 Basics of neural networks

ResNets are the core of most of the included papers, given their close connec-
tion with discretisations of initial value problems. Indeed, one can see the map
in (1.2.3) as one step of the explicit Euler method with step size equal to 1
applied to the non-autonomous differential equationẏ(t ) =F (

y(t ),θ(t )
)

y(ti ) = x
,

where Fθi (·) =F (·,θ(ti )
)
, and ẏ(t ) := d

d t y(t ). This connection between differ-
ential equations and neural network architectures allows us to borrow from the
fields of dynamical systems and numerical analysis to model neural networks
behaving as desired.

1.2.1 Fully connected neural networks

Fully connected neural networks (FCNNs) are the broadest family of neural
networks since they have no constraints on their weights. Indeed, their weights
are generic dense matrices and vectors so that all the entries of an input vec-
tor can interact at every network layer, hence the name fully connected. For
this reason, FCNNs can realise all of the other architectures we mention. The
absence of weight restrictions does not necessarily make FCNNs better than
more constrained architectures. Indeed, properly structuring the weights is of-
ten necessary for optimal performance. A simple parametrisation strategy is
the following

Fθi (x) =σ(
Ai x+bi

)
, θi =

(
Ai ,bi

)
,

for a suitably shaped weight matrix Ai and bias vector bi . If there is no fur-
ther assumption on the structure of these parameters, one calls the resulting
architecture fully connected.

In Chapter 8, we consider FCNNs of the form

Nθ

(
t ;x

)= x+Bσ
(
At +b

)−Bσ
(
b
)

, t ∈ [0,+∞), x ∈Rd ,

where θ = (
A,B,b

)
are the weights of the network, but A and b are randomly

initialised and not optimised. This design strategy, leading to so-called Ex-
treme Learning Machines (ELMs), allows a cheaper training procedure since
only the weight matrix B needs to be determined. We expand on this construc-
tion in Chapter 8, showing the effectiveness of these seemingly simple models
in the context of finding ODE solutions.
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1.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are among the most historically suc-
cessful neural network architectures. CNNs have led to incredibly accurate
results in image classification and segmentation [35, 42, 55, 67, e.g.]. They
originate from studies on the visual cortex of cats, for which specific visual
field areas excite particular neurons [47]. This biological insight led to the
consideration of highly structured weights in contrast to the dense weight ma-
trices of FCNNs. CNNs result from composing non-linear activation functions
with linear maps realised by discrete convolutional operations, whose filters
can be trained. These are the only two types of functions we compose to ob-
tain the CNNs in this thesis. On the other hand, one could include additional
operations like pooling and dropout layers, possibly improving the network
performance while making it harder to structure and mathematically interpret.

For a more extensive treatment of CNNs, we refer to [31, Chapter 9]. We in-
stead introduce them by working out a 3×3 example of a discrete convolution.
Let us consider a matrix U ∈ R3×3 and a 3× 3 convolutional filter K ∈ R3×3.
The matrix U can be seen as the evaluation of a signal u : R2 → R onto a 3×3
grid. Depending on the desired output size obtained convolving K with U, i.e.,
computing K∗U, one might have to pad the input U to explicitly show how
the signal u extends outside the grid. For this example, supposing we are in-
terested in preserving the input size, i.e., in “same” convolutions, we add two
rows and two columns. In the case of a periodic signal, we get UP defined as

UP =


u33 u31 u32 u33 u31
u13 u11 u12 u13 u11
u23 u21 u22 u23 u21
u33 u31 u32 u33 u31
u13 u11 u12 u13 u11

.

In general, regardless of the size of the input U, for 3×3 “same” convolutions
one has to add two rows and two columns around the matrix U. The convolu-
tion operation defined by a 3×3 filter is a linear map obtained by placing the
kernel K on all the contiguous 3×3 submatrices of the padded input UP . When
the filter is placed over a submatrix, the Frobenius inner product of the two
matrices is computed, and its value will be one entry of the result. We show
this procedure in the following example:

UP =


u33 u31 u32 u33 u31

u13 u11 u12 u13 u11

u23 u21 u22 u23 u21

u33 u31 u32 u33 u31

u13 u11 u12 u13 u11

 =⇒ r11 = trace


u33 u31 u32

u13 u11 u12

u23 u21 u22


⊤

K



8



1.2 Basics of neural networks

where r11 is the first entry of the output of the convolution operation R. The
locality of this convolution operation closely relates it to the finite difference
method. We exploit this connection in Chapter 4 to analyse the accuracy of
CNNs in approximating PDE solutions.

Since convolutional layers are linear, they can be expressed as matrix-vector
products. Indeed, using the vectorisation operator vec : Rc×d → Rc·d , one can
find a matrix K̂ such that vec(K∗U) = K̂vec(U) for every U ∈ Rc×d . Such
a matrix can be shown to be a block Toeplitz matrix [81, Lemma 1]. The
convolution operation can be extended to higher-order tensors, for example,
for the red-green-blue channels of a coloured image. One can define it as in
the two-dimensional case but repeating the procedure for each input channel.

1.2.3 Graph Neural Networks

The last architecture we consider in this thesis is Graph Neural Networks
(GNNs). Graph signal processing [72, 80] is a field of mathematics focus-
ing on analysing and processing information structured as a graph. In the last
few years, graph signal processing has seen a rise in interest, and often the
proposed methodologies are based on GNNs, i.e., neural networks adapted to
the structure typical of graphs [6, 25, 29, 88, 92, e.g.].

1
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Figure 1.1: Example of a graph on the left and its adjacency matrix A on the right,
where filled squares correspond to ones in the matrix.

A graph G is represented by a pair
(V ,E)

, where V = {
x1, ...,xd

}
is a set col-

lecting the d nodes of the graph, and E ⊂ V ×V is the collection of ordered
pairs of nodes which are linked together, i.e., the collection of the graph edges.
The graph is said to be undirected if for every pair

(
xi ,x j

)
∈ E also

(
x j ,xi

)
∈ E ,

as the one in Figure 1.1. It is directed otherwise. One can also associate a
weight to each edge, leading to a weighted graph. A convenient way to rep-
resent the edges of a graph is with the adjacency matrix A ∈ Rd×d , which is a
binary matrix whose entry in row i and column j is one if

(
xi ,x j

)
∈ E , and zero

9
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otherwise. The matrix A is symmetric for undirected graphs, see Figure 1.1.

Signals on graphs are represented by feature vectors associated with the graph
nodes. We denote with fi ∈Rc the feature vector associated to the node xi , and
collect all the features in the feature matrix F ∈ Rd×c having f⊤i as i−th row.
A fundamental tool to analyse signals over a graph is the gradient operator, a
linear operator closely resembling finite differences over a grid since its com-
ponents represent the variations of a discrete signal over the graph. In Chapter
3, we use the gradient and the transpose gradient operators, defined as

G (A) :Rd×c →Rd×d×c ,
(
G (A)F

)
i j k = Ai j

(
Fi k −F j k

)
,

G (A)⊤ :Rd×d×c →Rd×c ,
(
G (A)⊤ O

)
i k

=
d∑

j=1

(
Ai j Oi j k −A j i O j i k

)
.

A GNN is a parametric map Nθ : Rd×c ×Rd×d → Ro , where Nθ

(
F,A

)
is the

network prediction, whose output dimension o depends on the task of inter-
est. For example, in Chapter 3, we consider the task of node classification in
graphs. In this case, o coincides with the number of classes we want to use to
partition the nodes. This task consists of working with a single graph G, for
which the labels of part of its nodes are available, and then trying to provide
an accurate prediction for the class of the remaining nodes. To make such a
prediction, we train a neural network so it minimises the mismatch between
the predicted and the true labels. We now provide a high-level introduction
to the building blocks of GNNs, and more details on the specific solution we
propose can be found in Chapter 3.

Several of the GNN layers locally aggregate the node features based on the
graph connectivity. The simplest way to do so is via the adjacency matrix A
with a linear map of the form

(
F,A

) 7→ AFW, where W ∈ Rc×c is a trainable
weight which linearly combines the columns of F. A slightly more general
variation could be

(
F,A

) 7→ Aσ(FW) or alternatives of this construction suitably
aggregating the features by using linear and non-linear maps.

A key property of GNNs is that they respect the dataset’s structure. For ex-
ample, when applied to graph-node classification tasks, they are generally
designed to be permutation equivariant. This means that if the nodes are
numbered differently, i.e., permuted in order, the predicted labels change ac-
cordingly. This is coherent with the fact that the class of a node is indepen-
dent of how the graph nodes are ordered. Mathematically, this means that
Nθ

(
PF,PAP⊤

)
= PNθ

(
F,A

)
for every permutation matrix P ∈Rd×d .

The way the features are processed differs depending on the architecture one
chooses. However, a standard guideline in designing these models is that the

10



1.3 Fundamentals of geometric numerical integration

first few layers of the network architecture aim to extract features and infor-
mation from the graph. Then, the final layers aim to exploit this extracted
knowledge about the graph for the downstream task of interest, such as the
classification of the graph nodes. This latter part often comprises fully con-
nected layers applied to the processed feature matrix.

1.3 Fundamentals of geometric numerical integration

This thesis builds on the connections between neural networks and dynami-
cal systems, i.e. time-dependent Ordinary and Partial Differential Equations
(ODEs and PDEs). In this section, we introduce the tools and techniques from
the field of geometric numerical analysis that are used in this thesis. Geomet-
ric numerical methods aim to approximate the solutions of differential equa-
tions while preserving some of their known qualitative properties. In contrast,
general-purpose numerical methods aim to obtain accurate approximations of
the desired solutions without exploiting or preserving the known structure of
the differential system. We focus on methods for ODEs because they are suffi-
cient to understand the papers in this thesis. We refer the reader to [13, 27, 62,
e.g.] as high-quality resources on geometric numerical methods for PDEs. We
point out that we present only the techniques we use in the included papers.
For a more extensive treatment, see [37].

Throughout the introduction, when we refer to the solution at a time t ofẋ(t ) =F (
x(t )

) ∈Rd

x(0) = x0
,

we use the notation Φt
F

(
x0

)
. We denote with Ψ∆t

F a numerical method of step
size ∆t > 0 approximating Φ∆t

F .

1.3.1 Splitting methods

For our derivations, we use one numerical technique above the others: splitting
methods. These methods are of interest when there is a natural or convenient
way to split a vector field additively. We present the main idea assuming that
the vector field is written as the sum of two terms, but the reasoning extends to
the sum of more terms. For a more comprehensive treatment, see [66].

Let us consider a vector field F : Rd → Rd , with F (x) =F1 (x)+F2 (x), where
ẋ(t ) = F1

(
x(t )

)
and ẋ(t ) = F2

(
x(t )

)
are differential equations that admit a
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known analytical solution or whose solutions can be efficiently approximated.
In general, the flows of F1 and F2 do not commute [60, Theorem 9.44], i.e.,

Φt
F ̸=Φt

F1
◦Φt

F2
, Φt

F ̸=Φt
F2

◦Φt
F1

, Φt
F1

◦Φt
F2

̸=Φt
F2

◦Φt
F1

.

However, using the Baker-Campbell-Hausdorff (BCH) formula [39, Chapter
5], it is possible to see that, for small enough t ,

Φt
F =Φt

F1
◦Φt

F2
+O(t 2), Φt

F =Φt
F2

◦Φt
F1

+O(t 2) (1.3.1)

Φt
F =Φt/2

F1
◦Φt

F2
◦Φt/2

F1
+O(t 3), Φt

F =Φt/2
F2

◦Φt
F1

◦Φt/2
F2

+O(t 3), (1.3.2)

leading to the Lie-Trotter splitting method, (1.3.1), and the Strang splitting
method, (1.3.2). If the analytical solutions Φt

Fi
are unknown, one could suit-

ably replace the exact flows with their numerical approximation and get nu-
merical solvers again with order 1 and 2.

We adopt these methods to approximate the Hamiltonian of unconstrained sys-
tems in Chapter 6. In Chapter 2, we employ splitting methods to design non-
expansive systems and to derive some expressivity results for structured net-
works.

1.3.2 Volume-preserving methods

Another instance in which splitting methods have been used in this thesis is to
obtain volume-preserving neural networks. Operator splitting is the strategy
behind most volume-preserving integrators since a d−dimensional volume-
preserving vector field can be split as the sum of d − 1 systems, each being
Hamiltonian in two of the d variables [52].

A diffeomorphism ϕ :Ω→ Rd , Ω ⊂ Rd open, preserves the canonical volume
form µx = dx1...dxd of Rd if

vol
(
ϕ

(
Ω

))= ∫
ϕ(Ω)

dx1...dxd =
∫
Ω

∣∣∣det
(
∂xϕ (x)

)∣∣∣dx1...dxd

is equal to vol
(
Ω

)
. As a consequence, ϕ preserves µ if

∣∣∣det
(
∂xϕ (x)

)∣∣∣ = 1 for
every x ∈Ω. This characterisation immediately implies that the composition of
volume-preserving maps is also volume-preserving.

Given that we do not explore this property extensively, we limit the treatment
to the details needed to follow the reasoning presented in Chapter 2 to build
volume-preserving neural networks. It is indeed well known, see [37, Lemma
VI.9.1], that a vector field F :Rd →Rd preserves the canonical volume form µ
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1.3 Fundamentals of geometric numerical integration

if and only if the divergence of F associated to the volume form µ is zero. A
particular class of vector fields with such a property are those partitioned like

F (x) =
[

f1
(
x2

)
f2

(
x1

)]=
[

f1
(
x2

)
0

]
+

[
0

f2
(
x1

)]=:F1 (x)+F2 (x) , x =
[

x1

x2

]
,

with x1 ∈ Rd1 , x2 ∈ Rd2 , f1 : Rd2 → Rd1 , f2 : Rd1 → Rd2 , and d = d1 +d2. This
splitting is convenient since the two equations we obtain admit the analytical
solutions

Φt
F1

(x) =
[

x1 + t f1
(
x2

)
x2

]
, Φt

F2
(x) =

[
x1

x2 + t f2
(
x1

)] .

BeingΦt
F1

andΦt
F2

the exact solutions of divergence-free vector fields, they are
both volume-preserving maps. Thus, composing these two exact flow maps,
for example as in (1.3.2), is a strategy giving a consistent volume-preserving
numerical approximation of the exact solution Φt

F .

1.3.3 Symplectic methods

Especially in physics, many systems can be described through the Lagrangian
and Hamiltonian formalisms. We briefly present these two formalisms in the
case of systems defined on a linear space.

The Lagrangian description of a conservative system is based on a Lagrangian
function L : TRd →R, where TRd ≃R2d is the tangent bundle of Rd . A generic
point of TRd is represented by its generalised coordinates

(
q, q̇

)
. The equations

of motion of Lagrangian systems are defined by the second-order system

d

d t

(
∂L

∂q̇

(
q, q̇

))− ∂L

∂q

(
q, q̇

)= 0.

One can then introduce the Legendre transform

(q,p) := FL
(
q, q̇

)= (
q,
∂L

∂q̇

(
q, q̇

))
,

which we now suppose is a diffeomorphism, and provide a change of variables
between the tangent bundle TRd and the cotangent bundle T ∗Rd , where the
pair (q,p) belongs. We remark that T ∗Rd can be identified with R2d as well.
This change of variables allows one to define the conjugate momentum p and
introduce the Hamiltonian formalism based on the Hamiltonian energy

H(q,p) =
(
p · q̇−L

(
q, q̇

))∣∣∣
(q,q̇)=(FL)−1(q,p)

.
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Several systems admit a Lagrangian function that takes the form

L
(
q, q̇

)= 1

2
q̇⊤M(q)q̇−U (q),

where M(q) defines a metric on Rd . For these systems, the Hamiltonian reads

H(q,p) = 1

2
p⊤M−1(q)p+U (q).

The Hamiltonian H is separable if M is independent of q. More generally, a
Hamiltonian function H : T ∗Rd → R is called separable if it is the sum of two
terms depending only on one of the two variables, i.e., either on q or on p.
The Hamiltonian equations of motion with respect to the canonical symplectic
structure of R2d are [

q̇
ṗ

]
= J∇H(q,p) =: XH (q,p), (1.3.3)

where

J=
[

0d Id

−Id 0d

]
∈R2d×2d

is the canonical symplectic matrix of R2d , and Id ,0d ∈Rd×d are the identity and
the zero matrices respectively. The solutions of (1.3.3) have several physical
and geometric properties. The first one is that they preserve the energy function
H , indeed

d

d t
H(q(t ),p(t )) =∇H(q(t ),p(t ))⊤J∇H(q(t ),p(t )) = 0.

Apart from this physical property, the flow map Φt
XH

preserves the symplectic
bilinear form Ω(v,w) = v⊤Jw defined over T ∗Rd . Indeed, one has

Ω

∂Φt
XH

(x)

∂x
v,
∂Φt

XH
(x)

∂x
w

=Ω(
v,w

)
, ∀t ≥ 0, ∀x,v,w ∈R2d .

We say that a numerical method Ψ∆t
XH

approximating Φ∆t
XH

is symplectic if it
has the same property, i.e., if

Ω

∂Ψ∆t
XH

(x)

∂x
v,
∂Ψ∆t

XH
(x)

∂x
w

=Ω(
v,w

)
, ∀x,v,w ∈R2d .

This thesis does not consider numerical methods reproducing at a discrete level
the conservation of the energy function H , for which we refer to [7, 24, 49, 76].
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On the other hand, we work with methods reproducing the conservation of
the bilinear form Ω, i.e., symplectic methods. There are several families of
symplectic methods. We focus on splitting methods for separable Hamiltonian
systems. For a more general presentation, see, e.g. [37, Chapter VI].

Let us restrict our attention to the separable Hamiltonian H(q,p) = K (p)+U (q).
We may consider the Hamiltonian systems generated by K and U separately
and then suitably combine their flows using a splitting method like Lie-Trotter
or Strang-Splitting. Indeed, these two systems have the fundamental property
of being analytically solvable. Depending on the chosen splitting strategy, one
gets a different symplectic method since the composition of symplectic maps
is symplectic. Two methods we work with are the symplectic Euler method

Ψ∆t
XH

(
x0

)=Φ∆t
XU

◦Φ∆t
XK

(
x0

)
, x0 ∈ T ∗Rd ,

and the Störmer-Verlet method, which takes the form

Ψ∆t
XH

(
x0

)=Φ∆t/2
XU

◦Φ∆t
XK

◦Φ∆t/2
XU

(
x0

)
, x0 ∈ T ∗Rd .

Both methods could be obtained by exchanging the roles of K and U , com-
posing the flows differently, see [37, Theorems VI.3.3 and VI.3.4]. In Chapter
6, we investigate these methods as tools for approximating the Hamiltonian of
unknown systems provided with observational data.

1.3.4 Projection methods

Many of the geometric properties that are worthwhile preserving when simu-
lating differential equations can be expressed as the requirement that the solu-
tion belongs to a suitable submanifold M of Rd . Indeed, if for example it is
known that there exists a function I : Rd → R such that ∇I (x)⊤F (x) ≡ 0, i.e.,
I
(
Φt
F

(
x0

))= I
(
x0

)
for every t ≥ 0, then a method preserving I satisfies

I
(
Ψ∆t

F
(
x0

))= I
(
x0

)
for every x0 ∈Rd . A reformulation of such condition can be obtained by intro-
ducing a function g :Rd →R defined as g (x) = I (x)− I

(
x0

)
and requiring

Ψ∆t
F

(
x0

) ∈M :=
{

x ∈Rd : g (x) = 0
}
⊂Rd . (1.3.4)

This approach is relatively general, extending to other invariants and, for exam-
ple, to settings in which the solution of the differential equation ẋ(t ) =F (

x(t )
)

should satisfy a set of constraints. Projection methods are a class of numerical
methods for which (1.3.4) holds. The main idea behind these methods is to
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modify a numerical integrator that does not preserve M by projecting the ap-
proximation back to M. There are several ways to formalise such a statement.
We briefly present the one based on Lagrange multipliers.

Let us denote with ϕ∆t
F : Rd → Rd a generic one-step method applied to the

ordinary differential equation ẋ(t ) = F (
x(t )

)
. Suppose the solution t 7→ x(t )

is known to belong to a c−dimensional submanifold M ⊂ Rd that can be ex-
pressed as the set of zeros of a constraint function g :Rd →Rd−c having func-
tionally independent components. Then, a projection method Ψ∆t

F based on
ϕ∆t
F and applied to a point xn ∈M can be written as

x̂n+1 =ϕ∆t
F

(
xn

)
,

xn+1 = x̂n+1 +
(
∂xg

(
x̂n+1

))⊤
λn =:Ψ∆t

F
(
xn

)
,

(1.3.5)

where λn ∈ Rd−c is chosen so that g (xn+1) = 0, i.e., Ψ∆t
F (xn) ∈M. In (1.3.5)

the matrix ∂xg (x̂n+1) ∈Rd−c×d is the Jacobian matrix of g evaluated at x̂n+1. In
Chapter 4, we consider a differential equation whose solutions preserve I (x) =
∥x∥2

2. In this case, we set g (x) = ∥x∥2
2 −∥x0∥2

2, where x0 = x(0).

There are variants of the projection methods we have just presented, like sym-
metric projection methods [36], that we omit in this discussion since they are
not of use in the papers included in this thesis.

1.3.5 Lie-group integrators

Lie groups are fundamental for the analysis and modelling of mechanical sys-
tems. In this section, we briefly introduce Lie groups, based on [39, 60], and
then present the basics of Lie group methods.

Definition 1.1 (Lie group). A Lie group is a pair (G, ·) with G a smooth man-
ifold, · : G×G → G a smooth map endowing G with a group structure, and the
inverse map G ∋ g 7→ g−1 ∈G is well defined and smooth.

As with any algebraic group, Lie groups admit an identity element that we
denote with e. An example of a Lie group is the special orthogonal group
SO(3) of 3×3 real orthogonal matrices equipped with the usual matrix-matrix
product.

Definition 1.2 (Lie algebra). A Lie algebra g is a vector space over a field
K endowed with an antisymmetric bilinear map [·, ·] : g×g→ g, called a Lie
bracket, satisfying the Jacobi identity[

ξ,
[
ν,η

]]+[
ν,

[
η,ξ

]]+[
η,

[
ξ,ν

]]= 0, ∀ξ,ν,η ∈ g.
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1.3 Fundamentals of geometric numerical integration

An example of Lie algebra is the Lie algebra of smooth vector fields over a
smooth manifold M, usually denoted as X

(M)
. A Lie bracket for this Lie

algebra is the Jacobi-Lie bracket, which is defined as

[
X ,Y

](
f
)= X

(
Y

(
f
))−Y

(
X

(
f
))

, for every f ∈ C∞ (M,R
)

,

where X
(

f
)=LX

(
f
)

:M→R is the Lie derivative of f along X , defined as

LX
(

f
)

(x) = d

d t

∣∣∣∣∣
t=0

(
f ◦Φt

X

)
(x).

Each Lie group G has an associated Lie algebra g. To characterise g, we intro-
duce the left translation by g , i.e., the map Lg :G→G with Lg (h) = g ·h.

The tangent space to a manifold can be characterised in several ways. For the
purposes of this section, we opt for the following one:

Definition 1.3 (Tangent space at h ∈ G). The linear map vh : C∞(G,R) → R

is a derivation at h ∈ G if for every f , g ∈ C∞(G,R), vh
(

f g
) = f

(
h
)

vh
(
g
)+

g
(
h
)

vh
(

f
)
. The set of all derivations of C∞(G,R) at h, denoted as ThG, is the

tangent space at h to G. Its elements are called tangent vectors at h to G.

Definition 1.4 (Differential at h ∈ G). Given a smooth function F : G → G,
the differential at h ∈ G of F is the map dF |h : ThG → TF (h)G defined as
dF |h(vh)

(
f
)= vh

(
f ◦F

)
for an arbitrary vh ∈ ThG and f ∈ C∞ (G,R

)
.

A vector field X ∈ X
(G)

is said to be left-invariant if for every pair of points
g ,h ∈G, it holds that dLg |h

(
X (h)

)= X (Lg (h)) = X (g ·h), where we recall that
X (h) ∈ ThG is the evaluation of the vector field X at h ∈G. We denote as

g=
{

X ∈X(G)
: X is left-invariant

}
the vector space of the smooth left-invariant vector fields of G. Furthermore,
for every X ∈ g, g ,h ∈G, and f :G→R smooth, we have

X
(

f ◦Lg

)(
h
)= X

(
h
)(

f ◦Lg

)
= dLg |h X

(
h
)(

f
)

= X
(
Lg

(
h
))(

f
)= X

(
f
)(

Lg
(
h
))= X

(
f
)◦Lg

(
h
)

,

see [60, Proposition 8.16]. This means that the condition X
(

f ◦Lg

)
= X

(
f
)◦Lg

for every g ∈ G and f ∈ C∞ (G,R
)

is an equivalent way to formulate the left-
invariance of X . To show g is a Lie algebra with respect to the Jacobi-Lie
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bracket of X(G), it is thus sufficient to show that for an arbitrary pair X ,Y ∈ g,
any g ∈G, and any f ∈ C∞(G,R), one has[

X ,Y
](

f ◦Lg

)
= X Y

(
f ◦Lg

)
−Y X

(
f ◦Lg

)
= X

(
Y

(
f
)◦Lg

)
−Y

(
X

(
f
)◦Lg

)
=

(
X Y

(
f
)−Y X

(
f
))◦Lg =

([
X ,Y

](
f
))◦Lg ,

and hence
[

X ,Y
] ∈ g. For an X ∈ g, the values it takes all around G are

determined by the values at the identity element e, since X (g ) = X (g · e) =
dLg |e

(
X (e)

)
, where X (e) ∈ TeG. This consideration implies that the space of

left-invariant vector fields can be identified with TeG. g ≃ TeG is the Lie al-
gebra of the Lie group G. An alternative way to see this construction is that
for any ξ ∈ TeG, there is a unique left-invariant vector field X ∈ g defined as
X (g ) = dLg |e

(
ξ
)

for any g ∈G, see [60, Theorem 8.37].

It is possible to map elements of the Lie algebra g to elements of G thanks
to the exponential map exp : g → G defined as exp

(
X

) = Φ1
X (e), where X is

a left-invariant vector field. For the case of matrix Lie groups, the Lie group
exponential map coincides with the matrix exponential exp(A) = ∑+∞

j=0 A j / j !,
see [60, Proposition 20.2].

Of particular importance to two of the papers included in this thesis, those in
Chapters 5 and 6, is the notion of Lie group action.

Definition 1.5 (Lie group action). A (left) Lie group action of G onto the
smooth manifold M is a smooth map ϕ : G ×M→M that satisfies the fol-
lowing properties:

• ϕ(e,m) = m for every m ∈M,

• ϕ
(
g1,ϕ(g2,m)

)=ϕ(
g1 · g2,m

)
for every g1, g2 ∈G, and m ∈M.

The simplest example of Lie group action is the action by left-translation of G
onto itself, i.e., ϕ(g ,h) = Lg h. Introducing the right-translation Rg (h) = h · g ,
one can also define the action by conjugation of G onto itself as ϕ(g ,h) =
Lg ◦Rg−1 (h) = g ·h ·g−1. We will introduce in Chapter 5 a particular Lie group
action of the special Euclidean group SE(3) = SO(3)⋉R3 onto R6, where ⋉ is
the semidirect product.

The orbit of a point m ∈M for the Lie group action ϕ :G×M→M is defined
as O(m) := {

ϕ(g ,m) : g ∈G}⊂M, i.e., the immersed submanifold [60, Chap-
ter 5] of points in M that can be reached via the group action applied to m.
We say a Lie group action is transitive if for every m ∈M, O(m) =M, i.e.,
for any pair of points m1,m2 ∈M, there is a g ∈ G such that ϕ

(
g ,m1

) = m2.
An example of transitive Lie group action is the action by left translations of
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1.3 Fundamentals of geometric numerical integration

G onto itself. We say a manifold M to be homogeneous if a Lie group G acts
transitively on it. An example of a homogeneous manifold which is not a Lie
group is the unitary sphere S2 ⊂ R3, which is acted transitively by SO(3) as
ϕ : SO(3)×S2 →S2,

(
R,q

)→ Rq, with q ∈R3 having q⊤q = 1.

Approximating the solutions of the ordinary differential equation defined by
X ∈X(M)

while maintaining the solution curves on the manifold M is a chal-
lenging task. When M is a homogeneous manifold acted by the Lie group G
via the transitive Lie group action ϕ, one option is to rely on Lie group integra-
tors. We now introduce the main idea behind a class of Lie group methods, i.e.,
Runge-Kutta-Munthe-Kaas (RKMK) methods. For a more detailed analysis,
derivation, and use in data-driven modelling, we defer to Chapters 5 and 6. Let
us consider the initial value problemẋ(t ) = X

(
x(t )

) ∈ Tx(t )M
x (0) = x0 ∈M

. (1.3.6)

The solution x(t ) = Φt
X

(
x0

)
, t ≥ 0, lies on the manifold M. Our goal is to

design a numerical method Ψ∆t
X : M→M maintaining the approximate solu-

tion on M. Since M is a homogeneous manifold, there exists a group element
g ∈ G such that ϕ

(
g , x0

) = Φ∆t
X

(
x0

)
. The RKMK methods aim to approxi-

mate the group element g by leveraging the linear nature of the Lie algebra g
of the Lie group G. The first step involves expressing the solution as x(t ) =
ϕ

(
exp

(
ξ(t )

)
, x0

)
for small enough times t ≥ 0. Here, the curve t 7→ ξ(t ) ∈ g

solves a suitable differential equation obtained by lifting the one on M to g.
Using a Runge-Kutta method, we approximate ξ

(
∆t

)
to obtain ξ1 ∈ g. This ap-

proximation is then used to update x0 as x1 =ϕ
(
exp

(
ξ1

)
, x0

)
=:Ψ∆t

X

(
x0

) ∈M.
Figure 1.2 shows an example where the Lie Euler method, i.e., the RKMK
method based on using the explicit Euler method to find ξ1, is applied and
compared to the explicit Euler method. The ODE we consider describes the
motion of a free rigid body. There are also other classes of Lie group methods,
like commutator-free ones, and we refer the reader to Chapter 5 and references
therein for more details.

1.3.6 Non-expansive methods

The stability of one-step schemes is one of the fundamental properties that
makes them reliable. There are several notions of stability, one of which is
the so-called B-stability. B-stability is also called non-linear stability, being it
defined for non-linear vector fields differently from A-stability [18, 22].

For a vector field F :Rd →Rd , one can define the one-sided Lipschitz constant
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Figure 1.2: Simulation of a free rigid body preserving the norm of the angular mo-
mentum I (x) = ∥x∥2

2 with the Lie Euler method, and obtaining qualitatively inaccurate
results with explicit Euler.

osLip
(F)

associated to the Euclidean norm of Rd as

osLip
(F)

:= sup
x̸=y

〈
x−y,F (x)−F (

y
)〉

∥∥x−y
∥∥2

2

, (1.3.7)

where 〈u,v〉 := u⊤v, u,v ∈Rd , is the ℓ2 inner product of Rd . For a continuously
differentiable function F , one can prove that

osLip
(F)= sup

x∈Rd

µ2
(
∂xF (x)

)
,

where, for A ∈Rd×d ,

µ2 (A) := lim
h→0+

∥∥Id +hA
∥∥

2 −1

h
=λmax

(
A+A⊤

2

)

is the logarithmic norm induced by the ℓ2 norm ∥ · ∥2. Such a result can also
be extended to less regular Lipschitz continuous functions, for which the Jaco-
bian can be defined almost everywhere, see [21, Theorem 15]. When nothing
more is specified, with osLip, we refer to the one-sided Lipschitz constant in-
duced by the Euclidean ℓ2 norm of Rd , (1.3.7). We say a vector field F is
non-expansive in the Euclidean norm if osLip

(F) ≤ 0, and contractive if the
inequality is strict. A consequence of these properties is indeed that since

d

d t

1

2

∥∥∥Φt
F (x)−Φt

F
(
y
)∥∥∥2

2
=

〈
F

(
Φt
F (x)

)
−F

(
Φt
F

(
y
))

,Φt
F (x)−Φt

F
(
y
)〉

≤ osLip
(F)∥∥∥Φt

F (x)−Φt
F

(
y
)∥∥∥2

2
,
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1.3 Fundamentals of geometric numerical integration

one has that for non-expansive vector fields∥∥∥Φt
F (x)−Φt

F
(
y
)∥∥∥

2
≤ ∥∥x−y

∥∥
2 ,

and for contractive ones∥∥∥Φt
F (x)−Φt

F
(
y
)∥∥∥

2
≤ eosLip(F)t

∥∥x−y
∥∥

2 <
∥∥x−y

∥∥
2

for every x,y ∈ Rd and t ≥ 0. As presented in [8], the notions of contractivity
and non-expansivity extend to other norms. To do so, one can replace the ℓ2-
inner product in (1.3.7) with the inner product generating the norm of interest
or with the more general notion of a weak pairing for norms which are not
induced by an inner product, as for the ℓ1 norm in Chapter 3.

Definition 1.6 (Weak pairing [8]). A weak-pairing �·, ·� :Rd ×Rd →R is a map
satisfying the following properties:

• �x1 +x2,y� ≤ �x1,y�+�x2,y� for every x1,x2,y ∈Rd ,

• �·,y� :Rd →R is continuous for every y ∈Rd ,

• �αx,y� = �x,αy� =α�x,y� and �−x,−y� = �x,y� for every α≥ 0, x,y ∈Rd ,

• �x,x� > 0 for every x ∈Rd \ {0},

• |�x,y�| ≤ �x,x�1/2�y,y�1/2.

Inner products are particular examples of weak pairings. Furthermore, any
norm ∥ · ∥ of Rd can be realised as ∥x∥ = �x,x�1/2 for at least one weak pair-
ing. The example relevant for Chapter 3 is �x,y�1 := ∥∥y

∥∥
1 sign

(
y
)⊤ x, where

sign
(
y
)= [

sign(y1) · · · sign(yd )
]⊤

, for which it holds ∥x∥2
1 = �x,x�1 since

�x,x�1 = ∥x∥1 sign(x)⊤ x = ∥x∥1

d∑
i=1

sign(xi )xi = ∥x∥1

d∑
i=1

|xi | = ∥x∥2
1 .

For the ℓ1 norm, one can define the one-sided Lipschitz constant as

osLip1

(F)= sup
x̸=y

�
F (x)−F (

y
)

,x−y
�

1∥∥x−y
∥∥2

1

= sup
x̸=y

sign
(
x−y

)⊤ (
F (x)−F (

y
))∥∥x−y

∥∥
1

,

and again have

osLip1

(F)= sup
x∈Rd

µ1
(
∂xF (x)

)= sup
x∈Rd

(
lim

h→0+

∥∥Id +h∂xF (x)
∥∥

1 −1

h

)
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for differentiable functions.

Let us consider a vector field F on Rd for which∥∥∥Φt
F (x)−Φt

F
(
y
)∥∥∥≤ ∥∥x−y

∥∥ (1.3.8)

for a generic norm ∥ · ∥ of Rd , and for every t ≥ 0 and x,y ∈ Rd . In this case,
one would like to replicate such behaviour also at a discrete level, and hence
work with a one-step method Ψ∆t

F :Rd →Rd for which∥∥∥Ψ∆t
F (x)−Ψ∆t

F
(
y
)∥∥∥≤ ∥∥x−y

∥∥ (1.3.9)

for every x,y ∈ Rd and time step ∆t > 0. This 1−Lipschitz property of the
map Ψ∆t

F would guarantee the method’s stability since the perturbations to the
initial conditions are reduced in their norm when passing throughΨ∆t

F . In [85],
it was proven that a method satisfying (1.3.9) for every norm ∥ · ∥ and vector
field F for which (1.3.8) holds, can have at most order 1. Furthermore, the
authors of [23] proved that implicit Euler is one of these methods. Restricting
the analysis to norms generated by an inner product, as the ℓ2 norm, the non-
expansivity condition in (1.3.9) is called B-stability. For these norms, there is
no order limitation, and a Runge-Kutta method with Butcher tableau defined
by

(
A,b,c

)
is B-stable if the two matrices B = diag

(
b
)
, and M = BA+A⊤B−bb⊤

are positive semi-definite [9], where B is a diagonal matrix with diagonal given
by the vector b. Since B-stable methods are also A-stable, explicit Runge-
Kutta methods can not be B-stable given that they have bounded regions of
absolute stability [48, Section 4.3].

The notion of contractive and non-expansive systems is fundamental for this
thesis since a considerable part of the work has been on reducing the sensitivity
of neural networks to input perturbations thanks to the theory of non-expansive
systems. However, implicit solvers are prohibitive when dealing with big-sized
differential equations such as those we work with for image or graph-node
classification tasks. Differently from B-stability, which leads to unconditional
stability, i.e., no need for a restriction over the step size ∆t , with explicit meth-
ods, one has to restrict the step size to achieve non-expansivity. For example,
applying the explicit Euler method to a vector field F with osLip(F ) < 0 and
Lipschitz constant L > 0, one can derive the following step size restriction:∥∥∥Ψ∆t

F (x)−Ψ∆t
F

(
y
)∥∥∥2

2
=

〈
x−y+∆t

(
F (x)−F (

y
))

,x−y+∆t
(
F (x)−F (

y
))〉

= ∥∥x−y
∥∥2

2 +∆t 2
∥∥∥F (x)−F (

y
)∥∥∥2

2
+2∆t

〈
x−y,F (x)−F (

y
)〉

≤
(
1+∆t 2L2 +2osLip

(F)
∆t

)∥∥x−y
∥∥2

2 ≤
∥∥x−y

∥∥2
2
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if ∆t 2L2+2osLip
(F)

∆t ≤ 0 and hence ∆t ≤−2osLip
(F)

/L2. For some vector
fields, as for the gradient flows we consider in Chapters 2 and 3, the theory of
circle-contractivity [19] can provide the needed step size restrictions even in
the non-expansive case.

1.4 Structure preserving deep learning

We now focus on Residual Neural Networks (ResNets). As introduced in Sec-
tion 1.2, ResNets can be interpreted as the numerical approximation of the
solutions of parametric initial value problems of the formẋ(t ) =F (

x(t ),θ(t )
) ∈Rd , θ(t ) ∈Θ

x(0) = x0 ∈Rd
. (1.4.1)

Depending on the choice of the numerical method Ψ∆t
F : Rd → Rd and how

F is modelled, it is possible to obtain a different neural network architecture.
Furthermore, given that the dynamical system in (1.4.1) is only of interest for
modelling purposes, one can assume without loss of generality that θ :R→Θ is
piecewise-constant in time. This assumption leads to a piecewise autonomous
time-switching system, as we assume in Chapters 2 and 3.

Neural networks are parametric functions that aim to approximate an unknown
target map f : Rd → Rc . When a property is known to be satisfied by f , one
may be interested in ensuring that the neural network also satisfies that prop-
erty. An example is a neural network approximating the solution of a differen-
tial equation which is known to be on the sphere Sd−1

r =
{

x ∈Rd : ∥x∥2
2 = r 2

}
of radius r . In that case, to increase the interpretability of the approximation,
the network should map points in Sd−1

r to points in Sd−1
r . We consider this

problem in Chapter 4, where we experimentally show that, for the case of the
semi-discretised linear advection PDE, such a constraint significantly improves
the stability of the network as an approximation of the flow map.

Furthermore, it might be that one does not know if the target function has a
peculiar structure while still being interested in approximating it with a con-
strained map. This situation occurs, for example, when building neural net-
works that can classify images or graph nodes while being robust to input per-
turbations. In this case, it is not known how the perfect classifier behaves
outside of the training set of input-output labelled pairs. However, we show
that it is beneficial to model the neural network so that it has a small Lipschitz
constant, i.e., a reduced sensitivity to input perturbations. This example is con-
sidered in Chapters 2 for image classifiers and 3 for graph-nodes classifiers.
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We now introduce our methodology to impose a specific property over net-
works, i.e., to obtain structured neural networks. We suppose this property is
closed under function compositions as, for example, when considering sym-
plectic functions, functions from a manifold M onto itself, volume-preserving
maps, or functions with a Lipschitz constant smaller than 1. We illustrate the
strategy first for the specific property of volume preservation and then extend
it to a more general setting.

The first step to designing volume-preserving neural networks is to build a
family of parametric divergence-free vector fields SΘ, i.e., whose solutions
preserve the canonical volume form. For this derivation, we consider the par-

titioning of the configuration variable x ∈ Rd as x =
[

x⊤1 x⊤2
]⊤

with x1 ∈ Rd1

and x2 ∈Rd2 . We then introduce

SΘ =
Fθ(x) =

[
σ

(
A1x2 +b1

)
σ

(
A2x1 +b2

)] ∈Rd : θ = (
A1,A2,b1,b2

) ∈Θ
 ,

where, for example, Θ=Rd1×d2×Rd2×d1×Rd1×Rd2 . Then, we need to choose a
numerical one-step method Ψ∆t

Fθ
which preserves the volume form, see Section

1.3.2. We rely on the Lie Trotter splitting method, which leads to network
layers of the form

xn 7→ x̂n+1 = xn +∆t

σ(
A1xn

2 +b1

)
0


x̂n+1 7→ xn+1 = x̂n+1 +∆t

 0

σ
(
A2x̂n+1

1 +b2

)=:Ψ∆t
Fθ

(xn).

(1.4.2)

This parametrisation allows us to get volume-preserving neural networks by
composing layers like the one in (1.4.2). Volume preservation is also impor-
tant because it guarantees the network is invertible, which can be of interest
in several applications where, for example, the network is trained to learn a
change of variables.

Generalising, we obtain a procedure for structure preservation in neural net-
works. The first step is to design a family of parametric vector fields SΘ whose
solutions satisfy the target property. Here are a few examples:

1. For the 1−Lipschitz property, one can use contractive dynamical systems
like ẋ(t ) =Fθ(x(t )) =−A⊤σ

(
Ax(t )+b

)
, θ = (A,b), as in Chapter 2.

2. For symplectic neural networks, one can work with parametric Hamil-
tonian systems like ẋ(t ) = Fθ(x(t )) = J∇Hθ

(
x(t )

) ∈ R2d , for example
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1.4 Structure preserving deep learning

by setting Hθ (x) = c⊤σ
(
Ax+b

)
, A ∈ Rh×2d , b ∈ Rh , and c ∈ Rh , with

θ = (
A,b,c

)
. We proceed in this way in Chapter 6.

3. For the preservation of a manifold M ⊂ Rd one can use any family of
parametric vector fields and orthogonally project them on the tangent
space like ẋ(t ) = Fθ(x(t )) = P

(
x(t )

)
B⊤σ

(
Ax(t )+b

)
, with A,B ∈ Rh×d ,

b ∈ Rh , θ = (
A,B,b

)
, and P (x) : Rd → TxM is the orthogonal projection

onto the tangent space at x of M. In the case of the unit sphere M=S2,
P (x) = I3 −xx⊤. We proceed in this way in Chapters 4 and 6.

4. For the preservation of a function I : Rd → R, one can adopt the skew-
gradient formulation ẋ(t ) =Fθ(x(t )) =

(
Aθ

(
x(t )

)− Aθ

(
x(t )

)⊤)
∇I

(
x(t )

)
,

see [76], where Aθ is a matrix-valued neural network. We proceed in
this way for mass-preserving neural networks in Chapter 2.

Properly designing the vector fields is not enough. Indeed, one also needs
to choose a numerical method Ψ∆t

Fθ
which reproduces the desired structure at

a discrete level. The techniques we adopt in the following chapters are all
introduced in Section 1.3. The constrained neural network architecture can be
obtained by composing single steps with Ψ∆t

Fθ
of the structured vector fields as

Nθ =Ψ∆tL
FθL

◦ · · · ◦Ψ∆t1
Fθ1

,

with Fθ1 , ...,FθL ∈SΘ and θ = (
θ1, ...,θL

)
.

The parametric set SΘ should be chosen so that its elements enable the design
of a network that accurately solves the task at hand. While for more con-
ventional neural networks many approximation theorems have been developed
[17, 41, 46, 63, 70], less is known for more structured ones. We present results
in this direction in Chapter 2, where we work with the Presnov decomposition
of vector fields [74] and splitting methods to show that neural networks based
on gradient flows and norm-preserving dynamical systems can approximate a
broad class of target functions.

Since in Chapter 2 we do not derive explicitly the vector field decomposition,
we introduce it here.

Theorem 1.1 (Presnov decomposition). Let F : Rd → Rd be a continuously
differentiable vector field. Then, there exists a unique function ϕ : Rd → R

and a vector field u : Rd → Rd such that ϕ (0) = 0, F (x) = u (x)+∇ϕ (x), and
x⊤u (x) = 0 for every x ∈Rd .

Proof. Let ϕ (x) = ∫ 1
0

1
t σ(tx)dt where σ(x) = x⊤F (x). We then define the vec-

tor field u (x) = F (x)−∇ϕ (x). The existence of the decomposition follows
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from the following calculation

x⊤∇ϕ (x) =
d∑

i=1
xi

∂

∂xi

(∫ 1

0

1

t
σ (tx)dt

)
=

d∑
i=1

xi

∫ 1

0

∂σ

∂zi
(z)

∣∣∣∣∣
z=tx

dt

=
∫ 1

0

d

d t
σ (tx)dt =σ (x)−σ (0) = x⊤F (x) .

Let us assume there is another such decomposition F (x) = v (x)+∇ψ(x). Then,

0 = x⊤∇(
ψ (x)−ϕ (x)

) =⇒ ψ (x) =ϕ (x)

since ψ (0) =ϕ (0) = 0, which also implies u(x) = v(x).

We call u (x) a sphere-preserving vector field since the property x⊤u (x) = 0
implies u (x) ∈ TxSd−1

∥x∥2
. This theorem allows us to show that any continuous

function on a compact set can be approximated arbitrarily well in Lp norms
with sphere-preserving and gradient flows.

For illustration purposes, we include Figure 1.3, where a constrained neural
network built following this dynamical systems-based approach is compared
to a more conventional unconstrained network. We train the two networks so
they approximate the flow map Φ0.05

F of the SIR model. Such a dynamical

system conserves the linear function I (x) = x1 + x2 + x3, x =
[

x1 x2 x3

]⊤
.

The constrained network replicates this conservation law, see Figure 1.3.

t
0.0

0.1

0.2

0.3

x1 ref.
x2 ref.

x3 ref.
x1 constr.

x2 constr.
x3 constr.

x1 unconstr.
x2 unconstr.

x3 unconstr.

0 1 2 3 4 5
t

10 14

10 11

10 8

10 5

| I(t)| constrained | I(t)| unconstrained

Figure 1.3: Comparison of the approximate solutions obtained with a neural network
constrained to preserve the function I (x) = x1 + x2 + x3, and one where this is not
imposed on the architecture. In the legend, with

∣∣δI (t )
∣∣ we refer to

∣∣∣I
(
x(t )

)− I
(
x0

)∣∣∣.
Lastly, we remark that constraining the parametric function Nθ using the the-
ory of dynamical systems is not the only possibility. For example, a well-
developed framework is the Theory of Functional Connections [57], which
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1.5 Solving and discovering differential equations

analyses how to modify a parametric function so it passes through a collection
of target points. We work with such a theory in Chapter 7 to get neural net-
works satisfying the boundary conditions of Euler’s elastica boundary value
problem, and in Chapter 8 to impose the initial condition of a neural network-
based ODE solver.

We also remark that, in machine learning, it is common to add a regularisation
term to the loss function which promotes a desired structure or property over
a network without modifying its architecture. Regularising the loss function
does not guarantee that the network satisfies the desired structure. Through-
out this thesis, we adopt various regularisation strategies and we leave their
presentation to each of the separate chapters.

1.5 Solving and discovering differential equations

The research field occupied with finding approximate solutions to differential
equations with neural networks and discovering a differential equation given
some observed trajectories is vast and involves several challenges. We consider
three problems in particular, which are

1. Approximating the right-hand side of a differential equation provided
with some observed solution curves and possibly some additional infor-
mation about the unknown equation (e.g., it is the semi-discretisation of
a PDE of a certain type or a Hamiltonian equation).

2. Approximating the solutions of a differential equation provided with
some observed solution curves.

3. Approximating the solutions of a differential equation in an unsuper-
vised manner.

The first two problems are considered in Chapters 2, 4, 6 and 7. We analyse
the third problem in Chapter 8. Problems 1 and 2 are supervised learning tasks
since we need data to solve them, while the third is unsupervised since the
learning occurs only based on the knowledge of the differential equation to
solve. We now dedicate one subsection to each of the three problems, briefly
presenting our methodology and anticipating some results.

1.5.1 Data-driven approximation of differential equations

Let us focus on the task of approximating the right-hand side of a differential
equation of the form ẋ(t ) = F (

x(t )
) ∈ Rd . We consider a set of N observed
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trajectory segments defined as
{(

x0
n ,x1

n , ...,xM
n

)}N

n=1
, where xm

n ≈ Φm∆t
F

(
x0

n

)
,

with m = 0, ..., M , for a known step size ∆t > 0. To approximate the map F ,
we introduce a set of parametric functions SΘ =

{
Fθ :Rd →Rd : θ ∈Θ

}
, and

choose a numerical method Ψ∆t
Fθ

: Rd → Rd . This setup allows us to define the
loss function

L(
θ
)= 1

N M

N∑
n=1

M∑
m=1

∥∥∥∥(
Ψ∆t

Fθ

)m (
x0

n

)
−xm

n

∥∥∥∥2

2
→ min,

(
Ψ∆t

Fθ

)m
:=Ψ∆t

Fθ
◦ · · · ◦Ψ∆t

Fθ︸ ︷︷ ︸
m times

.

This constitutes the starting point for all the papers studying this task and is
customised for the specific problems we consider.

The first variant of the methodology, proposed in Chapter 6, is to structure the
parametric functions in SΘ so that the functions that can be represented are
only Hamiltonian vector fields. This restriction can be achieved, for example,
by setting Fθ (x) = J∇xHθ (x), Hθ : Rd → R. Another constraining strategy we
adopt in Chapter 6 is to project the vector fields on the tangent space to a non-
linear c−dimensional manifold M⊂Rd defined as the zero set of a constraint
function g : Rd → Rd−c . In this case, the components of g are supposed to be
functionally independent, so that dim

(M) = c. The orthogonal projection of
the vector field to the correct tangent space then leads to Fθ of the form

Fθ (x) =
(

Id −∂xg (x)⊤
(
∂xg (x)∂xg (x)⊤

)−1
∂xg (x)

)
F̂θ (x) = P (x)F̂θ (x) ,

where F̂θ : Rd → Rd is a generic parametric function. We remark that P (x) :
Rd → TxM= ker

(
∂xg (x)

)
is the orthogonal projection matrix onto the tangent

space at x of M. In Chapter 6, we proceed in this way for vector fields that are
tangent to products of cotangent bundles of 2−spheres.

The second variant we present in the papers relates to the choice of the time
stepping scheme Ψ∆t

Fθ
. Indeed, when something more is known about the un-

derlying differential equation, choosing one method rather than another might
be reasonable. For example, in Chapter 6, we consider unconstrained Hamil-
tonian systems and holonomically constrained Hamiltonian systems. For the
first setting, we choose Ψ∆t

Fθ
as a symplectic method, hence being more com-

patible with the dynamics one tries to discover. For the case of constrained
systems, we instead focus on systems constrained to a homogeneous manifold
and hence set Ψ∆t

Fθ
to a Lie group integrator.
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1.5 Solving and discovering differential equations

1.5.2 Data-driven approximation of the solutions of a differential
equation

The methodology presented for the data-driven approximation of differential
equations can be adapted to approximate the flow map of an ODE. If the goal is
to find an approximation of the map sending one point of the observed trajec-
tory segments into the following one, i.e., a map approximating Φ∆t

F , then one
can follow the same steps and the result can be found in the map Ψ∆t

Fθ
rather

than in Fθ as we did before. We follow this procedure in Chapter 2 for mass-
preserving dynamical systems and in Chapter 4 for PDE semi-discretisations.

Up to now, we have focused on time-dependent differential problems. In Chap-
ter 7, we instead consider Euler’s elastica, i.e., a spatial Boundary Value Prob-
lem (BVP) on a one-dimensional domain. We aim to learn approximate solu-
tions to Euler’s elastica given the boundary conditions of the differential prob-
lem. This is a supervised learning task, and the neural network approximation
is found by minimising a mean squared error loss function based on data cor-
responding to numerical solutions to that BVP for a few boundary values. In
this setting, there is no temporal dependency in the considered problem, and
hence, we do not use the dynamical systems approach to design and structure
neural networks. Instead, we rely on a feedforward fully connected neural net-
work and use the theory of functional connections to structure the network so
it satisfies the boundary conditions.

1.5.3 Unsupervised approximation of ODE solutions

The third problem we consider is solving a differential equation based on a
neural network without training data. This line of research has grown con-
siderably in the last few years, especially after the publication of [77], where
Physics Informed Neural Networks (PINNs) have been introduced. The con-
cept of PINNs is a revival of earlier studies from the 1990s [56]. The basic
principle behind PINNs is to train a neural network to minimise the residual
between the left and the right-hand sides of a differential equation on a set of
collocation points. We focus on a prototypical ODE of the formẋ(t ) =F (

x(t )
) ∈Rd

x(0) = x0 ∈Rd
, (1.5.1)

which we want to solve on the time interval [0,T ]. To do so, we introduce a
neural network Nθ :R→Rd and the loss function

L(
θ
)= 1

N

N∑
n=1

∥∥∥∥∥ d

d t
Nθ(t )

∣∣∣
t=tn

−F
(
Nθ

(
tn

))∥∥∥∥∥
2

2

+γ∥∥Nθ(0)−x0
∥∥2

2 → min,
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based on a set of N collocation points t1, ..., tN ∈ [0,T ], which can be randomly
drawn from a probability distribution or chosen in other ways. We remark
that the term multiplied by γ ≥ 0, a parameter to specify, aims to impose the
initial condition over the approximate solution. In case one desires to impose
such an initial condition exactly, simple restrictions could do that, like setting
Nθ(t ) = x0+N̆θ(t )−N̆θ(0) for an unconstrained parametric function N̆θ. From
this basic methodology, different approaches have been developed, see, e.g.
[50, 51]. One extension we work with in Chapter 8 is to not only solve a
single initial value problem as the one in (1.5.1) but a collection of them by
varying the initial condition. This methodology allows to get an approximation
of the flow map Φt

F for t ∈ [0,T ] and initial conditions in some compact set
Ω ⊂ Rd from which they are sampled while training the network. The basic
procedure to introduce such an extension is by considering a neural network
Nθ :Rd ×R→Rd , and optimising the loss function

L(
θ
)= 1

N

N∑
n=1

∥∥∥∥∥∂tNθ

(
x0

n , t
)∣∣∣

t=tn

−F
(
Nθ

(
x0

n , tn

))∥∥∥∥∥
2

2

+γ
N∑

n=1

∥∥∥∥Nθ

(
x0

n ,0
)
−x0

n

∥∥∥∥2

2

(1.5.2)

for a set of N initial conditions x0
1, ...,x0

N ∈ Ω ⊂ Rd and collocation points
t1, ..., tN in the interval [0,T ]. Balancing the two terms in (1.5.2) is often prob-
lematic. It is thus favourable to enforce Nθ

(
x,0

) = x for every x ∈ Rd in the
network architecture. Choosing to learn the solution operator Nθ :Rd ×R→Rd

is of more practical interest since once the expensive offline training phase is
complete, one could solve several initial value problems. Furthermore, as high-
lighted in [89], one can also get long-time simulations by training on a narrow
time interval. Indeed, supposing Ω is a forward invariant set, i.e., Φt

F
(
x0

) ∈Ω
for every x0 ∈Ω and t ≥ 0, one could train the network over the time interval
[0,1] and initial conditions in Ω, and then extrapolate in time as follows

Φk+δt
F

(
x0

)≈Nθ

((Nθ

)k (
x0,1

)
,δt

)
, δt ∈ (0,1), k ∈N,

where
(Nθ

)k (
x0,1

)
:=Nθ

((Nθ

)k−1 (
x0,1

)
,1

)
for k ≥ 1,

(Nθ

)0 (x0,1) := x0. In
this case, it is fundamental to have Nθ(x,0) = x to get an approximate solution
which is at least continuous. Figure 1.4 illustrates the use of this approach for
the ODE of a harmonic oscillator. The network we consider is defined as

Nθ

(
x0, t

)= x0 +N̆θ

(
x0, t

)−N̆θ

(
x0,0

)
R3 ∋

[
x⊤0 t

]⊤
:= z 7→ tanh

(
A0z+b0

)=: z1 ∈R10

z1 7→ tanh
(
A1z1 +b1

)=: z2 ∈R10

z2 7→ A2z2 +b2 =: N̆θ

(
x0, t

) ∈R2.

(1.5.3)
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1.5 Solving and discovering differential equations

We sample collocation points in the time interval [0,1] and initial conditions in
Ω = [−1.2,1.2]2 ⊂ R2. The obtained approximate solution is compared with a
reference one computed with Runge-Kutta (5,4).
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(a) Solution curves for T = 100
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Figure 1.4: Solution curves obtained with the neural network in (1.5.3) trained to
minimise the loss function in (1.5.2) with γ= 0.

In Chapter 8, we consider the problem of solving an initial value problem with
neural networks while also being able to provide theoretical guarantees on the
obtained approximation. We start from the Parareal method [28], which is
a parallel-in-time algorithm based on two one-step numerical schemes. One
is called a coarse propagator, which is cheap to evaluate, and the other is
the so-called fine propagator, a more expensive method that provides higher
accuracy. The coarse propagator allows for parallelism in time, and we propose
replacing it with an Extreme Learning Machine (ELM) to develop a neural
network-based ODE solver inheriting the guarantees of the Parareal method
and the efficiency of ELMs. We refer to this method as a hybrid Parareal
method. We show improved efficiency using ELMs when compared to more
conventional neural networks trained to approximate the flow map. The results
are supported by several numerical experiments, one illustrated in Figure 1.5,
where the Parareal solution, denoted as “para”, is compared with a reference
solution denoted as “ref”.
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Figure 1.5: Solution of the SIR equations obtained with a hybrid Parareal method.
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1.6 Summary of papers

The papers’ layout and bibliographies have been adapted to have the same
style. A few typos have been corrected. A few figures have been resized and
placed differently to fit the B5 format. Some equations have been split to fit in
the margins. No other substantial changes have been made to the papers.

Paper 1: Dynamical Systems–Based Neural Networks

Elena Celledoni, Davide Murari, Brynjulf Owren,
Carola-Bibiane Schönlieb, and Ferdia Sherry

SIAM Journal on Scientific Computing,
Vol. 45, No. 6, 2023, pp. A3071-A3094

This paper investigates techniques based on dynamical systems and geometric
numerical methods to design neural networks satisfying a specific property. We
apply these ideas to design volume-preserving, symplectic, mass-preserving,
and 1-Lipschitz neural networks. The paper’s experimental analysis focuses
on convolutional neural networks (CNNs) with reduced sensitivity to adver-
sarial input perturbations for image classification. The paper also includes a
theoretical section in which we use the Presnov vector field decomposition
and splitting methods to provide two universal approximation theorems.

Paper 2: Resilient Graph Neural Networks: A Coupled Dynamical
Systems Approach

Moshe Eliasof, Davide Murari,
Carola-Bibiane Schönlieb, and Ferdia Sherry

Submitted

This paper investigates techniques to improve the robustness of GNNs with
respect to adversarial perturbations. The focus is on classifying the nodes of
an input graph whose adjacency and feature matrices have been attacked with
an additive perturbation. We design a GNN based on a coupled ODE system
involving both the adjacency and the feature matrices. This system of ODEs
is contractive in a weighted norm, and we provide both theoretical and exper-
imental evidence that such a design strategy allows one to obtain GNNs with
reduced sensitivity to input perturbations.
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Paper 3: Predictions Based on Pixel Data: Insights from PDEs and
Finite Differences

Elena Celledoni, James Jackaman, Davide Murari, and Brynjulf Owren

Submitted

This paper shows that CNNs can represent finite difference semi-
discretisations of several PDEs. We use such insight to provide a theoretical
analysis of the approximation properties of CNNs for time sequences com-
ing from the space-time discretisation of a PDE. We present constructive re-
sults relying on the connection between finite-difference discretisations and
the convolution operation, together with the ability of some non-linear acti-
vation functions to reproduce linear and quadratic polynomials. Numerical
experiments for the linear advection, heat, and Fisher equations support the
theoretical analysis.

Paper 4: Lie Group integrators for mechanical systems

Elena Celledoni, Ergys Çokaj, Andrea Leone,
Davide Murari, and Brynjulf Owren

International Journal of Computer Mathematics,
Vol. 99, No. 1, 2022, pp. 58-88

This paper reviews the literature on Lie group integrators, focusing on the
two classes of Runge-Kutta-Munthe-Kaas methods and commutator-free Lie
group integrators. Additionally, we consider introducing step adaptivity in the
discretisation algorithm. We demonstrate the theory with two applications in
mechanics expressed via the Lagrangian formalism: the N-fold spherical pen-
dulum and the dynamics of a system of two quadrotors transporting a payload.

Paper 5: Learning Hamiltonians of constrained mechanical systems

Elena Celledoni, Andrea Leone, Davide Murari, and Brynjulf Owren

Journal of Computational and Applied Mathematics,
Vol. 417, 2023, pp. 114608

In this work, we adopt Lie group integrators to approximate the Hamiltonian of
holonomically constrained Hamiltonian systems. After introducing the learn-
ing procedure for unconstrained systems, we move to constrained systems. We
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compare Lie group methods to Runge-Kutta integrators as a tool to approx-
imate the Hamiltonian of constrained systems based on observed trajectory
segments. One outcome of our analysis is that while to a higher order of the
method consistently corresponds a higher accuracy of the approximate Hamil-
tonian, numerically preserving the constraint manifold does not systematically
lead to similar improvements.

Paper 6: Neural networks for the approximation of Euler’s elastica

Elena Celledoni, Ergys Çokaj, Andrea Leone, Sigrid Leyendecker,
Davide Murari, Brynjulf Owren, Rodrigo T. Sato Martín de Almagro,

Martina Stavole

Submitted

This paper presents three approaches for efficiently approximating Euler’s
elastica solution curves given their boundary conditions. We first present a
methodology providing a discrete approximate solution over a set of spatial
nodes. Given that the solution curves are continuous in space, we consider
an alternative approximation strategy based on a network accepting both the
boundary conditions and the arc-length parameter of the curve as inputs. We
also consider an angular parametrisation of the tangent vectors so that we can
enforce the normality constraints typical of this problem. We validate the three
approaches with an extensive experimental analysis.

Paper 7: Parallel-in-Time Solutions with Extreme Learning Ma-
chines

Marta Betcke, Lisa Maria Kreusser, and Davide Murari

Preprint

This paper presents a hybrid parallel-in-time algorithm based on the Parareal
method, where parts of the algorithm involve neural networks. First, we pro-
vide a theoretical analysis of the accuracy of neural network-based ODE solv-
ers. This theoretical study, together with the convergence properties of the
Parareal method, allows us to replace the coarse propagator of such an al-
gorithm with an Extreme Learning Machine while retaining the convergence
guarantees of the classical Parareal method. We demonstrate the effectiveness
of the proposed methodology by applying it to several ODEs and a spatial
semi-discretisation of the viscous Burgers’ equation.
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Papers not included in this thesis

My thesis includes seven papers I worked on during my PhD. I significantly
contributed to both the theoretical and experimental analysis in all of these
papers.

I have also collaborated on three more papers while being a PhD candidate.

Those in [11] and [69] are a conference proceeding and a non-archival report,
respectively, based on two peer-reviewed papers appearing in this thesis. They
are not included since they do not add substantial value to this thesis. [11]
builds on Chapter 5, with experimental analysis proposing an experiment with
variable step size for a chain of spherical pendula. [69] is based on Chapter 2,
and its experimental section proposes a slight variation of the mass-preserving
experiment we include in it.

In [83], we work with gradient flows as a tool to build non-expansive neu-
ral networks. We discuss the step size restrictions for generic Runge-Kutta
methods based on the theory of circle-contractivity and investigate how these
methods influence the network’s performance. These 1-Lipschitz neural net-
works are applied to the problems of adversarial robustness, image denoising,
and the inverse problem of deblurring. My contribution to this paper is limited
to the theoretical analysis of the proposed architectures, which follows similar
ideas of the paper in Chapter 2 of which I am the main author.
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Abstract. Neural networks have gained much interest because of their ef-
fectiveness in many applications. However, their mathematical properties are
generally not well understood. If there is some underlying geometric struc-
ture inherent to the data or to the function to approximate, it is often desirable
to take this into account in the design of the neural network. In this work, we
start with a non-autonomous ODE and build neural networks using a suitable,
structure-preserving, numerical time-discretisation. The structure of the neu-
ral network is then inferred from the properties of the ODE vector field. Be-
sides injecting more structure into the network architectures, this modelling
procedure allows a better theoretical understanding of their behaviour. We
present two universal approximation results and demonstrate how to impose
some particular properties on the neural networks. A particular focus is on
1-Lipschitz architectures including layers that are not 1-Lipschitz. These net-
works are expressive and robust against adversarial attacks, as shown for the
CIFAR-10 and CIFAR-100 datasets.

2.1 Introduction

Neural networks have been employed to accurately solve many different tasks
(see, e.g., [4, 12, 57, 38]). Indeed, because of their excellent approximation
properties, ability to generalise to unseen data, and efficiency, neural networks
are one of the preferred techniques for the approximation of functions in high-
dimensional spaces.

In spite of this popularity, a substantial number of results and success stories
in deep learning still rely on empirical evidence and more theoretical insight is
needed. Recently, a number of scientific papers on the mathematical founda-
tions of neural networks have appeared in the literature, [9, 74, 63, 64, 69, 36].
In a similar spirit, many authors consider the design of deep learning archi-
tectures taking into account specific mathematical properties such as stability,
symmetries, or constraints on the Lipschitz constant [39, 34, 29, 66, 23, 30,
70, 37, 72, 76]. Even so, the imposition of structure on neural networks is
often done in an ad hoc manner, making the resulting input to output mapping
F :X →Y hard to analyse. In this paper, we describe a general and systematic
way to impose desired mathematical structure on neural networks leading to
an easier approach to their analysis.

There have been multiple attempts to formulate unifying principles for the de-
sign of neural networks. We hereby mention Geometric Deep Learning (see
e.g. [13, 12]), Neural ODEs (see e.g. [22, 50, 60, 75]), the continuous-in-time
interpretation of Recurrent Neural Networks (see e.g. [61, 21]) and of Residual
Neural Networks (see e.g. [74, 47, 18, 62, 1]). In this work, we focus on Resid-
ual Neural Networks (ResNets) and build upon their continuous interpretation.

Neural networks are compositions of parametric maps, i.e. we can characterise
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a neural network as a map N = fθk ◦ . . . ◦ fθ1
: Rn → Rm , with network layers

which are fθi
: Rni → Rni+1 . For ResNets, the most important parametric maps

are of the form
x 7→ fθi (x) = x +hΛ

(
θi , x

)
. (2.1.1)

The continuous-in-time interpretation of ResNets arises from the observation
that if ni = ni+1, fθi coincides with one h−step of the explicit Euler method
applied to the non-autonomous ODE ẋ(t ) =Λ(θ(t ), x(t )). In this work, we con-
sider piecewise-autonomous systems, i.e. we focus on time-switching systems
of the form

ẋ(t ) = fs(t )
(
x (t )

)
, s : [0,T ] → {

1, . . . , N
}

, fi ∈F , (2.1.2)

with s being piecewise constant (see e.g. [60, 44]), and F a family of paramet-
ric vector functions. This simplification is not restrictive and can help analyse
and design neural networks, as we will clarify throughout the paper.

This interpretation of ResNets gives the skeleton of our reasoning. Indeed, we
replace the explicit Euler method in (2.1.1) with suitable (structure-preserving)
numerical flows of appropriate vector fields. We call the groups of layers ob-
tained with these numerical flows “dynamical blocks”. The choice of the vec-
tor field is closely related to the structure to impose. For example, to derive
symplectic neural networks, we would apply symplectic time integrators to
Hamiltonian vector fields. This approach enables us to derive new structured
networks systematically and collocate other existing architectures into a more
general setting, making their analysis easier. For instance, Section 2.2 presents
a strategy to study the approximation capabilities of some structured networks.
Finally, we highlight the flexibility and the benefits of this framework in Sec-
tion 2.3, where we show that to obtain expressive and robust neural networks,
one can also include layers that are not 1-Lipschitz.

There are multiple situations where one could be interested in networks with
some prescribed property. We report three of them here, where we refer to F
as the function to approximate:

1. When F has some known characterising property, e.g. F is known to be
symplectic; see Section 2.4.

2. When the data we process has a particular structure, e.g. vectors whose
entries sum to one, as we present in Section 2.4.

3. When we can approximate F to sufficiently high accuracy with functions
in G, a space that is well suited to model the layers of a network. An ex-
ample is using the space G of 1-Lipschitz functions to define a classifier
robust to adversarial attacks; see Section 2.3.
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Thus, there are various applications where having neural networks structured
in a particular way is desirable. We will delve deeper into some of them in the
following sections. To be precise, we remark that all the properties we focus
on are preserved under composition, such as being 1-Lipschitz or symplectic.

The paper is structured in five sections. First, in Section 2.2, we investigate the
universal approximation capabilities of some neural networks, thanks to vector
field decompositions, splitting methods and an embedding of the dynamics into
larger dimensional spaces. We then move, in Section 2.3, to a neural network
that has the property of being 1-Lipschitz. After the mathematical derivation
of the architecture, we present some numerical experiments on adversarial ro-
bustness for the CIFAR-10 and CIFAR-100 image classification problems. We
devote a significant part of the experimental side of this paper to examples in
the well-established field of adversarial robustness, but we furthermore pro-
vide examples of other desirable structural properties that can be imposed on
neural networks using connections to dynamical systems. In Section 2.4, we
introduce such neural networks with specific designs. This last section aims
to present in a systematic way how one can impose certain properties on the
architecture. We finally conclude the paper in Section 2.5, mentioning some
promising directions for further work.

Before moving on, we now report a numerical experiment that motivates our
investigation of structured neural networks. The results highlight how impos-
ing a structure does not have to degrade the approximation’s quality consider-
ably. Furthermore, this experiment suggests that not all the constraining strate-
gies perform similarly, as we also highlight in Section 2.3. Thus, a systematic
process to impose structure is essential since it allows changing the architec-
ture in a guided manner while preserving the property of interest.

2.1.1 Classification of points in the plane

We present a numerical experiment for the classification problem of the dataset
in Figure 2.1b. We consider neural networks that are 1-Lipschitz, as in Sec-
tion 2.3. We define the network layers alternatingly as contractive flow maps,
whose vector fields belong to Fc = {−ATΣ(Ax +b) : AT A = I }, and as flows
of other Lipschitz continuous vector fields in F = {Σ(Ax +b) : AT A = I }, with
Σ(z) = [σ(z1), . . . ,σ(zn)] and σ(s) = max{s, s/2}1. In Section 2.3 we expand on
the choice of this activation function σ, which is called LeakyReLU and was
introduced in [48]. The time steps for each vector field are network parame-
ters, together with the matrices A and vectors b. We constrain the time steps

1To impose the weight orthogonality, we set A = expm(W −W T ) with expm being the
matrix exponential and W a trainable matrix.
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to get a 1-Lipschitz network, see Section 2.3. We report the results in Figure
2.1a and Table 2.1.

The average classification test accuracy and final integration time, in combina-
tion, get better by combining Fc with F instead of considering Fc alone. In
particular, we see that the final integration time T with Fc ∪F is the smallest
without significantly compromising the accuracy. The parameter T quantifies
how much the network layers transform the points. The larger the timestep, the
further a layer is from the identity map; hence we can get a more natural and
efficient solution by alternating the vector fields. In Section 2.2, we reinforce
this empirical result, proving results about theoretical approximation guaran-
tees. This renders the possibility of obtaining neural networks with prescribed
properties without compromising their approximation capabilities.

Adopted family of vector fields Median accuracy Median of T
F ∪Fc 98.0% 1.84

F 99.0% 7.53
Fc 97.3% 19.82

Table 2.1: We perform 100 experiments alternating vector fields in Fc with those in
F , 100 using just vector fields in Fc , and 100 with only those in F . We work with
networks with ten residual layers throughout the experiments. In the table, we report
the median final time T and test accuracy for the three sets of experiments analysed
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Figure 2.1: Results from the experiments alternating the vector fields of F and those
of Fc , together with the dataset of interest
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2.2 Universal approximation properties

As introduced before, neural network layers can be modelled by discretising
ordinary differential equations. In particular, this ODE-based approach can
also be beneficial for imposing some structure on neural networks and pro-
viding a better theoretical understanding of their properties. In this section,
we follow this principle and prove the universal approximation capabilities
of two neural network architectures. Starting with the continuous-in-time in-
terpretation of neural networks, many approaches are possible to prove such
approximation properties, often based on merging the broad range of results
from dynamical systems theory and numerical analysis. One can proceed, for
example, in a constructive way as done in [60], where the authors investigate
the dynamics of some neural networks and explicitly construct solutions to the
problem of approximating a target function. Another possibility is to study the
approximation capabilities of compositions of flow maps, as done in [42]. In
this section, we focus on two solutions that, to the best of our knowledge, are
new. The first result is based on a vector field decomposition, while the second
is based on embedding vector fields into larger dimensional spaces.

The approximation results that we cover rely on approximating vector fields
arbitrarily well. Consequently, this allows us to approximate their flow maps
accurately. This is based on the fact that for a sufficiently regular vector field
X ∈ Lip(Rn ,Rn), if X̃ :Rn →Rn is such that for every x ∈Rn

∥∥∥X (x)− X̃ (x)
∥∥∥< ε, (2.2.1)

then also their flow maps are close to one another for finite time intervals. We
formalise this reasoning in Proposition 2.1. In the proposition and throughout
the paper, we denote with Φt

X (z) the time-t flow of the vector field X , applied
to z.

Proposition 2.1. Let X ∈ Lip(Rn ,Rn) and X̃ ∈ Lip(Rn ,Rn) be as in (2.2.1).
Then ∥Φt

X (x)−Φt
X̃

(x)∥ ≤ εt exp
(
Lip(X )t

)
, where Lip(X ) is the Lipschitz con-

stant of X .

Proof. We consider the integral equations of the ODEs ẋ(t ) = X (x(t )) and
˙̃x(t ) = X̃ (x̃(t )) and study the difference of their solutions both with the same
initial condition x ∈Rn
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∥∥∥Φt
X (x)−Φt

X̃
(x)

∥∥∥=
∥∥∥∥∥x +

∫ t

0
X

(
Φs

X (x)
)

ds −x −
∫ t

0
X̃

(
Φs

X̃
(x)

)
ds

∥∥∥∥∥
≤

∫ t

0

∥∥∥∥X
(
Φs

X (x)
)
− X̃

(
Φs

X̃
(x)

)∥∥∥∥ ds

=
∫ t

0

∥∥∥∥X
(
Φs

X (x)
)
−X

(
Φs

X̃
(x)

)
+X

(
Φs

X̃
(x)

)
− X̃

(
Φs

X̃
(x)

)∥∥∥∥ ds

≤ Lip
(
X

)∫ t

0

∥∥∥Φs
X (x)−Φs

X̃
(x)

∥∥∥ ds +εt .

Then we conclude that∥∥∥Φt
X (x)−Φt

X̃
(x)

∥∥∥≤ εt exp
(
Lip

(
X

)
t
)
.

applying Gronwall’s inequality.

A particular consequence of this proposition is that if for every ε > 0 there is
an X̃ ∈F making (2.2.1) true, then we can approximate the T−flow map of X
arbitrarily well using elements of F :∥∥∥ΦT

X (x)−ΦT
X̃

(x)
∥∥∥≤ εT exp

(
Lip

(
X

)
T

)
= cε.

Because of this result, we now derive two approximation results for neural
networks working at the level of modelling vector fields.

2.2.1 Approximation based on a vector field decomposition

We now aim to show that, for a particularly designed neural network, we can
approximate arbitrarily well any continuous function in the Lp norm and any
differentiable invertible function in the supremum norm on compact sets. We
also mention how to extend this last result to generic continuous functions.

Theorem 2.1. Let F : Ω ⊂ Rn → Rn be a continuous function, with Ω ⊂ Rn a
compact set. Suppose that it can be approximated, with respect to some norm
∥·∥, by a composition of flow maps of C1(Ω,Rn) vector fields, i.e. for any ε> 0,
∃ f1, . . . , fk ∈ C1(Ω,Rn), such that∥∥∥F −Φhk

fk
◦ . . .◦Φh1

f1

∥∥∥< ε. (2.2.2)

Then, F can be approximated arbitrarily well by composing flow maps of gra-
dient and sphere-preserving vector fields, i.e., ∥F −Φhk

∇U k ◦Φhk

X k
S

◦ ... ◦Φh1

∇U 1 ◦
Φ

h1

X 1
S
∥ < ε.
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By sphere-preserving vector field, we mean a vector field XS having zT z as a
first integral, i.e. such that zT XS(z) = 0 for any z ∈Rn .

The norm ∥ · ∥ in (2.2.2) can be any norm that is well defined for functions in
C1(Ω,Rn). Two typical choices in the literature are Lp norms and the supre-
mum norm∥∥∥F −Φhk

fk
◦ . . .◦Φh1

f1

∥∥∥ := sup
x∈Ω

∥∥∥F (x)−Φhk

fk
◦ . . .◦Φh1

f1
(x)

∥∥∥ . (2.2.3)

Various works, like [11] and [42], have already proven the existence of vector
fields f1, . . . , fk making (2.2.2) true when ∥ · ∥ is the Lp norm and F is a con-
tinuous function. Regarding the validity of hypothesis (2.2.2) with the norm
defined in (2.2.3), we mention [68] where the authors have proven that if F is a
smooth invertible map with smooth inverse, then the existence of f1, . . . , fk can
be guaranteed.

Theorem 2.1 is a consequence of the Presnov decomposition of vector fields,
introduced in [56], applied to the k vector fields f1, · · · , fk ∈ C1(Ω,Rn) appear-
ing in (2.2.2). The Presnov decomposition is indeed a global decomposition
of C1(Rn ,Rn) vector fields into the sum of a gradient and a sphere-preserving
vector field. We now prove Theorem 2.1, and specialise it to the subfamilies
of vector fields we implement to define neural networks.

Proof. The vector fields f1, . . . , fk are supposed to be continuously differen-
tiable. Thus, they all admit a unique Presnov decomposition, i.e. they can be
written as

fi (x) =∇U i (x)+X i
S (x) ,

for a scalar function Ui : Rn → R, with Ui (0) = 0, and a sphere-preserving
vector field X i

S . In general, the two vector fields ∇U i (x) and X i
S(x) do not

commute, i.e. the Jacobi-Lie bracket [∇U i , X i
S] is not identically zero. How-

ever, because of the Baker-Campbell-Hausdorff formula (see e.g. [32, Section
III.4.2]), as in splitting methods (see e.g. [51]) we can proceed with an approx-
imation of the form

Φh
fi
=Φh

∇U i ◦Φh
X i

S
+O

(
h2

)
.

This last equality is the local error of the Lie Trotter splitting: local order 2 and
global order 1 under the hypothesis that guarantees convergence2. We recall
that Φh

fi
=Φh/n

fi
◦. . .Φh/n

fi
, where the flow maps are composed n times. Thus, up

to choosing n large enough, we can approximate as accurately as desired Φh
fi

with the composition of flow maps of sphere-preserving and gradient vector
fields. This concludes the proof.

2We prove the convergence of the Lie-Trotter splitting formula for Lipschitz regular vector
fields in Section 2.D. Such proof extends similarly to other splitting strategies.
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Similar reasoning can be extended to other vector field decompositions, e.g.
the Helmholtz decomposition, as long as f1, . . . , fk admit such a decomposi-
tion. In Section 2.3, we adopt gradient vector fields whose flow maps expand
and contract distances to obtain 1-Lipschitz neural networks. We now spe-
cialise Theorem 2.1 to the vector fields we use to model such neural networks.

Corollary 1. Consider the same assumptions of Theorem 2.1, and in partic-
ular the inequality (2.2.2). Then, we can approximate F arbitrarily well by
composing flow maps of expansive, contractive and sphere-preserving vector
fields.

We first remark that with an expansive vector field we mean a vector field
X such that ∥Φt

X (x)−Φt
X (y)∥ > ∥x − y∥ for any t > 0, while by contractive

we mean that ∥Φt
X (x)−Φt

X (y)∥ < ∥x − y∥. To prove the corollary, we rely on
a classical universal approximation theorem with non-polynomial activation
functions (see e.g. [55]). For clarity, we report it here.

Theorem 2.2 (Universal approximation, [55]). Let Ω ⊂ Rn be a compact set
and U ∈ C1(Rn). Assume γ ∈ C1(R) and γ is not a polynomial. Then for every
ε> 0 there is

Ũ (x) =αTΓ
(

Ax +b
)

, Γ (z) =
[
γ

(
z1

)
, . . . ,γ

(
zn

)]
,

such that supx∈Ω
∥∥∥Ũ (x)−U (x)

∥∥∥< ε, and supx∈Ω
∥∥∥∇Ũ (x)−∇U (x)

∥∥∥< ε.

We now prove Corollary 1.

Proof. The proof follows the same reasoning as the one of Theorem 2.1. In-
deed, we first decompose each of the f1, . . . , fk of equation (2.2.2) via the Pres-
nov decomposition as fi (x) =∇U i (x)+ X i

S(x). Then, we approximate each of
the U i functions thanks to Theorem 2.2. To ease the notation, we focus on one
of the fi and denote it with f from now on in the proof.

Let U : Rn → R and XS be so that f (x) = ∇U (x)+ XS(x). Choose then σ(x) =
max{ax, x}, a ∈ (0,1), and γ(x) = ∫ x

0 σ(s)ds. Since γ is not a polynomial and it
is continuously differentiable, Theorem 2.2 for any ε> 0 ensures the existence
of a function

Ũ (x) =αTΓ
(

Ax +b
)

,

that satisfies supx∈Ω ∥U (x)−Ũ (x)∥ < ε and supx∈Ω ∥∇U (x)−∇Ũ (x)∥ < ε. We
now split ∇Ũ (x) = AT diag(α)Σ(Ax +b) into a contractive and an expansive
part, exploiting the two following properties of σ and γ:

1. σ is positively homogeneous, i.e. σ(λs) =λσ(s) for λ, s ∈R, λ≥ 0,
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2. γ is strongly convex.

We decomposeα asα+−α−, where (α+)k = max{0,αk }, (α−)k =−min{0,αk }
with k = 1, . . . ,n. Because of the positive homogeneity, ∇Ũ (x) can be rewritten
as

∇Ũ (x) = AT
1 Σ

(
A1x +b1

)− AT
2 Σ

(
A2x +b2

)= XE (x)+XC (x)

where

A1 = diag
(
α+) 1

2 A, A2 = diag(α−)
1
2 A, b1 = diag

(
α+) 1

2 b, b2 = diag(α−)
1
2 b.

Because of the strong convexity of γ, we have

1

2

d

dt

∥∥z(t )− y(t )
∥∥2 = 〈

XE (z(t ))−XE (y(t )), z(t )− y(t )
〉> 0

with z(t ) =Φt
XE

(z0) and y(t ) =Φt
XE

(y0). This means that the flow of XE is an
expansive map. A similar reasoning shows that XC has a contractive flow map.
We can now conclude as in Theorem 2.1 since we have shown that every fi

in (2.2.2) can be approximated arbitrarily well as

fi (x) ≈ X i
E (x)+X i

C (x)+X i
S (x) .

As for the expansive and the contractive vector fields, to define neural networks
based on Corollary 1 one needs to parameterise the vector field X i

S(z) that
preserves spheres. Many possibilities are available, and we report a couple of
them. The first is

X̃S (z) = P (z)B TΣ
(
C z +d

)
, B ,C ∈Rm×n , d ∈Rm , P (z) = In − zzT

∥z∥2 ,

where P (z) : TzR
n → Tz S2

∥z∥ is the orthogonal projection on the space 〈z〉⊥ and
In ∈Rn×n is the identity matrix. Another option is

X̃S (z) =Λ(
z,θ

)
z

where Λ(z,θ) = A(z,θ) − A(z,θ)T ∈ Rn×n with A being a strictly upper tri-
angular matrix whose entries are modelled by BΣ(C x +b) ∈ RN , B ∈ RN×m ,
C ∈ Rm×n , b ∈ Rm , N = n(n−1)

2 . These two possibilities allow us to approxi-
mate any sphere-preserving vector field arbitrarily because of classical univer-
sal approximation results like the one mentioned in Theorem 2.2. We prefer,
for practical reasons, the second one in the experiments reported in Section
2.A.
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2.2 Universal approximation properties

We now summarise the results presented in the context of neural networks.
Suppose that ∥F −Φhk

fk
◦ . . . ◦Φh1

f1
∥ < ε and that fi ≈ f̃i = X i

C + X i
E + X̃ i

S for
i = 1, . . . ,k. In Theorem 2.1, we have worked with the exact flows of the
vector fields. However, most of the times these are not available, and hence
a numerical approximation is needed. This is exactly equivalent to applying a
splitting numerical integrator (see e.g. [32, Chapter 2] or [51]) to approximate
the hi -flow map of f̃i (and hence also of fi ) and get

F (x) ≈N (x) =Ψhk

X k
C

◦Ψhk

X k
E

◦Ψhk

X k
S

◦ . . .◦Ψh1

X 1
C
◦Ψh1

X 1
E
◦Ψh1

X 1
S

(x) . (2.2.4)

Here we denote with Ψh
f a discrete approximation of the exact flow Φh

f and
N is the neural network that approximates the target function F . Because
of Corollary 1 and basic theory of numerical methods for ODEs, N hence can
approximate arbitrarily well F in the norm ∥ ·∥.

We remark that the neural network N defined in (2.2.4) does not change the
dimensionality of the input point, i.e. it is a map from Rn to itself. However,
usually, ResNets allow for dimensionality changes thanks to linear lifting and
projection layers. One can extend all the results presented in this section to
the dimensionality changes, where instead of defining the whole network as
the composition of discrete flow maps, just the “dynamical blocks” are charac-
terised in that way, as represented in Figure 2.2. Consequently, one can extend

Figure 2.2: Representation of a ResNet made of two dynamical blocks, two lifting
layers L1, L2 and a final projection layer P .

the results presented in [77]. In particular, one can show that by composing
flow maps of sphere-preserving and gradient vector fields, generic continuous
functions can also be approximated in the sense of (2.2.3), as long as linear
lifting and projection layers are allowed in the network.

In Section 2.A, we show some numerical experiments where some unknown
dynamical systems and some target functions are approximated starting from
the above results. We now introduce another way to get expressivity results
starting from the continuous-in-time interpretation of neural networks.
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2.2.2 Approximation based on Hamiltonian vector fields

Augmenting the dimensionality of the space where the dynamics is defined is
a typical technique for designing deep neural networks, see Figure 2.2. Based
on this idea, we now study the approximation properties of networks obtained
by composing flow maps of Hamiltonian systems. For an introductory presen-
tation of Hamiltonian systems, see [40].

We now show that for any function F for which hypothesis (2.2.2) holds, one
can approximate F arbitrarily well, in the same function norm, by composing
flow maps of Hamiltonian systems and linear maps. Consequently, symplec-
tomorphisms like those defined by SympNets ([37]) can also be used approxi-
mate F arbitrarily well.

This result relies on the embedding of a vector field f ∈ C1(Rn ,Rn) into a
Hamiltonian vector field on R2n . To do so, we first define the linear map
L :Rn →R2n , as z 7→ L(z) = (z,0). We then introduce H f (z, p) = pT f (z), where
p is the conjugate momentum of z. The gradient of such a function is

∇H f
(
z, p

)=
∂

[
pT f (z)

]
∂z

f (z)

 .

This implies that the Hamiltonian ODEs associated with H f are[
ż
ṗ

]
= XH f

(
z, p

)= J∇H f
(
z, p

)=
 f (z)

−∂
[

pT f (z)
]

∂z

 .

Hence, we have Φh
f = P ◦Φh

XH f
◦L where P is the projection on the first compo-

nent R2n ∋ (z, p) 7→ z ∈ Rn . This construction, with hypothesis (2.2.2), implies
that ∥∥∥∥F −P ◦ Φhk

XH fk

◦ L ◦ P ◦ Φhk−1
XH fk−1

◦ L ◦ . . .L ◦ P ◦ Φh1
XH f1

◦ L

∥∥∥∥< ε.

One could be interested in such a lifting procedure and hence work with
Hamiltonian systems because discretising their flow maps with symplectic
methods might generate more stable networks or, as highlighted in [29], could
prevent vanishing and exploding gradient problems.

2.3 Adversarial robustness and Lipschitz neural net-
works

In this section, we consider the problem of classifying points of a set X ⊂ Rn .
More precisely, given a set X = ∪C

i=1Xi defined by the disjoint union of C
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subsets X1, . . . ,XC , we aim to approximate the function ℓ : X → {1, . . . ,C } that
assigns all the points of X to their correct class, i.e. ℓ(x) = i for all x ∈ Xi

and all i = 1, . . . ,C . Because of their approximation properties, one can of-
ten choose neural networks to solve classification problems, i.e. models that
approximate the labelling function ℓ. On the other hand, there is increasing
evidence that trained neural networks are sensitive to well-chosen input per-
turbations called adversarial attacks. The first work that points this out is [67]
and, since then, numerous others (see e.g. [49, 17, 31]) have introduced both
new ways to perturb the inputs (attacks) and to reduce the sensitivity of the
networks (defences). We first formalise the problem of adversarial robustness
from the mathematical point of view and then derive a network architecture
with inherent stability properties.

Let N :Rn →RC be a neural network trained so that the true labelling map ℓ is
well approximated by ℓ̂(x) = argmaxi=1,...,C N (x)i for points x ∈X . Further-
more, let us assume ∥∥x − y

∥∥≥ 2ε ∀x, y ∈X , ℓ (x) ̸= ℓ(
y
)

for some norm ∥ · ∥ : Rn → R+ defined on the ambient space. With this setup,
we say the network N is ε−robust if

ℓ (x) = ℓ̂ (x) = ℓ̂(
x +δ)

, ∀δ ∈Rn ,
∥∥δ∥∥< ε.

In order to quantify the robustness of N we, first of all, consider its Lipschitz
constant Lip(N ), i.e. the smallest scalar value such that∥∥∥N (x)−N (

y
)∥∥∥

2
≤ Lip

(N )∥∥x − y
∥∥ , ∀x, y ∈Rn ,

where ∥ · ∥2 : RC → R+ is the ℓ2 norm. We also need a way to quantify how
certain the network predictions are. A measure of this certainty level is called
margin in the literature (see e.g. [3, 7, 71]) and it is defined as

MN (x) =N (x)T eℓ(x) − max
j ̸=ℓ(x)

N (x)T e j ,

where ei is the i−th vector of the canonical basis of RC . Combining these two
quantities, in [71] the authors show that if the norm ∥·∥ considered for X is the
ℓ2 norm of the ambient space Rn , then

MN (x) ≥
p

2εLip
(N ) =⇒ MN

(
x +δ)≥ 0 ∀δ ∈Rn ,

∥∥δ∥∥≤ ε. (2.3.1)

Hence, for the points in X where (2.3.1) holds, the network is robust to per-
turbations with a magnitude not greater than ε. This result can be extended to
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generic ℓp metrics, but, in this section, we focus on the case where ∥ · ∥ is the
ℓ2 metric of Rn and, from now on, we keep denoting it as ∥ ·∥.

Motivated by inequality (2.3.1), we present a strategy to constrain the Lips-
chitz constant of ResNets to the value of 1. Differently from [18, 76, 53], we
impose such a property on the network without relying only on layers that are
1-Lipschitz. This strategy relies on the ODE-based approach that we are pre-
senting and is motivated by the interest of getting networks that also have good
expressivity capabilities. Indeed, we remark that in Section 2.2, we studied
the approximation properties of networks similar to those we consider in this
section. We conclude the section with extensive numerical experiments for the
adversarial robustness with the CIFAR-10 and CIFAR-100 datasets to test the
proposed network architectures.

2.3.1 Non-expansive dynamical blocks

Consider a scalar differentiable function V : Rn → R that is also strongly con-
vex, i.e. it admits a µ> 0 such that〈

∇V (x)−∇V
(
y
)

, x − y
〉
≥µ∥∥x − y

∥∥2 , (2.3.2)

see e.g. [35, Chapter 6]. We refer to a function V that is strongly convex with
strong convexity constant µ as µ-strongly convex. This said, it follows that the
dynamics defined by the ODE

ẋ(t ) =−∇V
(
x (t )

)= X
(
x (t )

)
(2.3.3)

is contractive, since

1

2

d

dt

∥∥x (t )− y (t )
∥∥2 =−

〈
x (t )− y (t ) ,∇V

(
x (t )

)−∇V
(
y (t )

)〉
≤−µ∥∥x (t )− y (t )

∥∥2

=⇒ ∥∥x (t )− y (t )
∥∥≤ e−µt

∥∥x0 − y0
∥∥< ∥∥x0 − y0

∥∥ ∀ t ≥ 0,

(2.3.4)

where x(t ) =Φt
X (x0) and y(t ) =Φt

X (y0). A choice for V is V (x) = 1TΓ(Ax+b),
where Γ(x) = [γ(x1), . . . ,γ(xn)], γ : R→ R is a strongly convex differentiable
function, and 1 = [1, . . . ,1] ∈ Rn . In this way, the network we generate by con-
catenating explicit Euler steps applied to such vector fields has layers of the
type

x 7→Ψh
X (x) = x −h ATΣ

(
Ax +b

)
where Σ(x) = [σ(x1), . . . ,σ(xn)] and σ(s) = γ′(s).

If we discretise the ODE introduced above reproducing the non-expansive be-
haviour at a discrete level, as presented, for example, in [25, 18, 53], we get
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that the numerical flow Ψh
X is non-expansive too. Consequently, we can ob-

tain 1-Lipschitz neural networks composing these non-expansive discrete flow
maps. A simple way to discretise (2.3.3) while preserving non-expansiveness
is to use explicit-Euler steps with a small enough step size. Indeed, assuming
Lip(σ) ≤ 1, a layer of the form

x 7→ x −h ATΣ
(

Ax +b
)

, h ≤ 2

∥A∥2 , ∥A∥ = sup
x∈Rn

∥x∥=1

∥Ax∥ , (2.3.5)

is guaranteed to be 1-Lipschitz. We remark that, as highlighted in [18, 53],
it is not necessary to require strong convexity for γ in order to make Φt

X 1-
Lipschitz. Indeed, it is enough to take γ convex. However, the strong convexity
assumption allows us to include other layers that are not 1-Lipschitz thanks to
inequality (2.3.4).

We now shortly present the reasoning behind this statement. Consider another
ODE ẋ(t ) = Y (x(t )) where Y is again a vector field on Rn and suppose that Y
is L-Lipschitz. Then, we have that∥∥∥Φt̄

Y

(
x0

)−Φt̄
Y

(
y0

)∥∥∥≤ exp
(
Lt̄

)∥∥x0 − y0
∥∥ .

This implies that, given X as in (2.3.3), the map Φt
X ◦Φt̄

Y =: C t̄ ,t satisfies∥∥∥∥Φt
X

(
Φt̄

Y

(
x0

))−Φt
X

(
Φt̄

Y

(
y0

))∥∥∥∥≤ exp
(−µt +Lt̄

)∥∥x0 − y0
∥∥ , (2.3.6)

so C t̄ ,t is Lipschitz continuous and will be 1-Lipschitz if exp(−µt +Lt̄ ) ≤ 1.
This amounts to imposing Lt̄ ≤ µt on the considered vector fields and time
intervals on which corresponding flow maps are active. The map C t̄ ,t can be
seen as the exact (t + t̄ )−flow map of the switching system having a piecewise
constant (in time) autonomous dynamics. In particular, such a system coin-
cides with Y for the first time interval [0, t̄ ) and with X for the time interval
[t̄ , t̄ + t ).

We could choose Y as the gradient vector field of an L-smooth scalar potential.
In other words, we ask for its gradient to be L-Lipschitz. An option is hence

Y (x) = ATΣ
(

Ax +b
)

, ∥A∥ ≤ 1,

with σ that is L−Lipschitz. Thus, one possible way of building a dynamical
block of layers that is 1-Lipschitz is through a consistent discretisation of the
switching system

ẋ (t ) = (−1)s(t ) AT
s(t )Σ

(
As(t )x (t )+bs(t )

)
, (2.3.7)
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where t 7→ s(t ) is a piecewise constant time-switching signal that, follow-
ing (2.3.6), balances the expansive and contractive regimes. In (2.3.7), we
are assuming that Σ(z) = [σ(z1), . . . ,σ(zn)] with σ which is 1−Lipschitz and
γ(s) = ∫ s

0 σ(t )d t is strongly convex. In the numerical experiment that we re-
port at the end of the section, we design s(t ) that alternates between contrac-
tive and possibly non-contractive behaviours. In the following subsection, we
present two possible approaches to discretise numerically the system in (2.3.7),
mentioning how this extends to more general families of vector fields.

In this subsection, we have worked to obtain dynamical blocks that are non-
expansive for the Euclidean metric. In Section 2.B, we show a way to extend
this reasoning to more general metrics defined in the input space.

2.3.2 Non-expansive numerical discretisation

As presented in the introductory section, it is not enough to have a continu-
ous model that satisfies some property of interest to get it at the network level.
Indeed, discretising the solutions to such an ODE must also be done while
preserving such a property. One approach that always works is to restrict the
step sizes to be sufficiently small so that the behaviour of the discrete solution
resembles the one of the exact solution. This strategy can lead to expensive
network training because of the high number of time steps. On the other hand,
this strategy allows weaker weight restrictions and better performances. We re-
mark how this translates for the dynamical system introduced in (2.3.7), with
σ(x) = max{x, ax}. For that ODE, the one-sided Lipschitz constant of con-
tractive layers is µ = aλmin(AT A), λmin being the smallest eigenvalue. Thus,
if A is orthogonal, we get µ = a. Under the same orthogonality assumption,
the expansive layers in (2.3.7) have Lipschitz constant L = 1, and this allows
to specialise the non-expansiveness condition (2.3.6) to t̄ ≤ at . Thus, if we
impose such a relationship and perform sufficiently small time steps, also the
numerical solutions will be non-expansive.

However, frequently smarter choices of discrete dynamical systems can lead
to leaner architectures and faster training procedures. We focus on the explicit
Euler method for this construction, although one can work with other numer-
ical methods, like generic Runge-Kutta methods, as long as the conditions we
derive are adjusted accordingly. We concentrate on two time steps applied
to equation (2.3.7), but then the reasoning extends to every pair of composed
discrete flows and to other families of vector fields. Let

Ψ̃h1 (x) = x −h1 AT
c Σ

(
Ac x +bc

)=: x −h1X
(

Ac ,bc , x
)

Ψh2 (x) = x +h2 AT
e Σ

(
Ae x +be

)=: x +h2X
(

Ae ,be , x
)

.
(2.3.8)
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We remark that here the subscripts c and e stand for contractive and expansive
respectively. The condition we want to have is that the map Fh = Ψ̃h1 ◦Ψh2 is
1-Lipschitz, or at least that this is true when Ac , Ae and Σ satisfy some well-
specified properties. We first study the Lipschitz constant of both the discrete
flow maps and then upper bound the one of Fh with their product. We take
two points x, y ∈ Rn , define δX (Ac ,bc , x, y) = X (Ac ,bc , y)− X (Ac ,bc , x), and
proceed as follows

∥∥∥Ψ̃h1
(
y
)− Ψ̃h1 (x)

∥∥∥2

= ∥∥y −x
∥∥2 −2h1

〈
y −x,δX

(
Ac ,bc , x, y

)〉+h2
1

∥∥∥δX
(

Ac ,bc , x, y
)∥∥∥2

≤ ∥∥y −x
∥∥2 −2h1λmin

(
AT

c Ac

)
a

∥∥y −x
∥∥2 +h2

1

∥∥Ac
∥∥4 ∥∥y −x

∥∥2 ,

where the last inequality is because we consider σ= max{ax, x}. In the exper-
iments we present at the end of the section, we assume all the weight matrices
to be orthogonal, hence λmin(AT

c Ac ) = 1. Multiple works support this weight
constraint as a way to improve the generalisation capabilities, the robustness
to adversarial attacks and the weight efficiency (see e.g. [72, 70]). We will
detail how we get such a constraint on convolutional layers in the numerical
experiments.
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Figure 2.3: Representation of the non-expansiveness region (2.3.10) for the choice
a = 0.5.

The orthogonality of Ac implies ∥Ac∥ = 1 and hence we get that a Lipschitz
constant of Ψ̃h1 is L1 =

√
1−2h1a +h2

1. For the expansive flow map Ψh2 , we
have∥∥∥Ψh2

(
y
)−Ψh1 (x)

∥∥∥≤ ∥∥x − y
∥∥+h2 Lip

(
AT

e Σ
(

Ae z +be
))∥∥x − y

∥∥
≤ (

1+h2
)∥∥x − y

∥∥ (2.3.9)
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under the orthogonality assumption for Ae . The same result holds also if we
just have ∥Ae∥ ≤ 1. This leads to a region in the (h1,h2)−plane where L1·L2 ≤ 1
that can be characterised as follows

R=
{(

h1,h2
) ∈ [

0,1
]2 :

(
1+h2

)√
1−2h1a +h2

1 ≤ 1

}
. (2.3.10)

This is represented in Figure 2.3a for the case a = 0.5, which is the one used
also in the numerical experiment for adversarial robustness. Thus, we now
have obtained a way to impose the 1-Lipschitz property on the network coming
from the discretisation of the ODE (2.3.7). It is clear that the result presented
here easily extends to different time-switching rules (i.e. a different choice of
s(t )), as long as there is the possibility of balancing expansive vector fields with
contractive ones. Furthermore, to enlarge the area in the (h1,h2)−plane where
non-expansiveness can be obtained, one can decide to divide into sub-intervals
the time intervals [0,h1] and [0,h2]. Doing smaller steps, the allowed area
increases. Indeed, instead of doing two single time steps of length h1 and h2,
one can perform S time-steps all of step-length h1/S or h2/S. Thus, replacing
h̄1 = h1/S and h̄2 = h2/S into (2.3.10) it is immediate to see that h1 and h2

are allowed to be larger than with the case S = 1. For example, if we again fix
a = 0.5 and set S = 2, we get the area represented in Figure 2.3b. The choice
of a = 0.5 and S = 2 is the one we adopt in the experiments reported in this
section. We now conclude the section showing how the derived architecture
allows us to improve the robustness against adversarial attacks for the problem
of image classification.

2.3.3 Numerical experiments with adversarial robustness

We now apply the reasoning presented above to the problem of classifying
images of the CIFAR-10 and CIFAR-100 datasets. The implementation is done
with PyTorch and is available at the GitHub repository associated to the paper3.
We work with convolutional neural networks, and with the activation function
σ(x) = max

{
x, x

2

}
, if not otherwise specified. We test multiple architectures

and start by introducing the one coming directly from the derivation reported
in the previous section. The residual layers of this network are dynamical
blocks based on the discrete flow maps

Ψ̃h1 (x) = x −h1 AT
c Σ

(
Ac x +bc

)=: x −h1X
(

Ac ,bc , x
)

, AT
c Ac = I

Ψh2 (x) = x +h2 AT
e Σ

(
Ae x +be

)=: x +h2X
(

Ae ,be , x
)

, AT
e Ae = I

x 7→Ψh2/2 ◦ Ψ̃h1/2 ◦Ψh2/2 ◦ Ψ̃h1/2 (x) . (2.3.11)

3https://github.com/davidemurari/StructuredNeuralNetworks
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The orthogonality of the convolutional filters Ac and Ae is imposed through a
regularisation strategy proposed in [72]. We comment more on this and alter-
native strategies later on in the description of the experimental setup. The step
restriction is imposed after every training iteration, projecting back the pairs
(h1,h2) in the region represented in Figure 2.3b if needed.

The strategy in equation (2.3.11) is defined as a “prescribed switching strategy”
in the numerical experiments. It is applied both for the experiment on CIFAR-
10 and CIFAR-100. To demonstrate the freedom one still has while using an
alternation strategy to design the layers, we mention another switching strategy
that we shall call “flexible”. In this case, we have the following alternation

Ψ̃h1 (x) = x −h1 AT
c Σ

(
Ac x +bc

)=: x −h1X
(

Ac ,bc , x
)

, AT
c Ac = I

Ψh2 (x) = x +h2 AT ReLU
(

Ax +b
)=: x +h2X

(
A,b, x

)
, AT A = I

x 7→ Ψ̃h1/2 ◦ Ψ̃h1/2 ◦Ψh2 (x) . (2.3.12)

Here the weight A is no longer with a subscript since the layer it defines has
no guaranteed behaviour. The restriction on the step size h1 is derived as in
the previous section, while h2 is either positive and satisfies a similar balance
law as for the switching in equation (2.3.11), or it is allowed to be negative.
For the dynamical block to be overall contractive, in case of a negative step
h2 we constrain it as in equation (2.3.5), i.e. we impose |h2| < 2. In this way,
there is not necessarily an alternation of expansive and contractive layers, but
the optimiser is free to learn the switching strategy while still guaranteeing
the non-expansivity of the dynamical block. For the experiments on CIFAR-
100, we do not impose A to be orthogonal, but we normalise it since we have
observed improved performance in this way.

We compare these alternation strategies with three other networks. The first
uses only non-expansive flow maps defined in (2.3.5), with ReLU as an activa-
tion function. In the experiments, we denote this network as “non-expansive”.
We set the weight matrices to be orthogonal and constrain the learnable step
sizes to be less than 2. We then report the results obtained with a more naïve
way of constraining the Lipschitz constant of a ResNet layer. This approach
relies on composing maps of the form

x 7→ 1

2

(
x + AT ReLU(B x +b)

)
, AT A = B T B = I ,

as suggested in [43, Appendix D.1]. We noticed experimentally that this con-
straining strategy does not generate very expressive networks, which motivates
the research for better 1-Lipschitz ResNet architectures, as proposed in this
manuscript. As a general reference, we also include experiments based on a
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standard ResNet that is not constrained in its weights and is composed of maps
of the form

x 7→ x + AT ReLU
(
B x +b

)
.

Before commenting on the results, we remark that the naïvely constrained net-
work and the reference ResNet have double the parameters of the others based
on dynamical systems. The rationale for this choice is to compare the networks
at the level of the number of computations done per layer instead of based on
the parameter count. For this reason, all the networks have the same num-
ber of layers. Furthermore, to get sufficiently accurate predictions on clean
images, we did not constrain the last linear layer in all the experiments with
the naïvely constrained network and all the CIFAR-100 experiments for the
other networks. To jump-start the training of the networks on the CIFAR-100
dataset, we initialised all their layers, but the final projection layer, with the
weights obtained on the CIFAR-10 dataset.

We implement architectures that take as inputs tensors of order three and shape
3× 32× 32. The first dimensionality of the tensor increases to 32− 64− 128
feature maps throughout the network via convolutional layers. For each fixed
number of filters, we have four layers of the forms specified above. To be
precise, convolutional layers replace the matrix-vector products.

The network architecture based on (2.3.11) gets close to 90% test accuracy,
on the CIFAR-10 dataset, when trained with cross-entropy loss and without
weight constraints. However, as presented at the beginning of this section,
one could consider its Lipschitz constant and its margin at any input point of
interest to get robustness guarantees for a network. For this reason, we now
focus on constraining the Lipschitz constant of the architecture and introduce
the loss function we adopt to promote higher margins. As in [3], we train the
network architecture with the multi-class hinge loss function defined as

L= 1

N

N∑
i=1

10∑
j=1

j ̸=ℓ(xi )

max

{
0,margin−

(
N (

xi
)T eℓ(xi ) −N (

xi
)T e j

)}
,

where margin is a parameter to tune. We train all the networks with this loss
function and with a stochastic gradient descent (SGD) optimiser. Having pre-
dictions with higher margins allows us to get more robust architectures if we
fix the Lipschitz constant. Still, too high margins can lead to poor accuracy.
In the experiments we test the three margin values 0.07, 0.15 and 0.3. For
the networks based on dynamical systems, we report the results obtained con-
straining all the dynamical blocks and the final projection layer. However, we
do not constrain the lifting layers. In this way, we can still control the full net-
work’s Lipschitz constant, just considering the norms of those lifting layers.
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On the other hand, we leave some flexibility to the network, which can train
better also when we increase the hinge-loss margin. We notice experimentally
that the dynamical blocks usually get a small Lipschitz constant. Thus, even
when we do not constrain all the layers, the network will still be 1-Lipschitz.

To get orthogonal convolutional filters, we apply the regularisation strategy
proposed in [72]. This strategy is not the only one possible. Still, for this ex-
periment, we preferred it to more involved ones since the main focus has been
on the architecture, and the obtained results are satisfactory. Various works,
e.g. [41, 54, 28], highlight how one can directly constrain the optimisation
steps without having to project the weights on the right space or to add regular-
isation terms. We have not experimented with these kinds of strategies, and we
leave them for future study. We also work with an orthogonal initialisation for
the convolutional layers. The lifting layers of the networks based on dynamical
systems are modelled as x 7→αW x for a convolutional filter W with ∥W ∥2 ≤ 1.
To constrain the norm to 1, we add a projection step after the stochastic gradi-
ent descent (SGD) method updates the weights, i.e. we normalise the weights
as W 7→ W /max{1,∥W ∥2}. Here, the 2−norm of the convolutional filters is
computed with the power method as described, for example, in [53]. Further-
more, we work with SGD having a learning rate scheduler that divides the
learning rate after a fixed number of epochs. Finally, we generate the adversar-
ial examples with the library “Foolbox” introduced in [58]. We focus on the
ℓ2−PGD attack and perform ten steps of it. We test different magnitudes of
the adversarial perturbations.

To analyse the results of the experiments, we show how the accuracy of the net-
works changes as we increase the magnitude of the perturbations and the areas
under these curves we get. The Area Under the Curve (AUC) metric is an infor-
mative quantity adopted to measure the adversarial robustness [8]. This metric
is evaluated by computing the area below the piecewise linear curve obtained
by plotting the robust accuracies as in Figure 2.4. A higher value indicates a
better trade-off between accuracy and robustness. In Figure 2.4, we see that
the robustness of the constrained neural networks based on dynamical systems
improves compared to the baseline ResNet and the naïvely constrained one.
Furthermore, we see that alternating expansive layers in the network improves
the trade-off between clean accuracy and robustness than using a network with
only non-expansive layers. To conclude, it is also evident from the experi-
ments that if a more flexible alternating strategy is adopted, the results can
improve because while the clean accuracy can increase, the robustness is kept
unchanged or improved. In Figure 2.5, we plot the timesteps learned for the
networks with a flexible alternation strategy. More precisely, given the 2 con-
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secutive layers defined by

Ψ̃h1 (x) = x −h1 AT
c Σ

(
Ac x +bc

)=: x −h1X
(

Ac ,bc , x
)

, AT
c Ac = I

Ψh2 (x) = x +h2 AT ReLU
(

Ax +b
)=: x +h2X

(
A,b, x

)
, AT A = I

x 7→ Ψ̃h1/2 ◦ Ψ̃h1/2 ◦Ψh2 (x) ,

we plot line segments that are as long as the steps h1 and h2, doing it for all the
pairs of such layers. The step h2 can also be negative, leading to non-expansive
dynamics. This possibility is the main difference provided by the flexibility of
the alternation approach. We notice that, especially for the CIFAR-10 dataset,
a timestep is learned to be negative. This is not the case for CIFAR-100. For the
case of margin = 0.15 and margin = 0.3, reported in Section 2.C, more steps
are negative, especially for the CIFAR-10 experiments. On the other hand,
there seems not to be a clear pattern in the step selection. These results sug-
gest the optimiser exploits the freedom introduced due to the flexibility in the
step selection and allows getting improved results in some instances. Section
2.C collects more details on how the timesteps are constrained. Furthermore,
in Section 2.C, we also report the experiments for different margin values.

We remark that the results obtained with our proposed approach are not as
good as those provided by the technique of adversarial training yet. On the
other hand, our derivations lead to a more efficient training strategy that allows
us to get networks with reduced sensitivity without the need to build adversarial
examples in the training phase. Additionally, the results in Figure 2.4 show that
the proposed constraining strategy allows considerable gains in the accuracy-
robustness trade-off. The proposed framework is general enough to allow for
possible improvements and reduce the performance difference with adversarial
training. However, how to do so in practice still needs to be understood. We
mention some possibilities in Section 2.5.

2.4 Imposition of other structure

Depending on the problem and the application where a neural network is
adopted, the properties that the architecture should satisfy may be very differ-
ent. We have seen in the previous section a strategy to impose Lipschitz con-
straints on the network to get some guarantees in terms of adversarial robust-
ness. In that context, the property is of interest because it is possible to see that
even when imposing it, we can get sufficiently accurate predictions. Moreover,
this strategy allows controlling the network’s sensitivity to input perturbations.
As mentioned in the introduction, there are at least two other situations where
structural constraints might be desirable. The first one is when one knows
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Figure 2.4: On the left: plots of the accuracy against the magnitude of the adversarial
PGD perturbation of 1024 test clean images, comparing various perturbation magni-
tudes and the 5 networks introduced in the text. On the right: area under the curves
to measure the actual robustness of the models. The legend is shared among the four
plots, and for clarity, we omit it in the plots for the area under the curve.

that the function to approximate has some particular property. The second is
when we know that the data we process induces some structure on the func-
tion we want to approximate. This section supports the claim that combining
ODE models with suitable numerical integrators allows us to define structured
networks. More precisely, we derive multiple architectures by putting together
these two elements. Some of these have already been presented in other works,
and others are new. The properties that we investigate are symplecticity, vol-
ume preservation and mass preservation. For the first two, we describe how
to constrain the dynamical blocks. For the third, we propose how to structure
also the linear lifting and projection layers. Moreover, for this latter example,
we also report some numerical experiments. The purpose of the presented toy
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Figure 2.5: Representation of the learned step sizes for the 12 layers characterising the
networks giving the results reported in Figure 2.4. This is the case with margin = 0.07,
and the other ones are reported in Section 2.C. The time instants corresponding to the
beginning of the interval where a layer is active are denoted with dots, while the ending
time instants with diamonds. This implies that if a diamond on a segment is on the left
of a dot, the represented timestep is negative. The abscissa t corresponds to the sum
of the timesteps characterising each layer.

example is to show that the architecture is computationally realisable and also
effective.

2.4.1 Symplectic dynamical blocks

A function F :R2n →R2n is said to be symplectic if it satisfies the identity

∂F (x)

∂x

T

J
∂F (x)

∂x
= J ∀x ∈R2n , J=

[
0n In

−In 0n

]
∈R2n×2n

with 0n , In ∈ Rn×n being the zero and the identity matrices. Symplectic maps
are particularly important in classical mechanics, because the flow map Φt

of a Hamiltonian system ẋ(t ) = J∇H(x(t )) is symplectic, see e.g. [40]. This
fact implies that if one is interested in approximating such a flow map with a
neural network, then structuring it to be symplectic might be desirable. In this
direction, there are a considerable number of works (see e.g. [37, 23, 78, 14]).
We mention in particular [37] where the authors construct layers of a network
to ensure the symplectic property is satisfied. On the other hand, in [23] the
authors consider a neural network as the Hamiltonian function of a system
and approximate its flow map with a symplectic numerical integrator4. The
simplest symplectic integrator is symplectic Euler, which applied to

H
(
q, p

)=V
(
q
)+K

(
p

)
4We remark that a one-step numerical method Ψh is symplectic if and only if, when applied

to any Hamiltonian system, it is a symplectic map.
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computes updates as

qn+1 = qn +h∂p K
(
pn

)
, pn+1 = pn −h∂qV

(
qn+1

)
.

We now focus on the gradient modules presented in [37], defined by alternating
maps of the form

G1
(
q, p

)= [
AT diag(α)Σ

(
Ap +a

)+q
p

]
,

G2
(
q, p

)= [
q

B T diag
(
β
)
Σ

(
B q +b

)+p

]
.

We notice that we can obtain the same map from a time-switching ODE model.
We first introduce the time-dependent Hamiltonian of such a model, which is

Hs(t ) (z) =αT
s(t )Γ(As(t )Ps(t )z +bs(t )), As(t ) ∈Rn×n , bs(t ) ∈Rn , (2.4.1)

with s : [0,+∞) → R+ being piecewise constant. We can suppose without
loss of generality that s(t ) ∈ {0,1,2, . . . ,K } and that Ps(t ) alternates between
the two matrices Π1 = [In ,0n] ∈ Rn×2n and Π2 = [0n , In] ∈ Rn×2n . Let now
Γ(z) = [γ(z1), . . . ,γ(zn)], Σ(z) = [σ(z1), . . . ,σ(zn)], and γ′(s) = σ(s). We then
notice that the Hamiltonian vector field associated with Hs(t ) alternates be-
tween the following two vector fields

XH1

(
q, p

)= [
AT

1 diag(α1)Σ
(

A1p +b1
)

0
]T

,

XH2

(
q, p

)= [
0 −AT

2 diag
(
α2

)
Σ

(
A2q +b2

)]T
.

We now conclude that if we compute the exact flow of XHs(t ) and we take s(t )
to be constant on every interval of length 1, we recover the gradient module
in [37].

Similarly, all the network architectures presented in [23] and related works are
based on defining a neural network N (q, p) that plays the role of the Hamilto-
nian function and then applying a symplectic integrator to the Hamiltonian
system ż = J∇N (z). The composition of discrete flow maps of the time-
independent Hamiltonian gives a symplectic network with shared weights. On
the other hand, if the Hamiltonian changes as in (2.4.1), one gets different
weights for different layers and potentially a more expressive model as pre-
sented in [37].

2.4.2 Volume-preserving dynamical blocks

Suppose that one is interested in defining efficiently invertible and volume-
preserving networks. In that case, an approach based on switching systems
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and splitting methods can provide a flexible solution. Consider the switching
system defined by ż(t ) = fs(t )(z(t )), fi ∈X(Rn), where for every value of s(t ),
the vector field has a specific partitioning that makes it divergence-free. For
example, if we have n = 2m,

fs(t ) (z) =
[

us(t )
(
z [m :]

)
vs(t )

(
z [: m]

)]T

satisfies such a condition and its flow map will be volume-preserving. We
can numerically integrate such a vector field while preserving this property.
Indeed, we can apply a splitting method based on composing the exact flow
maps of the two volume-preserving vector fields

f 1
s(t ) (z) =

[
us(t )

(
z [m :]

)
0
]T

, f 2
s(t ) (z) =

[
0 vs(t )

(
z [: m]

)]T
.

This approach gives architectures that are close to the ones of RevNets (see
e.g. [30]). The inverse of the network is efficient to compute in this case,
and this translates into memory efficiency since one does not need to save
intermediate activation values for the backpropagation. A particular class of
these blocks can be obtained with second-order vector fields and, in particular,
with second-order conservative vector fields (hence Hamiltonian):

ẍ (t ) = fs(t )
(
x (t )

)
, or ẍ (t ) =−∇Vs(t )

(
x (t )

)
,

where, for example,

Vs(t )(x) =αTΓ
(

As(t )x +bs(t )
)

for some Γ= [γ, . . . ,γ]. With a similar strategy, one can also derive the volume-
preserving neural networks presented in [6].

2.4.3 Mass-preserving neural networks

The final property we focus on is mass preservation. By mass preservation, we
refer to the conservation of the sum of the components of a vector (see [10]).
This property is typical of semi-discretisations of mass-preserving PDEs, mod-
els for chemical reactions, for population dynamics and ecology (see e.g. [33,
15, 59]). More explicitly, one could be interested in imposing such a structure
if the goal is to approximate a function F : Rn → Rm that is known to satisfy
Tn x =∑n

i=1 xi = TmF (x) =∑m
i=1 F (x)i . A simple way to impose such property

is by approximating the target function F :Rn →Rm as

F (x) ≈
∑n

i=1 xi∑m
j=1 F̃ (x) j

F̃ (x)
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where F̃ : Rn → Rm is any sufficiently expressive neural network. However,
this choice might lead to hard training procedures because of the denomina-
tor. Imposing this structure at the level of network layers is not so intuitive in
general. Hence, we rely again on a suitable ODE formulation. A vector field
X ∈X(Rn) whose flow map preserves the sum of the components of the state
vector is simply one having a linear first integral g (x) = 1T x = ∑n

i=1 xi . Thus,
we can design vector fields of the form

ẏ (t ) =
(

A
(
y
)− A

(
y
)T

)
1, A :Rn →Rn×n , (2.4.2)

and this property will be a natural consequence of the exact flow map. This
mass conservation could also be extended to weighted-mass conservation, and
we would just have to replace 1 with a vector of weights α. This extension
does not, however, allow to change the dimensionality from one layer to the
next one as easily. To model these vector fields, we can work with parametric
functions like f̃ (x) = B TΣ(Ax +b) ∈Rn(n−1)/2 and use them to build the upper
triangular matrix-valued function A in (2.4.2). As presented in [32, Chapter
4], it is also immediate to impose this property at a discrete level since every
Runge-Kutta or multistep method preserves linear first integrals without time-
step restrictions. Thus, a possible strategy to model mass-preserving neural
networks is based on combining layers of the following types:

1. Lifting layers: L :Rk →Rk+s , L
(
x1, . . . , xk

)= (
x1, . . . , xk ,0,0, . . . ,0

)
,

2. Projection layers:

P :Rk+s →Rk ,

P
(
x1, . . . , xk , xk+1, . . . , xk+s

)= (
x1 +o, . . . , xk +o

)
,

with o =∑s
i=1 xk+i /s,

3. Dynamical blocks: one-step explicit Euler discretisations of (2.4.2).

To test the neural network architecture, we focus on the approximation of the
flow map of the SIR model

ẏ =
[
−y1 y2 y1 y2 − y2 y2

]T = X
(
y
)T . (2.4.3)

This experiment relates to the research area of data-driven modelling, which
has attracted a high amount of interest in recent years, especially through the
tools provided by machine learning (see, e.g., [19, 26, 6, 23]). We model the
neural network as discussed above. We approximate the 1−flow map of (2.4.3)
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working with pairs of the form {(xi , yi = Ψ1
X (xi ))}i=1,...,N

5. In this context,
we suppose it is not possible to integrate in time the system of ODEs because
this is not available, and what is provided is just a set of observed trajectories.
The plots in Figure 2.6 represent the first two components of the solution for
the SIR model. All the line segments connect the components of the initial
conditions with those of the time-1 updates. The considerable benefit of mass
preservation as a constraint is that it allows interpretable outputs. Indeed, in
this case, the components of y represent the percentages of three species in the
total population, and the network we train still allows us to get this interpreta-
tion to be mass-preserving.

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0
0.1
0.2
0.3
0.4
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0.6
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y 1

Time evolution of y1

True Position

Predicted Position

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.1

0.2

0.3

0.4
y 2

Time evolution of y2

True Position

Predicted Position

Figure 2.6: Plots of the approximation of the time 1−flow map of the SIR
model (2.4.3) for 10 test initial conditions. We report the first two components of
the solutions. Each point represents either an initial condition (at time 0), or a time-1
update.

2.5 Conclusion and future directions

In this work, we have introduced a framework to combine the design of ODE
models with the choice of proper numerical methods to, in turn, obtain neural
networks with prescribed properties. After introducing and motivating the ap-
proach, we proved two universal approximation theorems. The first one relates
to sphere-preserving and gradient vector fields, while the second one involves
Hamiltonian vector fields. We then obtained Lipschitz-constrained ResNets,
focusing mainly on how to introduce layers that are not 1-Lipschitz. We then
applied this construction to get neural networks with adversarial robustness
guarantees. Finally, to show the framework’s flexibility, we demonstrated how

5Here with Ψ1
X (xi ) we refer to an accurate approximation of the time-1 flow map of X

applied to xi
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to design dynamical blocks that are symplectic, volume-preserving and mass-
preserving.

The main application investigated in this manuscript is the one of adversarial
robustness. Our experiments highlight that the robustness of neural networks
to input perturbations can be improved using structured neural networks. How-
ever, the obtained results are competitive with other constraining strategies but
not with adversarial training, which still provides state-of-the-art performance.
We plan to optimise the proposed approach for higher clean accuracy, possibly
by designing a better optimisation strategy or other more expressive families
of expansive and contractive vector fields.

Throughout the manuscript, we have focused on explicit numerical methods
as tools to generate neural network architectures. However, many geometric
integrators are implicit (see e.g. [32]); thus, this remains a direction to pursue
in further work so that the framework can be extended to other properties (see
e.g. [5, 46]).

We have adopted the formalism of piecewise autonomous dynamical systems
to design neural networks without heavily relying on the theory of time-
switching systems. However, switching systems are a well-studied research
area (see e.g. [44, 45, 2]), and it seems natural to study them further and their
use to design neural network architectures.

Finally, we remark that imposing properties on neural networks is a promising
strategy to make them more understandable, interpretable, and reliable. On the
other hand, it is also clear that constraining the architecture can considerably
decrease the network’s expressivity in some cases. Thus, it remains to un-
derstand when it is preferable to replace hard constraints with soft constraints
promoting such properties without imposing them by construction.
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Appendix

2.A Some numerical experiments for data-driven mod-
elling and regression

We now apply the theoretical background introduced in Section 2.2 to two
approximation tasks. More precisely, we verify whether the introduced archi-
tectures are complicated to train in practice or whether they can achieve good
performances. The two tasks of interest are the approximation of a continuous
scalar function and the approximation of a C1 vector field starting from a set of
training trajectories. We start with the approximation of f (x) = x2+|x|+sin x,
x ∈ R, and g (x, y) =

√
x2 + y2. The goal here is to approximate them by com-

posing flow maps of vector fields that are structured as

XG (z) = AT diag(α)Σ
(

Az +b
)=∇

(
αTΓ

(
Az +b

))
,

XS (z) =
(

A (z)− A (z)T
)

z.

Following the result in Theorem 2.1, we compose the flow maps of XG and
XS , maintaining the same time step for pairs of such flow maps. We report the
results in Figure 2.A.1.

The second experiment that we report is the one of approximating a vector
field X ∈X(Rn) starting from a set of training pairs {(xi , yi )}i=1,...,N , with yi =
Ψh

X (xi ), for an accurate approximation Ψh
X of the time-h flow of X . We recall

that the universal approximation result based on the Presnov decomposition
allows approximating any vector field X as

Xθ (z) = AT diag(α)Σ
(

Az +b
)+ (

B (z)−B (z)T
)

z = XG (z)+XS (z) ,

as long as the weights are chosen correctly. In principle, calling Ψh any nu-
merical method applied to Xθ and said ŷi =Ψh(xi ), one could train the weights
of Xθ so that they minimise

L= 1

N

N∑
i=1

∥∥yi − ŷi
∥∥2 .
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Figure 2.A.1: Comparison between the trained networks and the true functions.

However, because of the properties of XG and XS , we choose to preserve them
with Ψh and apply a splitting method. In other words, we apply to XS and
XG two integrators Ψh

S and Ψh
G , then compose them to obtain Ψh =Ψh

G ◦Ψh
S .

We choose Ψh
S to be an explicit method that preserves the conserved quantity

∥x∥2, while Ψh
G to be a discrete gradient method (see e.g. [27, 52]) so that it

preserves the dissipative nature of XG . As said before, this splitting strategy is
not necessary in principle. However, we propose it as an alternative inspired
by all the works on Hamiltonian neural networks (see e.g. [24, 20, 27]) where
geometric integrators are often utilised. Furthermore, it would be interesting
to understand if this or other splitting strategies give better approximation re-
sults or theoretical guarantees, but this goes beyond the scope of this work. We
choose Ψh

S as a modified Euler-Heun method, following the derivation pre-
sented in [16], so that it is explicit and it also preserves ∥x∥2. For Ψh

G we use
instead the Gonzalez discrete gradient method (see e.g. [52]). We remark that
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Figure 2.A.2: In the two plots, we compare the true and predicted vector fields.

77



Dynamical Systems–Based Neural Networks

discrete gradient methods applied to ẋ(t ) =−∇V (x(t )) are of the form

xn+1 = xn −h∇V
(
xn , xn+1

)
and they are, hence, implicit. However, since we have the trajectories available,
i.e. the yi s are known, we do not have to solve a non-linear system of equations.
Indeed, the problem of approximating X amounts to minimise the following
cost function

L= 1

N

N∑
i=1

∥∥∥∥∥yi −
(
Ψh

S

(
xi

)−h∇V
(
Ψh

S

(
xi

)
, yi

))∥∥∥∥∥
2

.

In Figure 2.A.2, we report the results obtained for the following two vector
fields

X1 (x) =


(
sin x1

)3 +x3
1

(sin x2)3 +x3
2(

sin x3
)3 +x3

3(
sin x4

)3 +x3
4

 X2(x) =
[

x2

−sin x1

]
.

2.B Non-expansive networks with non-Euclidean met-
ric

X Y Z

X + δ, ‖δ‖2 = 108.52 Y + δ, ‖δ‖2 = 81.6 Z + δ, ‖δ‖2 = 113.18

Figure 2.B.1: Three clean images from the CIFAR-10 dataset at the top and a random
perturbation of the red channel in one pixel at the bottom. For humans, the images of
the two rows clearly associate to the same object, even with this pixel perturbation.
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2.C Additional details on adversarial robustness

In Section 2.3, we have introduced a way to generate networks that are non-
expansive for the Euclidean metric on the input space. We now propose a
strategy to generalise the reasoning. It is intuitive, and also evident from Fig-
ure 2.B.1, that ℓp norms of Rn are not the ones humans utilise to compare
pictures. There have been many attempts to design similarity measures be-
tween images (see e.g. [73, 65]), but it is still not evident what should be the
preferred choice. To make the model (2.3.7) introduced in Section 2.3 more
general, we hence show how it can be made contractive for a more generic
metric d defined by a symmetric and positive definite matrix M ∈ Rn×n . We
introduce the notation 〈v, w〉M = vT M w for any pair of vectors v, w ∈Rn . Let
again Σ(z) = [σ(z1), . . . ,σ(zn)] where σ is an increasing scalar function. We
focus on the autonomous dynamical system

ż (t ) =−W TΣ
(
MW z +b

)
, W ∈Rn×n , b ∈Rn , (2.B.1)

that is no longer a gradient vector field, but it has properties similar to the one
studied above. We suppose M is constant and the same for the other involved
weights. As discussed throughout the paper, how this reasoning extends to
time-switching systems is quite natural and follows the procedure seen for M
being the identity matrix, compare in particular Section 2.3. We now verify the
contractivity of the ODE (2.B.1) with respect to the metric defined by M :

d

dt

1

2

∥∥z(t )− y(t )
∥∥2

M = 1

2

d

dt

((
z (t )− y (t )

)T M
(
z (t )− y (t )

))
=−

〈
W TΣ

(
MW z +b

)−W TΣ
(
MW y +b

)
, z − y

〉
M

=−
〈
Σ

(
MW z +b

)−Σ(
MW y +b

)
, MW z −MW y

〉
≤ 0.

This result implies that all the trajectories of (2.B.1) will converge to a refer-
ence trajectory if the convergence is measured using the metric defined by M .
Notice that the scalar product in the last line is the canonical one of Rn . Hence,
if we have that γ is strongly convex, we can still combine these dynamics with
expansive vector fields.

2.C Additional details on adversarial robustness

This section presents additional plots related to the experiment on adversarial
robustness analysed in Section 2.3. We have studied the effect of using dif-
ferent margin values in the loss function adopted for the training of the five
different neural networks. In Figure 2.C.1, we report the results obtained for
two additional values of the margin parameter. The observations presented for
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Figure 2.C.1: Behaviour of the test accuracy on 1024 images, under perturbations of
different magnitude ε. On the left, we report the experiments with a margin value of
0.15, and on the right, with 0.3.

the case margin = 0.07 extend also to these ones, where the dynamically con-
strained networks still perform better. Moreover, the networks that allow for
expansive layers still outperform those with all non-expansive layers.

We additionally provide the details on selecting the step sizes for the flexibly
constrained neural networks. We recall that the flexible alternation strategy is
defined by maps of the form

Ψ̃h1 (x) = x −h1 AT
c Σ

(
Ac x +bc

)=: x −h1X
(

Ac ,bc , x
)

, AT
c Ac = I

Ψh2 (x) = x +h2 AT ReLU
(

Ax +b
)=: x +h2X

(
A,b, x

)
, AT A = I

x 7→ Ψ̃h1/2 ◦ Ψ̃h1/2 ◦Ψh2 (x) =:Ψh (x) .

In order for the map Ψh to be non-expansive, we either need to have both
Ψ̃h1/2 and Ψh2 to be 1−Lipschitz, or them to be 1−Lipschitz when composed
together. For the former case, this is imposed in our implementation by the
constraints 0.11 < h1 < 1.9 and −1.9 < h2 ≤ 0, since ∥Ac∥ = ∥A∥ = 1 and the
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relevant condition is (2.3.5). In the case h2 > 0, we need to impose the relation

(
h1,h2

) ∈R=
{(

h1,h2
) ∈R2 :

(
1+h2

)(
1−h1a +h2

1/4
)
≤ 1

}
.

Because of experimental reasons, we choose to impose it by clamping the h1

timestep, with the PyTorch function clamp, so that 0.11 < h1 < 1.9. Then,
we clamp h2 so that the pair (h1,h2) ∈R, i.e. in the green area represented
in Figure 2.C.2. All the constraints are imposed after each SGD step. In each

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

h1
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0.6

0.8

1.0

h
2

Figure 2.C.2: In green, we represent the contractivity area R.

training iteration, the pair (h1,h2) is projected onto the green area. In Figure
2.C.3, we show the learned timesteps for the flexible training strategy that are
not included in the manuscript’s main text. We remark that Figure 2.C.3 reports
many negative steps for the CIFAR-10 dataset, especially when the margin is
0.15, where almost all of them are. This pattern does not show up for CIFAR-
100, which suggests that the increased complexity of this classification task
leads to the need for more freedom in the network layers, given by expansive
layers.

2.D Proof of the convergence of the splitting for Lips-
chitz fields

In this section, we prove the convergence of a Lie-Trotter splitting method
applied to Lipschitz vector fields, as applied in the proofs of Section 2.2. This
reasoning extends similarly to other splitting strategies, like Strang splitting.
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Figure 2.C.3: These figures report the learned step alternation strategies for the flexi-
ble regime, with margin values of 0.15 and 0.3
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Proposition 2.2. Let X ∈X(Rn) be a vector field that can be decomposed on
the compact set Ω⊂Rn as X = f +g for two Lipschitz continuous vector fields
f , g ∈X(Ω). More precisely, let L f ,Lg > 0 be such that∥∥ f (x)− f (y)

∥∥≤ L f
∥∥x − y

∥∥ ,
∥∥g (x)− g (y)

∥∥≤ Lg
∥∥x − y

∥∥ ∀x, y ∈Ω.

The Lie-Trotter splitting method ϕh :=Φh
g ◦Φh

f is a first-order accurate approx-

imation of the exact flow Φh
X .

Proof. The proof comes from applying Gronwall’s inequality twice. We start
considering the function

γ (t ) :=
∥∥∥Φt

g ◦Φh
f

(
x0

)−Φt
f +g

(
x0

)∥∥∥ .

By the integral definition of the flow map, we have

Φh
g ◦Φh

f

(
x0

)= x0 +
∫ h

0
f
(
Φs

f

(
x0

))
ds +

∫ h

0
g

(
Φs

g ◦Φh
f

(
x0

))
ds

and

Φh
f +g

(
x0

)= x0 +
∫ h

0
f
(
Φs

f +g

(
x0

))
ds +

∫ h

0
g

(
Φs

f +g

(
x0

))
ds.

This means that

γ
(
h
)≤ L f

∫ h

0

∥∥∥Φs
f +g

(
x0

)−Φs
f

(
x0

)∥∥∥ds +Lg

∫ h

0

∥∥∥Φs
g ◦Φh

f

(
x0

)−Φs
f +g

(
x0

)∥∥∥ds

=α(
h
)+∫ h

0
β (s)γ (s)ds

where α(h) = L f
∫ h

0 ∥Φs
f +g (x0)−Φs

f (x0)∥ds and β(s) ≡ Lg .

Since α is a non-decreasing function, we can apply Gronwall’s integral in-
equality to get

γ
(
h
)≤α(

h
)

exp

(∫ h

0
β (s)d s

)
=α(

h
)

exp
(
Lg h

)
.

We need to bound the function α(h). We study the behaviour of

λ (s) :=
∥∥∥Φs

f +g

(
x0

)−Φs
f

(
x0

)∥∥∥
similarly to what was done above. Indeed we have

Φs
f +g

(
x0

)−Φs
f

(
x0

)= ∫ s

0
f
(
Φs′

f +g

(
x0

))
ds′

+
∫ s

0
g

(
Φs′

f +g

(
x0

))
ds′−

∫ s

0
f
(
Φs′

f

(
x0

))
ds′
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and hence
λ (s) ≤ L f

∫ s

0
λ

(
s′

)
ds′+

∫ s

0

∥∥∥∥g
(
Φs′

f +g

(
x0

))∥∥∥∥ds′.

Again by Gronwall’s inequality, we can conclude

λ (s) ≤ s max
x∈Ω

∥∥g (x)
∥∥exp

(
L f s

)
.

This inequality allows finishing the proof since

γ
(
h
)

:=
∥∥∥Φh

g ◦Φh
f

(
x0

)−Φh
f +g

(
x0

)∥∥∥
≤ max

x∈Ω
∥∥g (x)

∥∥exp
(
Lg h

)∫ h

0
exp

(
L f h

)
sds

= h2

2
exp

((
L f +Lg

)
h

)
max
x∈Ω

∥∥g (x)
∥∥

≤ h2

2
exp

(
Lip

(
X

)
h
)

max
x∈Ω

∥∥g (x)
∥∥ .

Thus Lie-Trotter splitting is a first-order method for the vector field X .
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Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and
Gauges. arXiv preprint arXiv:2104.13478, 2021. 9, 48

[13] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and
Pierre Vandergheynst. Geometric deep learning: going beyond Euclidean
data. IEEE Signal Processing Magazine, 34(4):18–42, 2017. 48

[14] Joshua William Burby, Qi Tang, and R Maulik. Fast neural Poincaré
maps for toroidal magnetic fields. Plasma Physics and Controlled Fu-
sion, 63(2):024001, 2020. 70

[15] Hans Burchard, Eric Deleersnijder, and Andreas Meister. A high-order
conservative Patankar-type discretisation for stiff systems of production–
destruction equations. Applied Numerical Mathematics, 47(1):1–30,
2003. 72

[16] Manuel Calvo, Domingo Hernández-Abreu, Juan I Montijano, and Luis
Rández. On the preservation of invariants by explicit Runge–Kutta meth-
ods. SIAM Journal on Scientific Computing, 28(3):868–885, 2006. 77

[17] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness
of Neural Networks. In 2017 IEEE Symposium on Security and Privacy,
pages 39–57. IEEE, 2017. 59

[18] Elena Celledoni, Matthias J Ehrhardt, Christian Etmann, Robert I
McLachlan, Brynjulf Owren, Carola-Bibiane Schönlieb, and Ferdia
Sherry. Structure-preserving deep learning. European Journal of Applied
Mathematics, 32(5):888–936, 2021. 48, 60, 61

[19] Elena Celledoni, Andrea Leone, Davide Murari, and Brynjulf Owren.
Learning Hamiltonians of constrained mechanical systems. Journal of
Computational and Applied Mathematics, 417:114608, 2023. 73

[20] Elena Celledoni, Andrea Leone, Davide Murari, and Brynjulf Owren.
Learning Hamiltonians of constrained mechanical systems. Journal of
Computational and Applied Mathematics, 417:114608, 2023. 77

86



[21] Bo Chang, Minmin Chen, Eldad Haber, and Ed H. Chi. Antisymmetri-
cRNN: A Dynamical System View on Recurrent Neural Networks. In
International Conference on Learning Representations, 2019. 48

[22] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Du-
venaud. Neural Ordinary Differential Equations. Advances in Neural
Information Processing Systems, 31, 2018. 48

[23] Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Sym-
plectic Recurrent Neural Networks. In International Conference on
Learning Representations, 2020. 48, 70, 71, 73, 149, 226, 227, 231,
235, 237

[24] Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Sym-
plectic Recurrent Neural Networks. In International Conference on
Learning Representations, 2020. 77

[25] Germund Dahlquist. Generalized disks of contractivity for explicit and
implicit Runge-Kutta methods. Technical report, CM-P00069451, 1979.
23, 60

[26] Sølve Eidnes. Order theory for discrete gradient methods. BIT Numerical
Mathematics, pages 1–49, 2022. 14, 73

[27] Sølve Eidnes. Order theory for discrete gradient methods. BIT Numerical
Mathematics, pages 1–49, 2022. 77

[28] Guilherme França, Alessandro Barp, Mark Girolami, and Michael I Jor-
dan. Optimization on manifolds: A symplectic approach. arXiv preprint
arXiv:2107.11231, 2021. 67

[29] Clara Lucía Galimberti, Luca Furieri, Liang Xu, and Giancarlo Ferrari-
Trecate. Hamiltonian Deep Neural Networks Guaranteeing Nonvanishing
Gradients by Design. arXiv preprint arXiv:2105.13205, 2021. 48, 58

[30] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The
Reversible Residual Network: Backpropagation Without Storing Activa-
tions. Advances in Neural Information Processing Systems, 30, 2017. 48,
72

[31] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explain-
ing and Harnessing Adversarial Examples. In Yoshua Bengio and Yann
LeCun, editors, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, 2015. 59

87



Bibliography

[32] Ernst Haier, Christian Lubich, and Gerhard Wanner. Geometric Numeri-
cal Integration: Structure-Preserving Algorithms for Ordinary Differen-
tial Equations. Springer, 2006. 54, 57, 73, 75

[33] Inga Hense and Aike Beckmann. The representation of cyanobacteria
life cycle processes in aquatic ecosystem models. Ecological Modelling,
221(19):2330–2338, 2010. 72

[34] Johannes Hertrich, Sebastian Neumayer, and Gabriele Steidl. Convolu-
tional proximal neural networks and Plug-and-Play algorithms. Linear
Algebra and its Applications, 631:203–234, 2021. 48

[35] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex Analysis
and Minimization Algorithms I, volume 305. Springer Science & Busi-
ness Media, 2013. 60

[36] Kaixuan Huang, Yuqing Wang, Molei Tao, and Tuo Zhao. Why
Do Deep Residual Networks Generalize Better than Deep Feedforward
Networks?—A Neural Tangent Kernel Perspective. Advances in neural
information processing systems, 33:2698–2709, 2020. 48

[37] Pengzhan Jin, Zhen Zhang, Aiqing Zhu, Yifa Tang, and George Em Kar-
niadakis. SympNets: Intrinsic structure-preserving symplectic networks
for identifying Hamiltonian systems. Neural Networks, 132:166–179,
2020. 48, 58, 70, 71, 146, 158

[38] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Au-
gustin Žídek, Anna Potapenko, et al. Highly accurate protein structure
prediction with AlphaFold. Nature, 596(7873):583–589, 2021. 48, 144

[39] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backprop-
agation Applied to Handwritten Zip Code Recognition. Neural computa-
tion, 1(4):541–551, 1989. 3, 48

[40] Benedict Leimkuhler and Sebastian Reich. Simulating Hamiltonian Dy-
namics. Number 14 in Cambridge Monographs on Applied and Compu-
tational Mathematics. Cambridge University Press, 2004. 11, 58, 70

[41] Benedict Leimkuhler, Tiffany J Vlaar, Timothée Pouchon, and Amos
Storkey. Better Training using Weight-Constrained Stochastic Dynam-
ics. In Proceedings of the 38th International Conference on Machine
Learning, pages 6200–6211, 2021. 67

88



[42] Qianxiao Li, Ting Lin, and Zuowei Shen. Deep learning via dynamical
systems: An approximation perspective. Journal of the European Math-
ematical Society, 2022. 25, 52, 54

[43] Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger B Grosse,
and Jörn-Henrik Jacobsen. Preventing Gradient Attenuation in Lipschitz
Constrained Convolutional Networks. Advances in neural information
processing systems, 32, 2019. 65

[44] Daniel Liberzon. Switching in Systems and Control, volume 190.
Springer, 2003. 49, 75

[45] Daniel Liberzon and A Stephen Morse. Basic problems in stability and
design of switched systems. IEEE Control Systems Magazine, 19(5):59–
70, 1999. 75

[46] Andreas Look, Simona Doneva, Melih Kandemir, Rainer Gemulla,
and Jan Peters. Differentiable Implicit Layers. arXiv preprint
arXiv:2010.07078, 2020. 75

[47] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond Fi-
nite Layer Neural Networks: Bridging Deep Architectures and Numerical
Differential Equations. In International Conference on Machine Learn-
ing, pages 3276–3285. PMLR, 2018. 48

[48] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier Non-
linearities Improve Neural Network Acoustic Models. In Proc. icml, vol-
ume 30, page 3. Atlanta, Georgia, USA, 2013. 50

[49] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards Deep Learning Models Resistant
to Adversarial Attacks. In International Conference on Learning Repre-
sentations, 2018. 59

[50] Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and
Hajime Asama. Dissecting Neural ODEs. Advances in Neural Informa-
tion Processing Systems, 33:3952–3963, 2020. 48

[51] Robert I McLachlan and G Reinout W Quispel. Splitting methods. Acta
Numerica, 11:341–434, 2002. 11, 54, 57

[52] Robert I McLachlan, G Reinout W Quispel, and Nicolas Robidoux. Geo-
metric Integration Using Discrete Gradients. Philosophical Transactions
of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 357(1754):1021–1045, 1999. 77

89



Bibliography

[53] Laurent Meunier, Blaise Delattre, Alexandre Araujo, and Alexandre Al-
lauzen. Scalable Lipschitz Residual Networks with Convex Potential
Flows. arXiv preprint arXiv:2110.12690, 2021. 60, 61, 67

[54] Mete Ozay and Takayuki Okatani. Optimization on Submanifolds of
Convolution Kernels in CNNs. arXiv preprint arXiv:1610.07008, 2016.
67

[55] Allan Pinkus. Approximation theory of the MLP model in neural net-
works. Acta Numerica, 8:143–195, 1999. 3, 55, 155

[56] Eugene Presnov. Non-local decomposition of vector fields. Chaos, Soli-
tons & Fractals, 14(5):759–764, 2002. 25, 54

[57] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-
informed neural networks: A deep learning framework for solving for-
ward and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational physics, 378:686–707, 2019. 29, 48,
252, 253, 271

[58] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A
Python toolbox to benchmark the robustness of machine learning models.
arXiv preprint arXiv:1707.04131, 2017. 67

[59] HH Robertson. The Solution of a Set of Reaction Rate Equations. Nu-
merical analysis: an introduction, 178182, 1966. 72

[60] Domènec Ruiz-Balet and Enrique Zuazua. Neural ODE Control
for Classification, Approximation, and Transport. arXiv preprint
arXiv:2104.05278, 2021. 48, 49, 52

[61] T Konstantin Rusch and Siddhartha Mishra. UnICORNN: A recurrent
model for learning very long time dependencies. In International Con-
ference on Machine Learning, pages 9168–9178. PMLR, 2021. 48

[62] Lars Ruthotto and Eldad Haber. Deep Neural Networks Motivated by
Partial Differential Equations. Journal of Mathematical Imaging and Vi-
sion, 62(3):352–364, 2020. 48, 145

[63] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact so-
lutions to the nonlinear dynamics of learning in deep linear neural net-
works. CoRR, abs/1312.6120, 2014. 48

[64] Ravid Shwartz-Ziv and Naftali Tishby. Opening the Black Box of Deep
Neural Networks via Information. ArXiv, abs/1703.00810, 2017. 48

90



[65] Patrice Simard, Yann LeCun, and John Denker. Efficient Pattern Recog-
nition Using a New Transformation Distance. Advances in Neural Infor-
mation Processing Systems, 5, 1992. 79

[66] Bart Smets, Jim Portegies, Erik J Bekkers, and Remco Duits. Pde-based
Group Equivariant Convolutional Neural Networks. Journal of Mathe-
matical Imaging and Vision, pages 1–31, 2022. 48

[67] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, D. Er-
han, Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. CoRR, abs/1312.6199, 2014. 59

[68] Takeshi Teshima, Koichi Tojo, Masahiro Ikeda, Isao Ishikawa, and Kenta
Oono. Universal Approximation Property of Neural Ordinary Differen-
tial Equations. arXiv preprint arXiv:2012.02414, 2020. 54

[69] Matthew Thorpe and Yves van Gennip. Deep Limits of Residual Neural
Networks. arXiv preprint arXiv:1810.11741, 2018. 48

[70] Asher Trockman and J Zico Kolter. Orthogonalizing Convolutional Lay-
ers with the Cayley Transform. In International Conference on Learning
Representations, 2021. 48, 63

[71] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-Margin
Training: Scalable Certification of Perturbation Invariance for Deep Neu-
ral Networks. Advances in Neural Information Processing Systems, 31,
2018. 59, 96, 123

[72] Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and Stella X Yu.
Orthogonal Convolutional Neural Networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11505–11515, 2020. 48, 63, 65, 67

[73] Liwei Wang, Yan Zhang, and Jufu Feng. On the Euclidean distance of im-
ages. IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(8):1334–1339, 2005. 79

[74] E Weinan. A Proposal on Machine Learning via Dynamical Systems.
Communications in Mathematics and Statistics, 1(5):1–11, 2017. 48,
147

[75] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoen-
holz, and Jeffrey Pennington. Dynamical Isometry and a Mean Field
Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional
Neural Networks. In International Conference on Machine Learning,
pages 5393–5402. PMLR, 2018. 48

91



Bibliography

[76] Muhammad Zakwan, Liang Xu, and Giancarlo Ferrari-Trecate. On Ro-
bust Classification using Contractive Hamiltonian Neural ODEs. arXiv
preprint arXiv:2203.11805, 2022. 48, 60, 123

[77] Han Zhang, Xi Gao, Jacob Unterman, and Tom Arodz. Approximation
Capabilities of Neural ODEs and Invertible Residual Networks. In Inter-
national Conference on Machine Learning, pages 11086–11095. PMLR,
2020. 57

[78] Aiqing Zhu, Pengzhan Jin, and Yifa Tang. Deep Hamiltonian networks
based on symplectic integrators. arXiv preprint arXiv:2004.13830, 2020.
70, 146, 231, 243

92



Resilient Graph Neural Networks: A Coupled
Dynamical Systems Approach

Moshe Eliasof, Davide Murari, Carola-Bibiane Schönlieb, and Ferdia
Sherry

Submitted

93



Abstract. Graph Neural Networks (GNNs) have established themselves as
a key component in addressing diverse graph-based tasks. Despite their no-
table successes, GNNs remain susceptible to input perturbations in the form
of adversarial attacks. This paper introduces an innovative approach to fortify
GNNs against adversarial perturbations through the lens of coupled dynami-
cal systems. Our method introduces graph neural layers based on differential
equations with contractive properties, which, as we show, improve the robust-
ness of GNNs. A distinctive feature of the proposed approach is the simul-
taneous learned evolution of both the node features and the adjacency ma-
trix, yielding an intrinsic enhancement of model robustness to perturbations
in the input features and the connectivity of the graph. We mathematically
derive the underpinnings of our novel architecture and provide theoretical in-
sights to reason about its expected behavior. We demonstrate the efficacy of
our method through numerous real-world benchmarks, reading on par, or im-
proved performance compared to existing methods. Our source code will be
published upon acceptance.

3.1 Introduction

In recent years, the emergence of Graph Neural Networks (GNNs) has revolu-
tionized the field of graph machine learning, offering remarkable capabilities
for modeling and analyzing complex graph-structured data. These networks
have found applications in diverse domains and applications, from Network
Analysis [15, 35] and recommendation systems, Bioinformatics [48, 13], Com-
puter Vision [55], and more. However, the increasing prevalence of GNNs in
critical decision-making processes has also exposed them to new challenges,
particularly in terms of vulnerability to adversarial attacks.

In particular, it has been shown that one can design small adversarial pertur-
bations of the input graph and its node features, that result in vastly different
GNN predictions [57, 68]. Adversarial attacks received extensive attention in
the context of Convolutional Neural Networks (CNNs) [23], but graph data
has an added degree of freedom compared to data on a regular grid: the con-
nectivity of the graph can be altered by adding or removing edges. Also, in
natural settings, such as social network graphs, connectivity perturbations may
be more realistically implementable by a potential adversary, rather than per-
turbations of the node features. This gives rise to hard discrete optimization
problems, which necessitates the study of adversarial robustness specialized to
graph data and GNNs [25].

In this paper, we propose a GNN architecture that jointly processes the ad-
versarially attacked adjacency matrix and node features by a learnable neural
dynamical system. Our approach extends the active research front that aims to
design neural architectures that enjoy inherent properties and behavior, draw-
ing inspiration from dynamical systems with similar properties [26, 58, 10,
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9, 52, 17, 8]. This approach has also been used to improve the robustness of
CNNs, see Appendix 3.F. Specifically, the flow map of the coupled dynamical
system under consideration in this work draws inspiration from the theory of
non-Euclidean contractive systems developed in [6] to offer an adversarially
robust GNN. We name our method CSGNN, standing for Coupled dynamical
Systems GNN. Notably, because adjacency matrices are not arbitrary matrices,
their learnable neural dynamical system needs to be carefully crafted to ensure
it is node-permutation equivariant, and that it yields a symmetric adjacency
matrix. To the best of our knowledge, this is the first attempt at learning cou-
pled dynamical systems that evolve both the node features and the adjacency
matrix.

Main contributions. This paper offers the following advances in adversar-
ial defense against poisoning attacks in GNNs: (i) A novel architecture, CS-
GNN, that jointly evolves the node features and the adjacency matrix to im-
prove GNN robustness to input perturbations, (ii) A theoretical analysis of
our CSGNN, addressing the relevance of the architecture based on the theory
of contractive dynamical systems and, (iii) Improved performance on various
graph adversarial defense benchmarks.

3.2 Related Work

Graph Neural Networks as Dynamical Systems. Drawing inspiration from
dynamical systems models that admit desired behaviors, various GNN archi-
tectures have been proposed to take advantage of such characteristic properties.
In particular, building on the interpretation of CNNs as discretizations of PDEs
[10, 46], there have been multiple works that view GNN layers as time inte-
gration steps of learnable non-linear diffusion equations. Such an approach
allowed exploiting this connection to understand and improve GNNs [9, 17],
for example by including energy-conserving terms alongside diffusion [17, 45]
or using reaction-diffusion equations [56, 12]. These approaches to designing
GNNs have been shown to be of significant benefit when trying to overcome
common issues such as over-smoothing [43, 7] and over-squashing [2]. Re-
cently, it was shown that neural diffusion GNNs are robust to graph attacks
[50].

We note that deep learning architectures are also often harnessed to numer-
ically solve ODEs and PDEs or discover such dynamical systems from data
[38, 3, 5]. However, in this paper, we focus on drawing links between GNNs
and contractive dynamical systems to improve GNN robustness to adversar-
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ial attacks. Additionally, we remark that the use of coupled dynamical systems
updating both the adjacency matrix and the feature matrix jointly has also been
used in [29]. However, this paper focuses on dynamic graphs for data-driven
modeling purposes, while the focus of this paper it on adversarial robustness.
Additionally, the parameterization of the adjacency matrix updates differs con-
siderably between our CSGNN and [29] both in structure and the number of
required parameters.

Adversarial Defense in Graph Neural Networks. Various adversarial at-
tack algorithms have been designed for graph data, notably including net-
tack [67], which makes local changes to targeted nodes’ features and connec-
tivity, and metattack [68], which uses a meta-learning approach with a surro-
gate model, usually a graph convolutional network (GCN) [35], to generate a
non-targeted global graph attack and, recently [11] proposed a novel method
to create graph injection attacks.

In response to these developments, significant efforts were made to design
methods that improve GNN robustness. The majority of these approaches fo-
cus on perturbations of the graph connectivity, as those are more likely and
practical in social network graph datasets. Several of these methods prepro-
cess the graph based on underlying assumptions or heuristics, for example,
dropping edges where node features are not similar enough, under the assump-
tion that the true, non-attacked, graph is homophilic [60]. Another approach,
in [18], suggests truncating the singular value decomposition of the adjacency
matrix, effectively eliminating its high-frequency components, based on the
assumption that adversarial attacks add high-frequency perturbations to the
true adjacency matrix. The aforementioned approaches are unsupervised and
are typically added to existing GNN architectures while training them for a
specific downstream task, such as node classification. Additionally, there are
defenses that clean the attacked graph in a supervised manner, such as Pro-
GNN [32], which solves a joint optimization problem for the GNN’s learnable
parameters, as well as for the adjacency matrix, with sparsity and low-rank
regularization.

Besides methods for cleaning attacked adjacency matrices, there are also meth-
ods that aim to design robust GNN architectures. An example of this is given
in [27], where the GCN architecture is modified to use a mid-pass filter, result-
ing in increased robustness. In this context, it is also natural to consider the
use of Lipschitz constraints: given an upper bound on the Lipschitz constant
of a classifier and a lower bound on its margin, we can issue robustness certifi-
cates [53]. This has been studied to some extent in the context of GNNs [31],
although, in this case, and in contrast to our work, the Lipschitz continuity is
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studied only with respect to the node features. In our work, we also consider
the Lipschitz continuity with respect to the adjacency matrix. It is worth noting
that the development of a defense mechanism should ideally be done in tandem
with the development of an adaptive attack, although designing an appropriate
adaptive attack is not generally a straightforward task [41]. In [41], a set of
attacked graphs are provided as “unit tests”, which have been generated using
adaptive attacks for various defenses. Therefore, in our experiments, we con-
sider both standard, long-standing benchmarks, as well as recently proposed
attacks in [41]. In recent works like [50, 65], the robustness of GNNs was
studied through a node feature dynamical systems point of view. However, in
our CSGNN, we propose to learn a coupled dynamical system that involves
node features as well as the adjacency matrix.

3.3 Preliminaries

Notations. Let G = (V ,E) be a graph with n nodes V and m edges E , also
associated with the adjacency matrix A ∈ Rn×n , such that Ai , j = 1 if (i , j ) ∈
E and 0 otherwise, and let fi ∈ Rcin be the input feature vector of the node
vi ∈ V . In this paper, we focus on poisoning attacks, and we assume two
types of possible attacks (perturbations) of the true data before training the
GNN: (i) The features fi are perturbed to (f∗)i , and, (ii) the adjacency matrix
A of the graph is perturbed by adding or removing edges, inducing a perturbed
adjacency matrix A∗ ∈ Rn×n . We denote by G∗ = (V∗,E∗) the attacked graph
with the same vertices, i.e. V = V∗, by A∗ ∈ Rn×n the perturbed adjacency
matrix, and the perturbed node features are denoted by (f∗)i . We also denote
by F,F∗ ∈ Rn×cin the matrices collecting, as rows, the individual node features
fi , (f∗)i .

Measuring graph attacks. To quantify the robustness of a GNN with respect
to an adversarial attack, it is necessary to measure the impact of the attack. For
node features, it is common to consider the Frobenius norm ∥·∥F to quantify the
difference between the perturbed features F∗ from the clean ones F. However,
the Frobenius norm is not a natural metric for adjacency attacks, see [4, 25] for
example. Instead, it is common to measure the ℓ0 distance between the true
and attacked adjacency matrices, as follows:

ℓ0 (
A,A∗

)= ∣∣∣I (
A,A∗

)∣∣∣ , (3.3.1)

where I(A,A∗) = {i , j ∈ {1, . . . ,n} : Ai j ̸= (A∗)i j }. For brevity, we refer to
I(A,A∗) as I, and by |I| we refer to the cardinality of I(A,A∗), as in (3.3.1).
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The ℓ0 distance measures how many entries of A need to be modified to obtain
A∗, and is typically used to measure budget constraints in studies of adversarial
robustness of GNNs [25, 41]. Given that typical adjacency matrices consist of
binary entries, it follows that:

ℓ0 (
A,A∗

)= ∥∥∥vec(A)−vec
(
A∗

)∥∥∥
1

(3.3.2)

=
n∑

i , j=1

∣∣∣Ai j −
(
A∗

)
i j

∣∣∣= ℓ1 (
A,A∗

)
,

where vec(·) is the flattening operator, obtained by stacking the columns of A.
We refer to ∥vec(A)− vec(A∗)∥1 as the vectorized ℓ1 norm. That is, for bi-
nary matrices, the ℓ0 and ℓ1 norms coincide. However, using the ℓ0 distance
to implement constraints or regularization gives rise to computationally hard
optimization problems because it is non-convex and non-smooth [59], and un-
fortunately, the equality in (3.3.2) is generally not true for arbitrary real-valued
matrices. As shown in [59], for matrices with ∥vec(A)∥∞ ≤ 1, the vectorized
ℓ1 norm is the largest convex function bounded from above by the ℓ0 norm,
that is: ∥vec(A)∥1 ≤ ∥vec(A)∥0. This property makes the usage of the ℓ1 norm
a common approximation of the ℓ0 norm. Furthermore, it is also possible to
relate the two norms, as follows:∥∥∥vec(A)−vec

(
A∗

)∥∥∥
1
≥ ∣∣I∣∣ · min

(i , j)∈I

∣∣∣Ai j −
(
A∗

)
i j

∣∣∣ , (3.3.3)

i.e. the ℓ1 norm can be lower bounded by the ℓ0 norm, up to a multiplicative
constant. Therefore, we can still use the ℓ1 norm to measure the distance be-
tween arbitrary matrices as an approximation of the ℓ0 norm. Throughout this
paper, we denote the perturbed node features by F∗ = F+δF, and the perturbed
adjacency matrix by A∗ = A+δA, where ∥δF∥F ≤ ε1, and ∥vec(δA)∥1 ≤ ε2.

In adversarial defense, the goal is to design a mechanism such that the output
of the neural network is stable with respect to the perturbations δF and δA.
As discussed in Section 3.2, this goal is typically met either by modified ar-
chitectures, training schemes, as well as their combinations. In Section 3.4,
we present CSGNN - a defense mechanism based on a dynamical system per-
spective. This approach aims to reduce the sensitivity to input perturbations
of the neural network and is based on the theory of contractive dynamical sys-
tems [6]. We will refer to a map as contractive with respect to a norm ∥ · ∥ if
it is 1−Lipschitz in such norm. Furthermore, we define contractive dynamical
systems as those whose solution map is contractive with respect to the initial
conditions. For completeness, in Appendix 3.A, we mathematically define and
discuss contractive systems.

We start from the assumption that the best training accuracy on a given task
corresponds to the clean inputs (A,F). The main idea of CSGNN is to jointly
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evolve the features F∗ and the adjacency matrix A∗, so that even if their clean
versions F and A are not known, the network would output a vector measurably
similar to the one corresponding to (A,F), as we formulate in the following
section.

3.4 Method

3.4.1 Graph Neural Networks Inspired by Coupled Contractive
Systems

We now present our CSGNN, focused on the task of robust node classifica-
tion, where we wish to predict the class of each node in the graph, given at-
tacked input data (F∗,A∗). The goal is therefore to design and learn a map
D : Rn×c ×Rn×n → Rn×c ×Rn×n , that evolves the node features, as well as the
adjacency matrix. To the best of our knowledge, this is the first attempt at
learning a coupled dynamical system that considers both the node features and
the adjacency matrix in the context of graph-node classification. As discussed
in Section 3.2, utilizing dynamical systems–perspective in GNNs was shown
to provide strong inductive bias and more predictable behavior. However, ex-
isting defense methods often limit this interpretation to node feature updates,
while using heuristics to pre-process the adjacency matrix, if desired. Here,
we advocate for the coupling of node features and adjacency matrix updates
in a principled, data-driven, and dynamical system–based fashion.

We implement the map D as a composition of learnable dynamical systems
inspired by contractivity theory, that simultaneously update F∗ and A∗. Specif-
ically, we model D as an approximation of the solution, at the final time T , of
the continuous dynamical system:

Ḟ (t ) = X
(
t ,F (t ) , A (t )

) ∈Rn×c

Ȧ (t ) = Y
(
t , A (t )

) ∈Rn×n ,(
F (0) , A (0)

)= (
K (

F∗
)

,A∗
)

,

(3.4.1)

where Ḟ = dF /dt denotes the first order derivative in time, and K : Rcin → Rc

is a linear embedding layer. Similarly to [26, 17, 9], we assume both X and Y
to be piecewise constant in time, i.e., that on a given time interval [0,T ], there
is a partition 0 = τ0 < τ1 < . . . < τL = T , hl = τl − τl−1 for l = 1, . . . ,L, such
that X (t ,F,A) = Xl (F,A), Y (t ,A) = Yl (A), F ∈ Rn×c , A ∈ Rn×n , t ∈ [τl−1,τl ), for
a pair of functions Xl : Rn×c ×Rn×n → Rn×c , Yl : Rn×n → Rn×n . When refer-
ring to the approximation of (F (τl ), A(τl )), we use (F(l ),A(l )) when we start
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Figure 3.4.1: The coupled dynamical system D in CSGNN, as formulated in (3.4.2).

with the clean pair, and (F(l )
∗ ,A(l )

∗ ) with the perturbed one. To obtain a neural
network, we consider the solution of (3.4.1) at time T , which is approximated
using the explicit Euler method. More explicitly, we compose L explicit Eu-
ler layers each defined as Dl ((F,A)) := (Ψhl

Xl
(F,A),Ψhl

Yl
(A)), l = 1, . . . ,L, where

Ψ
hl
Xl

(F,A) := F+hl Xl (F,A), and Ψ
hl
Yl

(A) := A+hl Yl (A) are the explicit Euler
steps for Xl and Yl , respectively. The map D is then defined as the composi-
tion of L layers:

D := DL ◦ . . .◦D1. (3.4.2)

The coupled dynamical system encapsulated in D evolves both the hidden node
features and the adjacency matrix for L layers. We denote the output of D by
(F(L)

∗ ,A(L)
∗ ) =D((K(F∗),A∗)). To obtain node-wise predictions from the network

to solve the downstream task, we feed the final GNN node features F(L)
∗ to a

classifier P :Rc →Rcout , which is implemented by a linear layer.

To better explain the structure of CSGNN, we provide an illustration in Fig-
ure 3.4.1 and a detailed feed-forward description in Appendix 3.H.

In what follows, we describe how to characterize the functions Ψhl
Xl

and Ψhl
Yl

from (3.4.2). First, in Section 3.4.2, we derive the node feature dynamical
system governed by X . We show, that under mild conditions, contractivity can
be achieved, allowing us to derive a bound on the influence of the attacked
node features F∗ on the GNN output. Second, in Section 3.4.3, we develop
and propose a novel contractive dynamical system for the adjacency matrix,
which is guided by Y .

Our motivation in designing such a coupled system stems from the nature of
our considered adversarial settings. That is, we assume, that the adjacency ma-
trix is perturbed. We note, that the adjacency matrix controls the propagation
of node features. Therefore, leaving the input attacked adjacency unchanged
may result in sub-par performance, as we show experimentally in Appendix
3.K. While some methods employ a pre-processing step of the attacked ma-
trix A∗ [18, 60], it has been shown that joint optimization of the node features
and the adjacency matrix can lead to improved performance [32]. Therefore,
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we develop and study novel, coupled dynamical systems that evolve both the
node features and the adjacency matrix and are learned in a data-driven man-
ner. This perspective allows to obtain favorable properties such as adjacency
matrix contractivity, thereby reducing the sensitivity to adversarial adjacency
matrix attacks.

3.4.2 Contractive Node Feature Dynamical System

We now describe the learnable functions Ψhl
Xl

, l = 1, . . . ,L, that determine the
node feature dynamics of our CSGNN. We build upon a diffusion-based GNN
layer, [9, 17], that is known to be stable and, under certain assumptions, is
contractive. More explicitly, our proposed Ψhl

Xl
is characterized as follows:

Ψ
hl
Xl

(
F(l−1),A(l−1)

)
:= F(l)

:= F(l−1) +hl Xl

(
F(l−1),A(l−1)

)
(3.4.3)

= F(l−1) −hl

(
G(l−1)

)⊤
σ

(
G(l−1)F(l−1)Wl

)
W⊤

l K̃l ,

where G(l−1) := G(A(l−1)), while Wl ∈ Rc×c and K̃l = (Kl +K⊤
l )/2 ∈ Rc×c are

learnable parameters which allows a gradient flow interpretation of our system,
as in [22]. Also, as in [17], the map G(A(l−1)) : Rn×c → Rn×n×c is the gradient
operator of A(l−1) defined in Appendix 3.C, and we set σ= LeakyReLU.

Theorem 3.1 ((3.4.3) can induce stable node dynamics). Assume σ is a mono-
tonically increasing 1-Lipschitz non-linear function. There are choices of (Wl ,Kl ) ∈
Rc×c ×Rc×c , for which the explicit Euler step in (3.4.3) is stable for a small
enough hl > 0, i.e. there is a convex energy EA for which

EA

(
Ψ

hl
Xl

(
F(l−1),A

))
≤ EA

(
F(l−1)

)
, l = 1, . . . ,L. (3.4.4)

Theorem 3.2 ((3.4.3) can induce contractive node dynamics). Assume σ is a
monotonically increasing 1-Lipschitz non-linear function. There are choices of
(Wl ,Kl ) ∈Rc×c ×Rc×c , for which the explicit Euler step in (3.4.3) is contractive
for a small enough hl > 0, i.e.∥∥∥Ψhl

Xl

(
F+δF,A

)−Ψhl
Xl

(
F,A

)∥∥∥
F
≤ ∥∥δF

∥∥
F , (3.4.5)

for δF ∈Rn×c .

In Appendix 3.C we prove Theorems 3.1 and 3.2 for various parameteriza-
tions. One parameterization for which both theorems are satisfied corresponds
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to Kl = Ic . We have experimented with this configuration, learning only Wl ∈
Rc×c . We found that this configuration improves several baseline results, show-
ing the benefit of contractive node feature dynamics. We report those results in
Appendix 3.K. We also found, following recent interpretations of dissipative
and expanding GNNs [22], that choosing the parameterization as Wl = Ic , and
training Kl ∈ Rc×c leads to further improved results, as we show in our exper-
iments in Section 3.5 and Appendix 3.K. We note that this parameterization
admits stable dynamical systems, in the sense of Theorem 3.1, as discussed in
Appendix 3.C.

3.4.3 Contractive Adjacency Matrix Dynamical System

As previously discussed, our CSGNN learns both node features and adjacency
matrix dynamical systems to defend against adversarial attacks. We now elab-
orate on the latter, aiming to design and learn dynamical systems with explicit
Euler approximation of the solution Ψhl

Yl
:Rn×n →Rn×n , l = 1, . . . ,L, such that:∥∥∥∥∥∥vec

(
Ψ

hl
Yl

(
A(l−1)

))
−vec

(
Ψ

hl
Yl

(
A(l−1)
∗

))∥∥∥∥∥∥
1

(3.4.6)

≤
∥∥∥∥∥vec

(
A(l−1)

)
−vec

(
A(l−1)
∗

)∥∥∥∥∥
1

,

where
Ψ

hl
Yl

(
A(l−1)

)
= A(l) = A(l−1) +hl Yl

(
A(l−1)

)
. (3.4.7)

In other words, we wish to learn maps Ψhl
Yl

that decrease the vectorized ℓ1

distance between the true and attacked adjacency matrices, thereby reducing
the effect of the adjacency matrix attack.

Since we are concerned with adjacency matrices, we need to pay attention
to the structure of the designed map Yl . Specifically, we demand that (i) the
learned map Yl are node-permutation-equivariant. That is, relabelling (change
of order) of the graph nodes should not influence the dynamical system Ψhl

Yl

output up to its order, and, (ii) if the input graph is symmetric, then the updated
adjacency matrix A(l ) should remain symmetric. Formally, the requirement (i)
demands that:

Ψ
hl
Yl

(
PAP⊤

)
= PΨhl

Yl
(A)P⊤ (3.4.8)

should hold for every permutation matrix P ∈ {0,1}n×n . The symmetry condi-
tion (ii) implies that we want (Ψhl

Yl
(A))⊤ =Ψhl

Yl
(A) if A⊤ = A. To this end, we

adopt the derivations provided in [39, Appendix A], that show that in order to
make the map Ψhl

Yl
permutation-equivariant and also symmetry preserving, we
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Figure 3.4.2: Node classification accuracy (%) under nettack. The horizontal axis
describes the number of perturbations per node.

can set Yl (A) =σ(M(A)) in (3.4.7), where σ :R→R is any non-linear activation
function applied componentwise, and M :Rn×n →Rn×n is a suitably designed
linear map depending on a learnable vector k = (k1, · · · ,k9) ∈R9 and defined in
Appendix 3.B. We now provide a theorem that validates the contractivity of the
proposed adjacency matrix dynamical system, with its proof in Appendix 3.D.

Theorem 3.3 ((3.4.7) can define contractive adjacency dynamics). Let α≤ 0,
σ : R→ R be a Lipschitz continuous function, with σ′(s) ∈ [0,1] almost every-
where. If 0 ≤ hl ≤ 2/(2

∑9
i=2 |ki |−α), then the explicit Euler step

Ψ
hl
Yl

(
A(l−1)

)
:= A(l−1) +hlσ

(
M

(
A(l−1)

))
, (3.4.9)

where M is as in (3.B.1) and k1 =
(
α−∑9

i=2 |ki |
)
, is contractive in the vector-

ized ℓ1 norm.

In our experiments, α≤ 0 is a non-positive hyperparameter of the network.

In this Section, we presented the contractive node and adjacency updates in
our CSGNN that allow for reduced sensitivity to adversarial perturbed inputs
in a learnable fashion with respect to the downstream performance of the task
at hand, which is node classification in this paper. Notably, it is important
to distinguish between extreme cases of contractivity, such as in the case of
multi-layer perceptron (MLP), which holds no sensitivity to the adjacency ma-
trix by design, and a network with learnable sensitivity through a contractive
behavior, as presented in our CSGNN.
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Dataset Ptb Rate (%) 0 5 10 15 20 25

Cora

GCN 83.50±0.44 76.55±0.79 70.39±1.28 65.10±0.71 59.56±2.72 47.53±1.96
GAT 83.97±0.65 80.44±0.74 75.61±0.59 69.78±1.28 59.94±0.92 54.78±0.74

RGCN 83.09±0.44 77.42±0.39 72.22±0.38 66.82±0.39 59.27±0.37 50.51±0.78
GCN-Jaccard 82.05±0.51 79.13±0.59 75.16±0.76 71.03±0.64 65.71±0.89 60.82±1.08
GCN-SVD 80.63±0.45 78.39±0.54 71.47±0.83 66.69±1.18 58.94±1.13 52.06±1.19
Pro-GNN-fs 83.42±0.52 82.78±0.39 77.91±0.86 76.01±1.12 68.78±5.84 56.54±2.58

Pro-GNN 82.98±0.23 82.27±0.45 79.03±0.59 76.40±1.27 73.32±1.56 69.72±1.69
Mid-GCN 84.61±0.46 82.94±0.59 80.14±0.86 77.77±0.75 76.58±0.29 72.89±0.81
CSGNN 84.12±0.31 82.20±0.65 80.43±0.74 79.32±1.04 77.47±1.22 74.46±0.99

Citeseer

GCN 71.96±0.55 70.88±0.62 67.55±0.89 64.52±1.11 62.03±3.49 56.94±2.09
GAT 73.26±0.83 72.89±0.83 70.63±0.48 69.02±1.09 61.04±1.52 61.85±1.12

RGCN 71.20±0.83 70.50±0.43 67.71±0.30 65.69±0.37 62.49±1.22 55.35±0.66
GCN-Jaccard 72.10±0.63 70.51±0.97 69.54±0.56 65.95±0.94 59.30±1.40 59.89±1.47
GCN-SVD 70.65±0.32 68.84±0.72 68.87±0.62 63.26±0.96 58.55±1.09 57.18±1.87
Pro-GNN-fs 73.26±0.38 73.09±0.34 72.43±0.52 70.82±0.87 66.19±2.38 66.40±2.57

Pro-GNN 73.28±0.69 72.93±0.57 72.51±0.75 72.03±1.11 70.02±2.28 68.95±2.78
Mid-GCN 74.17±0.28 74.31±0.42 73.59±0.29 73.69±0.29 71.51±0.83 69.12±0.72
CSGNN 74.93±0.52 74.91±0.33 73.95±0.35 73.82±0.61 73.01±0.77 72.94±0.56

Polblogs

GCN 95.69±0.38 73.07±0.80 70.72±1.13 64.96±1.91 51.27±1.23 49.23±1.36
GAT 95.35±0.20 83.69±1.45 76.32±0.85 68.80±1.14 51.50±1.63 51.19±1.49

RGCN 95.22±0.14 74.34±0.19 71.04±0.34 67.28±0.38 59.89±0.34 56.02±0.56
GCN-SVD 95.31±0.18 89.09±0.22 81.24±0.49 68.10±3.73 57.33±3.15 48.66±9.93
Pro-GNN-fs 93.20±0.64 93.29±0.18 89.42±1.09 86.04±2.21 79.56±5.68 63.18±4.40

CSGNN 95.87±0.26 95.79±0.15 93.21±0.16 92.08±0.39 90.10±0.37 87.37±0.66

Table 3.5.1: Node classification performance (accuracy±std) under a non-targeted
attack (metattack) with varying perturbation rates.

3.5 Experiments

We now study the effectiveness of CSGNN against different graph adversarial
attacks. In Section 3.5.1 we discuss our experimental settings. The experi-
mental analysis we propose focuses on poisoning based on modifying the true
structure of the graph, by adding/removing edges between existent nodes or
perturbing their node features. The presented mathematical setup is not limited
to this class of attacks, but we focus on them so as to compare our performances
to similar techniques for improving the network robustness. In Section 3.5.2,
we report our experimental results and observations on several benchmarks,
with additional results and an ablation study in Appendix 3.K. The results pre-
sented in Section 3.5.2 focus on adjacency matrix attacks, which are the most
popular in the literature [61]. To provide a comprehensive evaluation of our
CSGNN, we also perform a set of experiments that include attacked node fea-
tures with nettack.

Since we follow the attacks evaluated in the literature, which utilize different
training/validation/test splits for different types of attacks, the reported results
for perturbation rate 0 can be different under different attacks.
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Figure 3.5.1: Node classification accuracy (%) under a random adjacency matrix at-
tack. The horizontal axis describes the attack percentage.
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Figure 3.5.2: Node classification accuracy (%) using unit-tests from [41]. Results are
relative to a baseline GCN. The horizontal axis shows the attack budget (%).

3.5.1 Experimental settings

Datasets. Following [67, 68], we validate the proposed approach on four
benchmark datasets, including three citation graphs, i.e., Cora, Citeseer,
Pubmed, and one blog graph, Polblogs. The statistics of the datasets are shown
in Appendix 3.I. Note that in the Polblogs graph, node features are not avail-
able. In this case, we follow Pro-GNN [32] and set the input node features to
a n ×n identity matrix.

Baselines. We demonstrate the efficacy of CSGNN by comparing it with
popular GNNs and defense models, as follows: GCN [35]: Is one of the most
commonly used GNN architectures, consisting of feature propagation accord-
ing to the symmetric normalized Laplacian and channel mixing steps. GAT
[54]: Graph Attention Networks (GAT) employ an attention mechanism to
learn edge weights for the feature propagation step. RGCN [66]: RGCN mod-
els node features as samples from Gaussian distributions, and modifies GCN
to propagate both the mean and the variance. In the neighborhood aggregation
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operation, high-variance features are down-weighted to improve robustness.
GCN-Jaccard [60]: This is an unsupervised pre-processing method that relies
on binary input node features, based on the assumption that the true graph is
homophilic. Edges between nodes with features whose Jaccard similarity is
below a certain threshold are removed. GCN-SVD [18]: GCN-SVD is also
an unsupervised pre-processing step. Based on the observation that nettack
tends to generate high-rank perturbations to the adjacency matrix, it is sug-
gested to truncate the SVD of the adjacency matrix before it is used to train
a GNN. Pro-GNN [32]: Pro-GNN attempts to jointly optimize GCN weights
and a corrected adjacency matrix using a loss function consisting of a down-
stream supervised task-related loss function and low-rank and sparsity regu-
larization. In Pro-GNN-fs, an additional feature smoothing regularization is
used. Mid-GCN [27]: Mid-GCN modifies the standard GCN architecture to
utilize a mid-pass filter, unlike the typical low-pass filter in GCN. GNNGuard
[64]: GNNGuard modifies message-passing GNNs to include layer-dependent
neighbor importance weights in the aggregation step. The neighbor importance
weights are designed to favor edges between nodes with similar features, en-
coding an assumption of homophily. GRAND [20]: In this method, multiple
random graph data augmentations are generated, which are then propagated
through the GNN. The GNN is trained using a task-related loss and a con-
sistency regularization that encourages similar outputs for the different aug-
mented graphs. Soft-Median-GDC [21]: This approach first preprocesses the
adjacency matrix using graph diffusion convolution [36], after which a GNN
that uses soft median neighborhood aggregation function is trained. GARNET
[16]: This method suggests wiring the graph using weighted spectral embed-
dings, which are shown to be related to the original, clean graph. HANG
[65]: This approach is based on conservative Hamiltonian neural flows, used
to process node features and for improved robustness. The comparisons with
GNNGuard, GARNET and HANG are reported in Appendix 3.K.

Training and Evaluation. We follow the same experimental settings as in
[32]. Put precisely, and unless otherwise specified, for each dataset, we ran-
domly choose 10% of the nodes for training, 10% of the nodes for validation,
and the remaining 80% nodes for testing. For each experiment, we report the
average node classification accuracy of 10 runs. The hyperparameters of all the
models are tuned based on the validation set accuracy. In all experiments, the
objective function to be minimized is the cross-entropy loss, using the Adam
optimizer [34]. Note that another benefit of our CSGNN is the use of down-
stream loss only, compared to other methods that utilize multiple losses to learn
adjacency matrix updates. In Appendix 3.J, we discuss the hyperparameters of
CSGNN. A complexity and runtime discussion is given in Appendix 3.L.
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Figure 3.5.3: Node classification accuracy (%) under targeted attack with nettack to
both node features and adjacency matrix. The horizontal axis describes the number of
perturbations per node.

3.5.2 Adversarial Defense Performance

We evaluate the node classification performance of CSGNN against four types
of poisoning attacks: (i) non-targeted attack, (ii) targeted attack, (iii) random
attack, and, (iv) unit tests. Below we elaborate on the results obtained on each
type of attack.

Robustness to Non-Targeted Adversarial Attacks. We evaluate the node
classification accuracy of our CSGNN and compare it with the baseline meth-
ods after using the non-targeted adversarial attack metattack [68]. We follow
the publicly available attacks and splits in [32]. We experiment with varying
perturbation rates, i.e., the ratio of changed edges, from 0 to 25% with a step
size of 5%. We report the average accuracy, as well as the obtained standard
deviation over 10 runs in Table 3.5.1. The best-performing method is high-
lighted in bold. Except for a few cases, our CSGNN consistently improves or
offers on-par performance with other methods.

Robustness to Targeted Adversarial Attacks. In this experiment, we use
nettack [67] as a targeted attack. Following [66], we vary the number of per-
turbations made on every targeted node from 1 to 5 with a step size of 1. The
nodes in the test set with a degree larger than 10 are set as target nodes. Here,
we also use the publicly available splits in [32]. The node classification accu-
racy on target nodes is shown in Figure 3.4.2. From the figure, we can observe
that when the number of perturbations increases, the performance of CSGNN
is better than other methods on the attacked target nodes in most cases.

Robustness to targeted attacks to node features and adjacency matrix.
We now provide additional experiments, where not only the connectivity struc-

107



Resilient Graph Neural Networks: A Coupled Dynamical Systems Approach

ture of the graph is attacked, but also the node features, demonstrated on the
Cora and Citeseer datasets. To generate the attacked versions of these datasets,
we follow the same protocol as in Pro-GNN [32]. The attacks are based on net-
tack [67], which applies a targeted attack to the test nodes of the clean graph
having a degree larger than 10. To attack all these nodes, we iterate through the
target nodes and iteratively update the feature and adjacency matrices attack-
ing the previously obtained one at the next target node. We work with different
attack intensities, applying 1 to 5 perturbations per targeted node, with a step
of 1. The results are reported in Figure 3.5.3, where we compare the perfor-
mance of CSGNN, with those of GCN, GCN-SVD, and Pro-GNN. As we can
see, CSGNN outperforms all of the compared models on this task.

Robustness to Random Attacks. In this experimental setting, we evaluate
the performance of CSGNN when the adjacency matrix is attacked by adding
random fake edges, from 0% to 100% of the number of edges in the true adja-
cency matrix, with a step size of 20%. The results are reported in Figure 3.5.1.
It can be seen, that CSGNN is on par with or better than the considered base-
lines.

Unit tests. We utilize the recently suggested unit tests from [41]. This is a
set of perturbed citation datasets, which are notable for the fact that the per-
turbations were not generated using standard attack generation procedures that
focus only on attacks like nettack or metattack. Instead, 8 adversarial defense
methods were studied. Then, bespoke, adaptive attack methods were designed
for each of them. These attack methods were applied to the citation datasets
to generate the “unit tests”. We experiment with those attacks as they offer
a challenging benchmark, that further highlights the contribution of our CS-
GNN. We present the results in Figure 3.5.2, showing the relative performance
of CSGNN and other baselines compared to GCN. We see that our CSGNN
performs better than other considered models. This result further highlights the
robustness of CSGNN under different adversarial attack scenarios, on several
datasets. In Figure 3.K.3 of Appendix 3.K, we also provide absolute perfor-
mance results.

3.6 Summary and Discussion

In this paper, we present CSGNN, a novel GNN architecture inspired by con-
tractive dynamical systems for graph adversarial defense. Our CSGNN learns
a coupled dynamical system that updates both the node features as well as the
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adjacency matrix to reduce the impact of input perturbations, thereby defend-
ing against graph adversarial attacks. We provide a theoretical analysis of our
CSGNN, to gain insights into its characteristics and expected behavior. Our
profound experimental study of CSGNN reveals the importance of employ-
ing the proposed coupled dynamical system to reduce attack influence on the
model’s accuracy. Namely, our results verify both the efficacy compared to
existing methods, as well as the necessity of each of the dynamical systems in
CSGNN. Since our approach presents a novel way to model both the node fea-
tures and adjacency matrix through the lens of dynamical systems, we believe
that our findings and developments will find further use in graph adversarial
defense and attacks, as well as other applications of GNNs.
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Appendix

Remark. In the Appendices, we often work with the Jacobian matrix of a
piecewise smooth function, like σ(x) = LeakyReLU(x). This is done to bound
the Lipschitz constant Lip( f ) of a map, or its one-sided Lipschitz constant
osLip( f ). For Lipschitz-continuous maps, by Rademacher’s Theorem [19,
Theorem 3.1.6], the Jacobian is defined almost everywhere, and one can still
obtain the convenient relations

Lip
(

f
)≤ L ⇐⇒ ∥∥D f (x)

∥∥≤ L a.e.,

osLip
(

f
)≤ c ⇐⇒ µ

(
D f (x)

)≤ c a.e.

for a Lipschitz continuous function f : Ω→ Rn , where Ω is an open convex
subset of Rn . The second relation can be found, for example, in [14, Theo-
rem 16]. For simplicity, we do not say all the quantities are defined almost
everywhere throughout.

3.A Contractive Systems

This appendix defines continuous contractive dynamical systems and provides
a background on the properties of such systems. We focus on contractivity
with respect to a norm ∥ · ∥ on Rk induced by an inner product 〈·, ·〉 : Rk ×
Rk → R, i.e. so that ∥x∥2 = 〈x,x〉 for every x ∈ Rk . This extends thanks to the
less restrictive notion of weak pairing considered in [6]. Following this more
general approach, the reasoning extends naturally to the ℓ1 norm, i.e., the one
used in the case of the dynamical system we propose for the adjacency matrix.
Let us consider the dynamical system

ẋ (t ) = f
(
x (t )

) ∈Rk ,

x
(
t0

)= x0 ∈Rk .
(3.A.1)
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3.A Contractive Systems

Consider the convex set Ω ⊂ Rk . We say f : Ω→ Rk satisfies the one-sided
Lipschitz inequality on Ω with constant osLip( f ) ∈R if for every x,y ∈Ω〈

f (x)− f
(
y
)

,x−y
〉
≤ osLip

(
f
)∥∥x−y

∥∥2 . (3.A.2)

Additionally, we remark that if f is Lip( f )−Lipschitz continuous, then its one-
sided constant osLip( f ) ≤ Lip( f ) since one has〈

f (x)− f
(
y
)

,x−y
〉
≤

∥∥∥ f (x)− f
(
y
)∥∥∥ ·∥∥x−y

∥∥≤ Lip
(

f
)∥∥x−y

∥∥2 .

However, while the Lipschitz constant can only be non-negative, the one-sided
Lipschitz constant can also be strictly negative. For example, if f (x) =−x we
get osLip( f ) =−1.

Definition 3.1 (Contractive dynamical system). Let Ω ⊂ Rk be a convex set.
We say the dynamical system in (3.A.1) is strictly contractive onΩ if it satisfies
the one-sided Lipschitz inequality (3.A.2) with osLip( f ) < 0 for every x,y ∈Ω,
and contractive if osLip( f ) ≤ 0.

The motivation behind definition 3.1 comes from a relatively simple deriva-
tion. Let x(t ) and y(t ) be two analytical solutions to (3.A.1), respectively with
x(t0) = x0 and y(t0) = y0. Then one has

d

dt

(
1

2

∥∥x (t )−y (t )
∥∥2

)
= d

dt

(
1

2

〈
x (t )−y (t ) ,x (t )−y (t )

〉)
=

〈
f
(
x (t )

)− f
(
y (t )

)
,x (t )−y (t )

〉
≤ osLip

(
f
)∥∥x (t )−y (t )

∥∥2 .

By Gronwall’s inequality [24], one hence gets∥∥x (t )−y (t )
∥∥≤ ∥∥x0 −y0

∥∥eosLip( f )(t−t0), ∀t ≥ t0.

As a consequence, ∥x(t )− y(t )∥ tends to 0 exponentially fast as t → +∞ if
osLip( f ) < 0, while it changes in a stable way when osLip( f ) ≤ 0 since∥∥x (t )−y (t )

∥∥≤ ∥∥x0 −y0
∥∥ , ∀t ≥ t0.

It hence follows that osLip( f ) provides a contraction rate of a generic pair of
trajectories, one towards the other. To conclude this section, we focus briefly
on the dynamical systems considered for the features. This is of the formẋ (t ) =−∇V

(
x (t )

)
x

(
t0

)= x0

for a convex function V :Rk →R. The properties of convex functions guarantee

−
〈
∇V (x)−∇V

(
y
)

,x−y
〉
≤ 0

and hence that osLip(−∇V ) ≤ 0. This control on the expansivity of the dynam-
ics is the main motivation for our proposed forward update in Section 3.4.
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3.B Expression for the linear equivariant layer in the
adjacency dynamics

We now write the explicit expression for the linear permutation equivariant
layer adopted in the updates of the adjacency matrix. This layer depends on 9
learnable scalar parameters k1, . . . ,k9 ∈R and takes the form

M (A) = k1A+k2diag
(
diag(A)

)+ k3

2n

(
A1n1⊤

n +1n1⊤
n A

)
+k4diag

(
A1n

)
+ k5

n2

(
1⊤

n A1n

)
1n1⊤

n + k6

n

(
1⊤

n A1n

)
In + k7

n2

(
1⊤

n diag(A)
)

1n1⊤
n

+ k8

n

(
1⊤

n diag(A)
)

In + k9

2n

(
diag(A)1⊤

n +1n
(
diag(A)

)⊤)
,

(3.B.1)

where In ∈ Rn×n denotes the identity matrix. The operator diag acts both on
matrices and vectors, and is defined as

diag :Rn×n →Rn , diag(A) =
n∑

i=1

(
e⊤i Aei

)
ei ,

diag :Rn →Rn×n , diag(a) =
n∑

i=1

(
a⊤ei

)
ei e⊤i ,

with ei ∈ Rn a one-hot vector with 1 in the i−th entry. For matrix input, the
main diagonal is extracted. For vector input, its values are placed on the diag-
onal of a matrix.

3.C Contractivity of the feature updating rule

Before proving the contractivity of the feature update rule, we report the defi-
nition of the graph gradient operator G, for completeness.

Definition 3.2 (Graph gradient operator). We define the graph gradient opera-
tor G(A) :Rn×c →Rn×n×c , as follows:(G (A)F

)
i j k = Ai j

(
Fi k −F j k

)
, i , j ∈ {

1, . . . ,n
}

,k ∈ {
1, . . . ,c

}
,

and its transpose G(A)⊤ :Rn×n×c →Rn×c as

(
G (A)⊤ O

)
i k

=
n∑

j=1

(
Ai j Oi j k −A j i O j i k

)
, i ∈ {

1, . . . ,n
}

,k ∈ {
1, . . . ,c

}
.
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3.C Contractivity of the feature updating rule

Note that in practice, we compute it only if the entry Ai j ̸= 0, and that this
gradient operator is just a spatial difference operation applied channel-wise as
is common in previous methods [9, 17].

We now turn to prove that the node feature update rule is contractive. First of
all we notice that Xl (0n×c ,A) = 0n×c for every A ∈Rn×n , and hence since Xl is
L-Lipschitz for some L > 0, we also can conclude∥∥∥Xl

(
F,A

)−Xl
(
0n×c ,A

)∥∥∥
F
=

∥∥∥Xl
(
F,A

)∥∥∥
F
≤ L ∥F∥F . (3.C.1)

We remark that since both G(A) and G(A)⊤ are linear operations, one could
equivalently introduce them as matrices acting on the vectorization vec(F).
We call the matrix version of the gradient operator Ĝ(A) and similarly for its
transpose. Using this notation, we see that

vec
(G (A)FWl

)= Ĝ (A)vec
(
FWl

)= Ĝ (A)
(
W⊤

l ⊗ In

)
vec(F).

Hence,

vec
(

Xl
(
F,A

))=−(
K̃l ⊗ In

)(
Wl ⊗ In

) Ĝ (A)⊤σ
(
Ĝ (A)

(
W⊤

l ⊗ In

)
vec(F)

)
.

We then introduce the energy

EA(F) = 1⊤γ
(
Ĝ(A)

(
W⊤

l ⊗ In

)
vec(F)

)
, γ′(s) =σ(s),

where 1 ∈ Rn·n·c , is a vector of all ones. This energy is convex in F since it is
obtained by composing convex functions, given that σ is non-decreasing.

Notice that since the gradient of EA with respect to f := vec(F) writes

∇fEA (F) = (
Wl ⊗ In

) Ĝ (A)⊤σ
(
Ĝ (A)

(
W⊤

l ⊗ In

)
vec(F)

)
,

we can express vec(Xl (A,F)) in the simpler form

X̂l
(
F,A

)
:= vec

(
Xl

(
F,A

))=−(
K̃l ⊗ In

)∇fEA(F).

This allows us to prove both Theorems 3.1 and 3.2 for two interesting con-
figurations. First, we notice that if K̃l is positive definite, when F ̸= 0n×c and
∇fEA(F) ̸= 0n×c , we have

∇fEA (F)⊤ vec
(

Xl
(
A,F

))≤λmax
(−K̃l

)∥∥∇fEA (F)
∥∥2

2 ≤ L2λmax
(−K̃l

)∥F∥2
F < 0.

Here, with λmax(−K̃l ) we denote the maximum eigenvalue of −K̃l , which is
negative since K̃l is positive definite. We then have

EA

(
Ψ

hl
Xl

(
F,A

))≤ EA (F)
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for small enough hl > 0 since X̂l locally provides a descent direction for EA.
This result guarantees that the updates F(l ) will remain bounded.

To prove Theorem 3.2, we first notice that

∥P∥F = ∥vec(P)∥2 ∀P ∈Rn×c ,

and thus prove the result for the vectorization of Xl (A,F). We focus on the case
Kl = λIc , λ > 0, which is the one tested in the experiments of Appendix 3.K.
Given that in this case vec(Xl (F,A)) = −λ∇f(EA(F,A)), we can immediately
conclude. Indeed, we can apply the results in [49], for example, to prove the
desired result for every Wl ∈ Rn×n . This is just a direct consequence of the
properties of convex functions with Lipschitz gradient.

3.D Proofs for the contractivity of the adjacency ma-
trix updates

This section aims to provide a detailed proof of Theorem 3.3. This is divided
into various steps. We first provide the vectorized version of such theorem,
which we then prove. The theorem then follows directly by definition of the
vectorized ℓ1 norm.

Let M(A) be defined as in (3.B.1). It is clear that M is linear in A ∈ Rn×n , and
thus that there exists a matrix T ∈Rn2×n2

such that

vec

(
M

(
A(l )

))
= T vec

(
A(l)

)
. (3.D.1)

We now characterize the explicit expression of such T.

Theorem 3.4. The matrix T can be written as follows:

T = k1In2 +k2

n∑
i=1

(
ei e⊤i

)
⊗

(
ei e⊤i

)
+ k3

2n

(
1n1⊤

n ⊗ In + In ⊗1n1⊤
n

)
+k4

n∑
i=1

(
ei 1⊤

n

)
⊗

(
ei e⊤i

)
+ k5

n2

(
1n1⊤

n

)
⊗

(
1n1⊤

n

)
+ k6

n

n∑
i=1

(
ei 1⊤

n

)
⊗

(
ei 1⊤

n

)
+ k7

n2

n∑
i=1

(
1ne⊤i

)
⊗

(
1ne⊤i

)
+ k8

n

n∑
i , j=1

(
e j e⊤i

)
⊗

(
e j e⊤i

)
+ k9

2n

n∑
i=1

((
1ne⊤i

)
⊗

(
ei e⊤i

)
+

(
ei e⊤i

)
⊗

(
1ne⊤i

))
(3.D.2)

where ei ∈Rn2
is the i−th element of the canonical basis.
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3.D Proofs for the contractivity of the adjacency matrix updates

Proof. We do it by focusing on the separate 9 pieces defining T. The main
result needed to complete the derivation is that

vec
(
ABC

)= (
C⊤⊗A

)
vec(B) . (3.D.3)

We omit the part with k1 since it is trivial. Let us start with

diag
(
diag(A)

)= n∑
i=1

(
e⊤i Aei

)
ei e⊤i =

n∑
i=1

ei

(
e⊤i Aei

)
e⊤i

=
n∑

i=1

(
ei e⊤i

)
A

(
ei e⊤i

)
which allows us to conclude the proof by the linearity of the vec operator, and
(3.D.3). Moving to the k3 part we have that by (3.D.3)

vec
(
A1n1⊤

n +1n1⊤
n A

)
=

(
1n1⊤

n ⊗ In + In ⊗1n1⊤
n

)
vec

(
A

)
.

The k4 part can be rewritten as

diag
(
A1n

)= n∑
i=1

(
e⊤i A1n

)
ei e⊤i =

n∑
i=1

ei e⊤i A1ne⊤i

which gives

vec
(
diag

(
A1n

))= (
n∑

i=1

(
ei 1⊤

n

)
⊗

(
ei e⊤i

))
vec(A) .

Term for k5 follows immediately from (3.D.3), while for k6 we can write(
1⊤

n A1n

)
In =

(
1⊤

n A1n

) n∑
i=1

ei e⊤i =
n∑

i=1
ei

(
1⊤

n A1n

)
e⊤i

which implies the desired expression. For k7 it holds(
1⊤

n diag(A)
)

1n1⊤
n =

n∑
i=1

(
e⊤i Aei

)
1n1⊤

n =
n∑

i=1
1ne⊤i Aei 1⊤

n

which allows us to conclude. We now move to(
1⊤

n diag(A)
)

In =
n∑

i=1

(
e⊤i Aei

) n∑
j=1

e j e⊤j =
n∑

i , j=1
e j e⊤i Aei e⊤j

and hence

vec

((
1⊤

n diag(A)
)

In

)
=

 n∑
i , j=1

(
e j e⊤i

)
⊗

(
e j e⊤i

)vec(A) .
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We now consider the term multiplying k9, which writes

diag(A)1⊤
n +1ndiag(A)⊤

=
n∑

i=1

(
e⊤i Aei

)
ei 1⊤

n +1n

n∑
i=1

(
e⊤i Aei

)
e⊤i ,

vec
(
diag(A)1⊤

n +1ndiag(A)⊤
)

=
(

n∑
i=1

(
1ne⊤i

)
⊗

(
ei e⊤i

)
+

(
ei e⊤i

)
⊗

(
1ne⊤i

))
vec(A) ,

and concludes the proof.

We now want to evaluate how large can hl > 0 be so that the condition∥∥∥∥DΨhl

Ŷl

∥∥∥∥
1
≤ 1

is satisfied. Let us note here that the norm under consideration is the matrix
ℓ1 norm, not the usual vector ℓ1 norm, which has previously occurred in the
main text. Recall that the matrix ℓ1 norm of a matrix T ∈Rn2×n2

is given as the
maximum of the absolute column sums:

∥T∥1 = max
1≤ j≤n2

n2∑
i=1

∣∣∣Ti j

∣∣∣ .

Theorem 3.5. The matrix T−k1In2 , with T defined in (3.D.2), has ℓ1 norm
bounded by

∑9
i=2 |ki |.

Proof. Given that one can bound the norm of the sum with the sum of the
norms, it is enough to show that the norms of all the contributions in (3.D.2)
can be bounded by the absolute value of the respective constant ki . The proof
follows from multiplying from the left every term by 1n2 and using the linearity
of the sum.

For compactness, we now denote vec(Yl (A)) with Ŷl (a), where a = vec(A).
Furthermore, the map Ψhl

Ŷl
is defined as Ψhl

Ŷl
(a) := vec(Ψhl

Yl
(A)).

Theorem 3.6. Let α ≤ 0, σ : R→ R be a Lipschitz continuous function, with
σ′(s) ∈ [0,1]. Then if

0 ≤ hl ≤
2

2
∑9

i=2

∣∣ki
∣∣−α ,

the explicit Euler step

a(l) =Ψhl

Ŷl

(
a(l−1)

)
:= a(l−1) +hlσ

(
Ta(l−1)

)
, k1 =

(
α−

9∑
i=2

∣∣ki
∣∣) , (3.D.4)
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is contractive in the ℓ1 norm.

For the proof and the successive derivations, we denote with DŶl (a) ∈ Rn2×n2

the Jacobian matrix of the vector field Ŷl :Rn2 →Rn2
, having entries

(
DŶl (a)

)
i j
=
∂
(
Ŷl (a)

)
i

∂a j
. (3.D.5)

The Jacobian matrix is needed because, for functions that are almost every-
where continuously differentiable, the contractivity condition is equivalent to∥∥∥∥DΨhl

Ŷl
(a)

∥∥∥∥
1
≤ 1 (3.D.6)

almost everywhere.

Proof. For compactness, we drop the superscript and denote a(l−1) as a, since
the provided estimates are independent of the evaluation point. The map Ψhl

Ŷl

is differentiable almost everywhere and hence the result simplifies to proving∥∥∥∥DΨhl

Ŷl
(a)

∥∥∥∥
1
≤ 1.

We thus compute

DΨhl

Ŷl
(a) = In2 +hl diag

(
σ′ (Ta)

)
T.

To simplify the proof, we introduce the matrix S = T−k1In2 . This means that
the update in (3.D.4) can be written as

Ψ
hl

Ŷl
(a) = a+hlσ

Sa+
(
α−

9∑
i=2

∣∣ki
∣∣)a

 .

We call d1, . . . ,dn2 the diagonal entries of the matrix diag(σ′(·)). It follows(
DΨhl

Ŷl
(a)

)
i i
= 1+hl di

Si i +
(
α−

9∑
i=2

∣∣ki
∣∣)

(
DΨhl

Ŷl
(a)

)
j i
= hl d j S j i .

If (DΨhl

Ŷl
(a))i i ≥ 0, one gets

n2∑
j=1

∣∣∣∣∣
(
DΨhl

Ŷl
(a)

)
j i

∣∣∣∣∣= 1+hl di

Si i +
(
α−

9∑
i=2

∣∣ki
∣∣)+hl

∑
j ̸=i

d j |S j i | ≤ 1.
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This inequality holds whenever

di Si i +
∑
j ̸=i

d j

∣∣∣S j i

∣∣∣+(
α−

9∑
i=2

∣∣ki
∣∣)≤ 0,

which is always true since

di Si i +
∑
j ̸=i

d j

∣∣∣S j i

∣∣∣+(
α−

9∑
i=2

∣∣ki
∣∣)≤ di

∣∣Si i
∣∣+ ∑

j ̸=i
d j

∣∣∣S j i

∣∣∣+(
α−

9∑
i=2

∣∣ki
∣∣)

≤ ∥∥S
∥∥

1 −
9∑

i=2

∣∣ki
∣∣+α≤α≤ 0.

It hence only remains to study the case
(
DΨhl

Ŷl
(a)

)
i i
< 0, which leads to

n2∑
j=1

∣∣∣∣∣
(
DΨhl

Ŷl
(a)

)
j i

∣∣∣∣∣=−1−hl di

Si i +
(
α−

9∑
i=2

∣∣ki
∣∣)+hl

∑
j ̸=i

d j

∣∣∣S j i

∣∣∣≤ 1.

We move to a more stringent condition which is given by bounding −hl di Si i ≤
hl di |Si i | ≤ hl |Si i | so that we get

n2∑
j=1

∣∣∣∣∣
(
DΨhl

Ŷl
(a)

)
j i

∣∣∣∣∣≤−1+hl
∣∣Si i

∣∣−hl di

(
α−

9∑
i=2

∣∣ki
∣∣)+hl

∑
j ̸=i

∣∣∣S j i

∣∣∣
≤−1+hl

∥∥S
∥∥

1 −hl di

(
α−

9∑
i=2

∣∣ki
∣∣)≤ 1.

This holds true when

hl ≤
2∥∥S

∥∥
1 −diα+di

∑9
i=2

∣∣ki
∣∣ .

Now since ∥S∥1 ≤∑9
i=2 |ki |, and −diα ∈ [0,−α], we have

2

2
∑9

i=1

∣∣ki
∣∣−α ≤ 2∥∥S

∥∥
1 −diα+di

∑9
i=1

∣∣ki
∣∣ ,

which allows us to conclude that if

0 ≤ hl ≤
2

2
∑9

i=2

∣∣ki
∣∣−α

then the contractivity condition is satisfied.

By definition of the vectorized ℓ1 norm, one can hence conclude that Theo-
rem 3.6 is equivalent to Theorem 3.3.
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3.E Proof of the contractivity of the coupled dynamical
system

In this section, we work with the coupled systemḞ (t ) =−G (
A (t )

)⊤
σ

(
G (

A (t )
)

F (t )W (t )
)

W (t )⊤

Ȧ (t ) =σ
(
M

(
A (t )

))
,

(3.E.1)

where M is defined as in Appendix 3.B, and hence defines an equivariant
system which is also contractive in vectorized ℓ1 norm. Consider only the
bounded time interval t ∈ [0, T̄ ], where we assume that the graph defined by
t 7→ A(t ) starts and remains connected. This guarantees G(A(t ))F (t ) = 0 if and
only if F (t ) ≡ F (0), and F (0) has coinciding rows. We suppose this does not
happen at time t = 0.

We assume that the activation function is σ = LeakyReLU. In the adjacency
dynamical system, we set α < 0. Furthermore, let Wl be non-singular. We
now show that (3.E.1) provides a contractive continuous dynamical system in
a suitable norm.

The focus is now on the time-independent case, i.e. only on Xl and Yl , since
the more general case follows naturally. We thus specify the expression in
(3.E.1) for this setting:Ḟ (t ) =−G (

A (t )
)⊤
σ

(
G (

A (t )
)

F (t )Wl

)
W ⊤

l =: Xl
(
F (t ) , A (t )

)
Ȧ (t ) =σ

(
M

(
A (t )

))=: Yl
(

A (t )
)

.
(3.E.2)

Using the concepts described in Appendix 3.A, it is possible to prove that the
two separate equations are strictly contracting in their respective norms, that is∥∥F (t )−F∗ (t )

∥∥
F ≤ e−ν1t

∥∥∥F(0) −F(0)
∗

∥∥∥
F

, ν1 > 0,∥∥∥vec
(

A (t )
)−vec

(
A∗ (t )

)∥∥∥
1
≤ e−ν2t

∥∥∥∥vec
(
A(0)

)
−vec

(
A(0)
∗

)∥∥∥∥
1

, ν2 > 0,

where t ∈ [0, T̄ ], while (F (t ), A(t )) and (F∗(t ), A∗(t )) are solutions of (3.E.2),
when considered separately, and starting respectively at (F(0),A(0)) and (F(0)

∗ ,A(0)
∗ ).

For more details on this result see [6]. We remark that in the first inequality,
the A(0) matrix is seen as a parameter, and hence does not evolve. These two
conditions thus say that the two systems are strictly contracting when consid-
ered separately. In [51], the author shows that when these conditions hold and
the mixed Jacobian matrix

J
(
F,A

)= ∂vec
(

Xl
(
F,A

))
∂vec(A)

∈Rnc×n2
(3.E.3)
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is bounded on a closed and convex set Ω in the norm∥∥∥J
(
F,A

)∥∥∥
1,2

= max
v∈Rn2

∥v∥1=1

∥∥∥J
(
F,A

)
v
∥∥∥

2
= max

j=1,...,n2

∥∥∥J
(
F,A

)
e j

∥∥∥
2

,

there is a pair of constants m1,m2 > 0 such that the system in (3.E.1) is con-
tractive with respect to the weighted norm

dm1,m2

((
F(0),A(0)

)
,
(
F(0)
∗ ,A(0)

∗
))

= m1

∥∥∥F(0) −F(0)
∗

∥∥∥
F
+m2

∥∥∥∥vec
(
A(0)

)
−vec

(
A(0)
∗

)∥∥∥∥
1

.

Now, (F (t ), A(t )) and (F∗(t ), A∗(t )) are solutions of (3.E.2) considered as a
coupled system, i.e. solving jointly the two equations. Notice also that since
Yl (0n×n) = 0n×n , and such system is contractive, it follows that any solution
of (3.E.1) has A(t ) which is bounded uniformly in time by the norm of the
initial condition ∥vec(A(0))∥1. Similarly, we notice that for every A, one also
has Xl (0n×c ,A) = 0n×c and hence also ∥F (t )∥F is bounded by ∥F(0)∥F . To get
more concise derivations, we use the conventional notation [k] := {1, ...,k} for
indices. To compute the Jacobian and its norm, we first define G and G⊤,
as matrix operators, by specifying their components when acting on generic
F ∈Rn×c and O ∈Rn×n×c :(G (A)F

)
i j k = Ai j

(
Fi k −F j k

)
, i , j ∈ [n] , k ∈ [c] ,(

G (A)⊤ O
)

i k
=

n∑
j=1

(
Ai j Oi j k −A j i O j i k

)
, i ∈ [n] , k ∈ [c] .

Here, G(A)⊤O is obtained thanks to the relation

vec
(G (A)F

)⊤ vec
(
O

)= vec(F)⊤ vec
(
G (A)⊤ O

)
.

We derive the desired Jacobian working on its components. First, let us com-
pute

∂
(
Xl (F)

)
i m

∂Ar s
,

so that the norm we are interested in can be obtained as

max
r,s∈[n]

∑
i∈[n]

∑
m∈[c]

(
∂
(
Xl (F)

)
i m

∂Ar s

)2

.
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3.E Proof of the contractivity of the coupled dynamical system

We first denote F̂ := FW ∈Rn×c , and focus on

∂

(
G(A)⊤σ

(
G(A)F̂

))
i k

∂Ar s
= ∂

∂Ar s

 ∑
j∈[n]

[
Ai jσ

(
G(A)F̂

)
i j k

−A j iσ
(
G(A)F̂

)
j i k

]
= ∂

∂Ar s

 ∑
j∈[n]

[
Ai jσ

(
Ai j

(
F̂i k − F̂ j k

))
−A j iσ

(
−A j i

(
F̂i k − F̂ j k

))] .

We remark that for the case σ(x) = ReLU(x), one has σ(x)−σ(−x) = x, and
hence when A = A⊤ we would have a simpler setting to deal with from now on.
However, we aim to be general so we do not restrict to this case throughout the
derivation. We can now proceed with the differentiation, and get

δi rσ

(
Ai s

(
F̂i k − F̂sk

))
−δi sσ

(
−Ar i

(
F̂i k − F̂r k

))
+δi r Ai sσ

′
(

Ai s

(
F̂i k − F̂sk

))(
F̂i k − F̂sk

)
+δi s Ar iσ

′
(
−Ar i

(
F̂i k − F̂r k

))(
F̂i k − F̂r k

)
,

where δi j is the Kronecker delta, which is 1 when i = j , and 0 otherwise. This
means that the Jacobian matrix

∂Ar s

(
G(A)⊤σ

(
G(A)F̂

))
∈Rn×c ,

has all zero entries but those in the two rows r and s that are of the form

e⊤r ∂Ar s

(
G(A)⊤σ

(
G(A)F̂

))
=σ

(
G(A)r s

(
er −es

)⊤ F̂
)
+Ar sdiag

(
σ′

(
Ar s

(
er −es

)⊤ F̂
))(

er −es
)⊤ F̂

e⊤s ∂Ar s

(
G(A)⊤σ

(
G(A)F̂

))
=−σ

(
Ar s

(
er −es

)⊤ F̂
)
−Ar sdiag

(
σ′

(
Ar s

(
er −es

)⊤ F̂
))(

er −es
)⊤ F̂

=−e⊤r ∂Ar s

(
G(A)⊤σ

(
G(A)F̂

))
.
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As a consequence, when r = s, the matrix is the zero matrix. We conclude that∥∥∥∥∥∂vec
(
Xl (FA)

)
∂vec(A)

∥∥∥∥∥
1,2

=
p

2 max
r,s∈[n]

∥∥∥∥∥e⊤r ∂Ar s

(
G(A)⊤σ

(
G(A)F̂

)
W⊤

)∥∥∥∥∥
2

≤p
2∥W∥2 max

r,s∈[n]

∥∥∥∥∥e⊤r ∂Ar s

(
G(A)⊤σ

(
G(A)F̂

))∥∥∥∥∥
2

≤ 2
p

2∥W∥2
2 max

r,s∈[n]

∥∥∥Ar s
(
er −es

)⊤ F
∥∥∥

2

= 2
p

2∥W∥2
2 max

r,s∈[n]

∥∥∥[G(A)F
]

r s

∥∥∥
2

,

where we assumed σ(0) = 0 and Lip(σ) ≤ 1, as quite typical for neural network
activation functions.

Following the proof of [51, Theorem 3], if we take m1,m2 > 0 such that

−ν2 − m2

m1
2
p

2∥W∥2
2 max

r,s∈[n]

∥∥∥[G(A)F
]

r s

∥∥∥
2
> 0

the coupled system in (3.E.1) is contractive with respect to the norm∥∥∥(
A,F

)∥∥∥
m1,m2

:= m1 ∥vec(A)∥1 +m2 ∥F∥F .

3.F Related works: adversarial robustness via dynam-
ical systems and Lipschitz regularity

The approach of improving the robustness of neural networks through Lips-
chitz constraints and techniques typical of the stability theory of dynamical
systems has attracted much interest in recent years. This research direction has
been investigated especially for classification tasks based on structured grids,
i.e. images. For completeness in the presentation, we mention a few relevant
contributions based on these insights and briefly comment on them. In [62],
the authors work with evasion attacks and start by observing that not all input
perturbations lead to changes in the predicted class. They then provide robust-
ness guarantees based on the stability theory of dynamical systems. In [33], the
authors again propose to enhance the robustness of a neural network based on
Lyapunov stability. More precisely, they design a loss function promoting the
closeness of output predictions to stable equilibria of the differential equation
ruling the network, and also that these equilibria are as far as possible when dif-
ferent classes are considered. In [28], the authors work with neural-controlled
ODEs and introduce a framework based on forward invariance. They propose
a strategy to turn a desired function into a Lyapunov function for the ODE
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driving the neural network, hence having its sublevel sets be forward invariant.
This technique and some sampling strategies allow them to get certifiably ro-
bust models. In [49, 63], the authors exploit the connection between ResNet
architectures and numerical methods, as in this manuscript, to design contrac-
tive residual neural networks based on the discretization of contractive dynam-
ical systems. The experimental setup of both these works is again based on
evasion attacks for image-based classification problems. Together with these
mentioned works, which rely on dynamical systems theory, a big body of lit-
erature proposes to constrain the Lipschitz constant of the network as a way of
reducing its sensitivity to input perturbations, see [53, 44, 37, 30].

3.G Lipschitz constant of the map D

We now consider the bound on the Lipschitz constant of the network part D
obtained by composing explicit Euler steps of dynamical systems. We consider
the setting described in Appendix 3.E and assume all the steps h1, . . . ,hL to be
small enough so that these explicit Euler steps are also contractive, see The-
orems 3.2 and 3.3. These maps are contractive when considered in isolation,
but, in general, their composition is not. We recall the system of differential
equations to consider:

Ḟ (t ) = X
(
t ,F (t ) , A (t )

)
Ȧ (t ) = Y

(
t , A (t )

)
.

(3.G.1)

To specify the Lipschitz constant of the map D, we introduce the two following
maps:

Xl ,A :Rn×c →Rn×c , Xl ,A (F) := Xl
(
F,A

)= X
(
τl−1,F,A

)
, (3.G.2)

Xl ,F :Rn×n →Rn×c , Xl ,F (A) := Xl
(
F,A

)= X
(
τl−1,F,A

)
. (3.G.3)

Let us first recall the expression for D, which is

D =DL ◦ . . .◦D1,

where

Dl

((
F(l−1),A(l−1)

))
=

(
Ψ

hl
X

l ,A(l−1)

(
F(l−1)

)
,Ψhl

Yl

(
A(l−1)

))
, l = 1, . . . ,L.
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We consider the two pairs of initial conditions (F(0),A(0)), (F(0)
∗ ,A(0)

∗ ), and up-
date first the F(0) component with Ψh1

X1,A(0)
, and F(0)

∗ with Ψh1
X

1,A(0)∗
to get

F(1) =Ψh1
X1,A(0)

(
F(0)

)
= F(0) +h1X1,A(0)

(
F(0)

)
(3.G.4)

F(1)
∗ =Ψh1

X
1,A(0)∗

(
F(0)
∗

)
= F(0)

∗ +h1X1,A(0)
∗

(
F(0)
∗

)
(3.G.5)∥∥∥F(1) −F(1)

∗
∥∥∥

F
(3.G.6)

=
∥∥∥∥∥∥Ψh1

X1,A(0)

(
F(0)

)
+

(
Ψ

h1
X

1,A(0)∗

(
F(0)

)
−Ψh1

X
1,A(0)∗

(
F(0)

))
−Ψh1

X
1,A(0)∗

(
F(0)
∗

)∥∥∥∥∥∥
F

≤
∥∥∥∥∥Ψh1

X1,A(0)

(
F(0)

)
−Ψh1

X
1,A(0)∗

(
F(0)

)∥∥∥∥∥
F

+
∥∥∥F(0) −F(0)

∗
∥∥∥

F

≤ h1

∥∥∥∥X1,F(0)

(
A(0)

)
−X1,F(0)

(
A(0)
∗

)∥∥∥∥
F
+ε1

≤ h1Lip
(

X1,F(0)

)∥∥∥∥vec
(
A(0)

)
−vec

(
A(0)
∗

)∥∥∥∥
1
+ε1

≤ h1Lip
(

X1,F(0)

)
ε2 +ε1. (3.G.7)

By Lip(X1,F(0) ) we refer to the Lipschitz constant of the map X1,F(0) : Rn×n →
Rn×c , where the first space has the vectorized ℓ1 norm, and the second has the
Frobenius norm.

Then one can update the adjacency matrices A(0) and A(0)
∗ to

A(1) =Ψh1
Y1

(
A(0)

)
, A(1)

∗ =Ψh1
Y1

(
A(0)
∗

)
,

for which we have already proven ∥vec(A(1))− vec(A(1)
∗ )∥1 ≤ ε2. To get the

general form of the Lipschitz constant of D, we update again the features so it
is easier to generalize:

F(2) =Ψh2
X2,A(1)

(
F(1)

)
= F(1) +h2X2,A(1)

(
F(1)

)
(3.G.8)

F(2)
∗ =Ψh2

X
2,A(1)∗

(
F(1)
∗

)
= F(1)

∗ +h2X2,A(1)
∗

(
F(1)
∗

)
(3.G.9)∥∥∥F(2) −F(2)

∗
∥∥∥

F
≤ h2Lip

(
X2,F(1)

)
ε2 +h1Lip

(
X1,F(0)

)
ε2 +ε1. (3.G.10)

This leads to the general bound on the expansivity of D when it is composed
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of L layers, which is

d

(
D

(
F(0),A(0)

)
,D

(
F(0)
∗ ,A(0)

∗
))

:=
∥∥∥vec(A(L))−vec(A(L)

∗ )
∥∥∥

1
+

∥∥∥F(L) −F(L)
∗

∥∥∥
F

≤ ε1 +ε2

(
1+

L∑
i=1

Lip
(

Xi ,F(i−1)

)
hi

)
=: ε1 + c

(
h1, . . . ,hL

)
ε2.

(3.G.11)

We remark that in case the adjacency matrix is not perturbed, i.e., ε2 = 0, the
map D can be controlled by the perturbation magnitude to the feature matrix,
i.e., ε1. On the other hand, even if the features are not perturbed, i.e. ε1 = 0,
the feature updates can not be bounded simply with ε2, since their update de-
pends on different adjacency matrices. We have already commented on this
aspect in Section 3.4 since this interconnection is also the reason why we have
proposed to jointly update the feature and the adjacency matrices. The impor-
tant aspect of this analysis is that constraining the map D so this contractive
setup occurs allows getting the bound in (3.G.11), which quantifies how sensi-
tive the network is to perturbations. We also remark that the derivation in the
previous section allows one to get practical bounds on the Lipschitz constants
Lip(Xi ,F(i ) ).

3.H Architecture

We describe in Algorithm 1 the architecture of CSGNN.

3.I Datasets

We provide the statistics of the datasets used in our experiments in Table 3.I.1.

3.J Hyperparameters

All the hyperparameters were determined by grid search, and the ranges and
sampling distributions are provided in Table 3.J.1.
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Algorithm 1 CSGNN Architecture
Input: Attacked node features F∗ ∈ Rn×cin and adjacency matrix A∗ ∈

{0,1}n×n .
Output: Predicted node labels Ỹ ∈Rn×cout .

1: procedure CSGNN
2: F∗ ← Dropout

(
F∗, p

)
3: F(0)

∗ =K (
F∗

)
; A(0)

∗ = A∗
4: for l = 1. . .L do
5: F(l−1)

∗ ← Dropout
(
F(l−1)
∗ , p

)
6: Node Feature Update: F(l )

∗ =Ψhl
Xl

(
F(l−1)
∗ ,A(l−1)

∗
)

7: Adjacency Update: A(l)
∗ =Ψhl

Yl

(
A(l−1)
∗

)
8: end for
9: F(L)

∗ ← Dropout
(
F(L)
∗ , p

)
10: Ỹ =P

(
F(L)
∗

)
11: Return Ỹ
12: end procedure

3.K Experimental Results

Results on Pubmed. We now provide our results on the Pubmed [42] dataset,
with three types of attacks: (i) non-targeted using metattack, reported in Ta-
ble 3.K.1, (ii) targeted attack using nettack in Figure 3.K.1, and (iii) random
adjacency matrix attack in Figure 3.K.2. Those experiments are done under
the same settings as those in Section 3.5 in the main paper. Overall, we see
that our CSGNN achieves similar or better results compared with other base-
lines. Specifically, we see that CSGNN outperforms all the considered base-
lines under targeted attack (using nettack), and similar performance when no
perturbations occur, as can be depicted in Figure 3.K.1.

Absolute performance results on Unit tests. In Section 3.5.2, we provide the
obtained relative node classification accuracy (%) with respect to the accuracy
of GCN. Here, we also provide the absolute results, for an additional perspec-
tive on the performance of CSGNN. Our results are reported in Figure 3.K.3.

Enforcing contractive node dynamics improves baseline performance. As
discussed in Section 3.4.2, we draw inspiration from contractive dynamical
systems and, therefore, propose a contractivity-inspired node feature dynami-
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Dataset NLCC ELCC Classes Features

Cora [40] 2,485 5,069 7 1,433
Citeseer [47] 2,110 3,668 6 3,703
Polblogs [1] 1,222 16,714 2 /
Pubmed [42] 19,717 44,338 3 500

Table 3.I.1: Datasets Statistics. Following [67, 68], we consider only the largest
connected component (LCC).

Hyperparameter Range Distribution

input/output embedding learning rate [10−5,10−2] uniform
node dynamics learning rate [10−5,10−2] uniform

adjacency dynamics learning rate [10−5,10−2] uniform
input/output embedding weight decay [5 ·10−8,5 ·10−2] log uniform

node dynamics weight decay [5 ·10−8,5 ·10−2] log uniform
adjacency dynamics weight decay [5 ·10−8,5 ·10−2] log uniform
input/output embedding dropout [0,0.6] uniform

node dynamics dropout [0,0.6] uniform
share weights between time steps {yes,no} discrete uniform

step size h [10−2,1] log uniform
adjacency contractivity parameter α [−2,0] uniform

#layers L {2,3,4,5} discrete uniform
#channels c {8,16,32,64,128} discrete uniform

Table 3.J.1: Hyperparameter ranges

cal system. For our results in the main paper, in Section 3.5, we use a more
general definition of the node dynamical system that can admit both contrac-
tive and non-contractive dynamics in a data-driven fashion that generalizes the
contractive behavior described in Theorem 3.2. To motivate our choice and
inspiration from such systems, we now show that by enforcing contractive dy-
namics only (i.e., ensuring K̃l is positive definite), improved results are also
achieved, in addition to our results with CSGNN in the main paper. To this
end, we will denote the Enforced CSGNN variant of our method by ECSGNN.
We present the performance of ECSGNN under the non-targeted metattack
in Table 3.K.2, targeted nettack in Figure 3.K.4, and random attacks in Fig-
ure 3.K.5. Overall, we see that ECSGNN typically offers improved perfor-
mance compared to several baselines and, in some cases, outperforms all of
the considered models. Also, we find that its extension, non-enforced CSGNN
tends to yield further performance improvements, as shown in the main paper.
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Dataset Ptb Rate (%) 0 5 10 15 20 25

Pubmed

GCN 87.19±0.09 83.09±0.13 81.21±0.09 78.66±0.12 77.35±0.19 75.50±0.17
GAT 83.73±0.40 78.00±0.44 74.93±0.38 71.13±0.51 68.21±0.96 65.41±0.77

RGCN 86.16±0.18 81.08±0.20 77.51±0.27 73.91±0.25 71.18±0.31 67.95±0.15
GCN-Jaccard 87.06±0.06 86.39±0.06 85.70±0.07 84.76±0.08 83.88±0.05 83.66±0.06
GCN-SVD 83.44±0.21 83.41±0.15 83.27±0.21 83.10±0.18 83.01±0.22 82.72±0.18
Pro-GNN-fs 87.33±0.18 87.25±0.09 87.25±0.09 87.20±0.09 87.09±0.10 86.71±0.09

Pro-GNN 87.26±0.23 87.23±0.13 87.21±0.13 87.20±0.15 87.15±0.15 86.76±0.19
CSGNN 87.36±0.02 87.16±0.10 87.08±0.09 87.06±0.08 86.59±0.18 86.63±0.08

Table 3.K.1: Node classification performance (accuracy±std) under non-targeted at-
tack (metattack) on the Pubmed dataset with varying perturbation rates.
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Figure 3.K.1: Node classification accuracy (%) on the Pubmed dataset using nettack
as an attack method. The horizontal axis describes the number of perturbations per
node.

Our conclusion from this experiment is that node feature contractivity helps to
improve robustness to adversarial attacks.
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Figure 3.K.2: Node classification accuracy (%) on the Pubmed dataset with a random
adjacency matrix attack. The horizontal axis describes the attack percentage.

0 2 4 6

40
50
60
70
80

A
cc

ur
ac

y
(%

)

CSGNN GCN GCN-Jaccard GCN-SVD
GNNGuard GRAND MLP Pro-GNN
RGCN Soft-Median-GDC

(a) Cora-ML

0 2 4 6 8

40

50

60

70

A
cc

ur
ac

y
(%

)

(b) Citeseer

Figure 3.K.3: Absolute results version of Figure 3.5.2. The horizontal axis describes
the attack budget (%) as defined in [41].

Dataset Ptb Rate (%) 0 5 10 15 20 25

Cora

GCN 83.50±0.44 76.55±0.79 70.39±1.28 65.10±0.71 59.56±2.72 47.53±1.96
GAT 83.97±0.65 80.44±0.74 75.61±0.59 69.78±1.28 59.94±0.92 54.78±0.74

RGCN 83.09±0.44 77.42±0.39 72.22±0.38 66.82±0.39 59.27±0.37 50.51±0.78
GCN-Jaccard 82.05±0.51 79.13±0.59 75.16±0.76 71.03±0.64 65.71±0.89 60.82±1.08
GCN-SVD 80.63±0.45 78.39±0.54 71.47±0.83 66.69±1.18 58.94±1.13 52.06±1.19
Pro-GNN-fs 83.42±0.52 82.78±0.39 77.91±0.86 76.01±1.12 68.78±5.84 56.54±2.58

Pro-GNN 82.98±0.23 82.27±0.45 79.03±0.59 76.40±1.27 73.32±1.56 69.72±1.69
Mid-GCN 84.61±0.46 82.94±0.59 80.14±0.86 77.77±0.75 76.58±0.29 72.89±0.81
CSGNN 84.12±0.31 82.20±0.65 80.43±0.74 79.32±1.04 77.47±1.22 74.46±0.99

ECSGNN 82.79±0.33 80.59±0.61 79.19±0.81 76.29±0.96 73.88±0.84 72.27±0.78

Citeseer

GCN 71.96±0.55 70.88±0.62 67.55±0.89 64.52±1.11 62.03±3.49 56.94±2.09
GAT 73.26±0.83 72.89±0.83 70.63±0.48 69.02±1.09 61.04±1.52 61.85±1.12

RGCN 71.20±0.83 70.50±0.43 67.71±0.30 65.69±0.37 62.49±1.22 55.35±0.66
GCN-Jaccard 72.10±0.63 70.51±0.97 69.54±0.56 65.95±0.94 59.30±1.40 59.89±1.47
GCN-SVD 70.65±0.32 68.84±0.72 68.87±0.62 63.26±0.96 58.55±1.09 57.18±1.87
Pro-GNN-fs 73.26±0.38 73.09±0.34 72.43±0.52 70.82±0.87 66.19±2.38 66.40±2.57

Pro-GNN 73.28±0.69 72.93±0.57 72.51±0.75 72.03±1.11 70.02±2.28 68.95±2.78
Mid-GCN 74.17±0.28 74.31±0.42 73.59±0.29 73.69±0.29 71.51±0.83 69.12±0.72
CSGNN 74.93±0.52 74.91±0.33 73.95±0.35 73.82±0.61 73.01±0.77 72.94±0.56

ECSGNN 75.01±0.28 74.97±0.38 73.97±0.29 73.67±0.45 72.92±0.97 72.89±0.90

Table 3.K.2: Node classification performance (accuracy±std) of ECSGNN and other
baselines, under non-targeted attack (metattack) with varying perturbation rates.
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Figure 3.K.4: Node classification accuracy (%) of ECSGNN and other baselines,
under a targeted attack generated by nettack. The horizontal axis describes the number
of perturbations per node.
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Figure 3.K.5: Node classification accuracy (%) of ECSGNN and other baselines,
under a random adjacency matrix attack. The horizontal axis describes the attack
percentage.
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3.K Experimental Results

Learning contractive adjacency dynamics is beneficial. As our CSGNN is
composed of two learnable coupled dynamical systems that evolve both the
node features and the adjacency matrix, it is interesting to quantify the impor-
tance of learning the adjacency matrix dynamics. Therefore, we now report the
node classification accuracy (%) on the Cora and Citeseer datasets, under three
different attack settings - non-targeted with metattack, targeted with nettack,
and a random adjacency matrix attack. We choose the strongest attack under
each setting, out of our experiments in Section 3.5.2. Namely, for metattack,
we choose the highest perturbation rate of 25%, for nettack we choose the
maximal number of node perturbations of 5, and for random adjacency matrix
attack we randomly add edges that amount to 100% of the edges in the origi-
nal, clean graph. We report the results in Table 3.K.3. We denote the CSGNN
variant that does not employ an adjacency dynamical system by CSGNNnoAdj.
As can be seen from the table, there is a positive impact when adding the learn-
able adjacency matrix component to our CSGNN, highlighting its importance
to the learned dynamical system.

Method Cora Citeseer
nettack metattack random nettack metattack random

CSGNNnoAdj 81.90 70.25 77.19 82.20 70.17 71.28
CSGNN 83.29 74.46 78.38 84.60 72.94 72.70

Table 3.K.3: The influence of learning the adjacency dynamical system Ψ
hl
Yl

. The
results show the node classification accuracy (%) with and without learning the adja-
cency dynamical system.

Comparison with GNNGuard. We now provide a comparison of our CS-
GNN with GNNGuard [64]. We report results, both on Cora and Citeseer, for
Metattack with a 20% perturbation rate and for 5 targeted nodes using Net-
tack, as reported in [64]. These results further highlight the significance of our
method, given that in most cases, CSGNN outperforms GNNGuard.

Method Cora Citeseer
metattack nettack metattack nettack

GNNGuard 72.20 77.50 71.10 86.50
CSGNN (Ours) 77.47 83.20 73.00 84.60

Table 3.K.4: Comparison of our proposed GNN architecture with GNNGuard, based
on the experimental setup proposed in [64]. The results show the node classification
accuracy (%). Metattack is considered with a 20% perturbation rate, and Nettack with
5 targeted nodes.

Ablation study for the number of network layers. One of the hyperparam-
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eters of the networks we consider is the number of network layers. We now
report an ablation study of the performance of CSGNN versus the number of
layers on the Cora dataset. The study has a varying number of layers, between
1 and 32. To provide a comprehensive understanding, we provide results both
on 5% and 25% perturbation rate attacks using metattack. Our results are re-
ported in Table 3.K.5, and they show that CSGNN achieves optimal results in
the range of 2-5 layers, which is also what we used as a hyperparameter range
in our experiments.

Number of Layers 1 2 3 4 5 8 16 32

5% Ptb. Rate 82.57 83.98 84.12 84.10 84.12 84.08 83.99 84.05
25% Ptb. Rate 70.06 71.88 73.93 74.46 74.33 74.21 74.30 74.01

Table 3.K.5: Ablation study over the number of layers for CSGNN. The tests are done
over the Cora dataset, attacked with metattack.

Comparison with GARNET. We now provide a comparison of the CSGNN
with GARNET proposed in [16]. The reported results correspond to the best
results shown in [16]. The tables report test node classification accuracies, in
%, where they were available in the original paper. As can be seen from Tables
3.K.6 and 3.K.7, our method performs competitively with GARNET on both
datasets.

Ptb rate (%) 0 5 10 15 20 25

CSGNN 87.36 87.16 87.08 87.06 86.59 86.63
GARNET 86.86 N/A 86.24 N/A 85.69 N/A

Table 3.K.6: Metattack on Pubmed. Comparison between CSGNN and GARNET
[16].

Ptb rate (%) 0 5 10 15 20 25

CSGNN 84.12 82.20 80.43 79.32 77.47 74.46
GARNET 82.67 N/A 82.17 N/A 81.34 N/A

Table 3.K.7: Metattack on Cora. Comparison between CSGNN and GARNET [16].

Comparison with HANG. This paragraph reports the comparison of CSGNN
with HANG, presented in [65]. As for GARNET, we only include the results
available in the original paper of HANG. Tables 3.K.8 and 3.K.9 display com-
petitive results of CSGNN with respect to the best ones reported in [65].
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Ptb rate (%) 0 5 10 15 20 25

CSGNN 87.36 87.16 87.08 87.06 86.59 86.63
HANG 85.23 85.12 85.17 85.15 85.20 85.06

Table 3.K.8: Metattack on Pubmed. Comparison between CSGNN and HANG [65].

Ptb rate (%) 0 5 10 15 20 25

CSGNN 95.87 95.79 93.21 92.08 90.10 87.37
HANG 94.63 94.38 92.46 90.85 89.19 86.89

Table 3.K.9: Metattack on Polblogs. Comparison between CSGNN and HANG [65].

3.L Complexity and Runtimes

This appendix analyzes the complexity and runtimes of our proposed graph
neural network, accounting for the additional overhead cost due to updating
the adjacency matrix. Inference times and memory consumption are based on
experiments run on the Cora dataset with an Nvidia RTX-3090 GPU and 24GB
of memory. In theory, the added runtime complexity for a CSGNN adjacency
matrix learning layer is of O(9 ·n2) where n is the number of nodes. Thus,
assuming L layers, the overall complexity of a CSGNN network is O(L(n ·
c2 +m · c +9 ·n2)), whereas node-based ODE systems usually are of runtime
complexity O(L(n ·c2+m ·c)). We recall that n is the number of nodes, m is the
number of edges in the graph, and the term of c2 stems from the channel mixing
term in (3.4.3). The factor of 9 stems from the 9 parameters to be learned in
Equation (3.B.1). Below, we report the runtimes and memory consumption
of our CSGNN and compare it with CSGNNnoAdj (that is, CSGNN without
the adjacency matrix update), and Pro-GNN for reference. These experiments
were run on the Cora dataset with networks with 64 channels and 2 layers. It
can be seen that both CSGNN and Pro-GNN require more resources. However,
such an approach offers improved performance.

Also, we note that while both our CSGNN and Pro-GNN propose methods to
evolve the adjacency matrix, our CSGNN shows significantly lower training
computational time, due to our solution taking the form of a learned neural
ODE system for the adjacency matrix, while Pro-GNN solves an optimization
problem with feedback to the downstream task (which is also an end-to-end
solution, although different than ours). For inference, Pro-GNN uses a fixed
adjacency matrix that is found by training, while our CSGNN evolves the in-
put adjacency matrix using the learned network. This can also be seen as an
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Method Time (ms) Memory (MB) Classification accuracy (%)
Training Inference metattack nettack

Pro-GNN 1681.17 1.01 1989 69.72 66.21
CSGNNnoAdj 3.29 1.32 891 70.25 81.90

CSGNN 9.24 5.96 1623 74.46 83.29

Table 3.L.1: Comparison of our proposed GNN architecture with Pro-GNN in
terms of runtime in milliseconds (measured per epoch) and memory consumption in
megabytes, as well as the accuracy (%) of the models under different attacks. The cost
of the training refers to one epoch. Metattack is considered with a 25% perturbation
rate, and Nettack targets 5 nodes.

advantage of CSGNN, as it can be used for inference on different kinds of at-
tacks and, therefore, can potentially generalize to different attacks, and this is
a future research direction.

To conclude, we remark that the investigation of techniques that allow for a
reduction of the computational costs in the updates of the adjacency matrices
is an important and interesting topic on its own that is left for future work.
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Abstract. As supported by abundant experimental evidence, neural networks
are state-of-the-art for many approximation tasks in high-dimensional spaces.
Still, there is a lack of a rigorous theoretical understanding of what they can
approximate, at which cost, and at which accuracy. One network architec-
ture of practical use, especially for approximation tasks involving images, is
(residual) convolutional networks. However, due to the locality of the linear
operators involved in these networks, their analysis is more complicated than
that of fully connected neural networks. This paper deals with approxima-
tion of time sequences where each observation is a matrix. We show that
with relatively small networks, we can represent exactly a class of numerical
discretizations of PDEs based on the method of lines. We constructively de-
rive these results by exploiting the connections between discrete convolution
and finite difference operators. Our network architecture is inspired by those
typically adopted in the approximation of time sequences. We support our
theoretical results with numerical experiments simulating the linear advec-
tion, heat, and Fisher equations.

4.1 Introduction

When endeavoring to understand the world around us, continuum modeling
through partial differential equations (PDEs) [25, 61] has proven a fundamental
tool for a plethora of applications. Indeed, any process one may envision can
be modeled by a differential equation through an appropriate simplification,
be the focus fluid flows [65, e.g.], mathematical biology [23], chemical engi-
neering [29], and most physical process. In practice, such models are typically
solved using the rich toolbox established by numerical analysis and scientific
computing. Popular techniques include finite difference methods [38], finite
element methods [12], and spectral methods [11], and have proven excellent
tools for simulating PDEs. However, there is a significant limitation, which is
intrinsic to the inaccuracy of the PDE model itself. In other words, a PDE can
only describe macroscopic behaviors that are sufficiently understood in terms
of physical principles, and it can not capture phenomena at the molecular level
exactly or incorporate information from observed data.

Over the past decade(s), there has been an explosion of research interest in
artificial intelligence and machine learning, with applications in almost every
area imaginable, like self-driving cars, chemistry, natural language processing,
medical imaging, robotics, or weather forecasting [53, 9, 39, 35, 18, 5, 13].
One increasingly popular application for machine learning is in the approxima-
tion of PDEs. Indeed, this has led to the development of several new technolo-
gies, such as physics-informed neural networks (PINNs) [48, 20]. Such mod-
els are powerful tools for approximating PDE solutions. They typically build
some PDE structure into the network and can be used both to solve PDEs and
to learn PDEs from data. Besides PINNs, significant progress has been made
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in solving the inverse problem of discovering the underlying PDE [50, 7, 69].
Additional connections between PDEs and neural networks appear in the de-
sign of neural networks inspired by discrete numerical PDEs [51, 57, 24].

Our primary goal in this paper is to understand how accurately two-layer con-
volutional neural networks (CNNs) can approximate space-time discretizations
of PDEs. An essential step towards incorporating physical knowledge into
more standard networks is to construct neural networks capturing the structure
of families of PDEs while being trained on data that is only an approximation
of their solutions. In [40], the authors develop a methodology for express-
ing finite difference approximations with convolutional layers. This connec-
tion between discrete convolution and finite differences has also been used in
[63, 46, 21] and is fundamental to the results of the present paper. The main
difference between our work and the results presented in [40] is the purpose of
the study. In [40], the authors aim to discover a PDE given some snapshots of
its solutions. They constrain their convolutional neural network architecture so
that it can be seen as the semi-discretization of a PDE. Instead, in our work we
study how deep convolutional filters have to be to represent the spatial semi-
discretization of certain classes of PDEs. We do not impose restrictions on the
entries of the filters, but we require specific choices of activation functions. See
section 4.4 for our analysis. We prove that for linear PDEs, a two-layer CNN
with ReLU activation function and two channels can provide a second-order
accurate semi-discretization of the PDE. A similar result holds for nonlinear
PDEs with quadratic interaction terms.

In this paper, we consider space-time discretizations of PDEs. We restrict to
two-dimensional spatial domains and take discrete snapshots in time where
each observation is a matrix. While extending to higher dimensions and to
tensors is not difficult, it is omitted here for the ease of notation. Sequences
of matrices or tensors can be viewed as videos, and the task of learning the
map from one snapshot to the next is an instance of the more general problem
of next-frame prediction. In this context, unrestricted CNNs have been proven
efficient [41, 43, 26, 68]. Similarly, in [8, 28, 4, 36], the authors consider
videos of dynamical systems, such as a physical pendulum, and approximate
the underlying temporal evolution with a neural network inspired by ODEs and
PDEs.

Reliable numerical methods for differential equations must be both accurate
and stable. Stability is a known issue also for neural networks, which are in-
herently sensitive to input perturbations such as adversarial attacks [62]. The
investigation of techniques to reduce networks’ sensitivity to changes in the
inputs is an active area of research [16, 56, 42, e.g.]. We analyze two tech-
niques to enhance network stability in the context of next-frame predictions,
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intended as its ability to make reliable predictions further in the future. The
strategy that we propose relies on incorporating physical knowledge of the
problem, specifically by preserving the norm of the PDE’s initial condition,
in the spirit of geometric numerical integration [31]. It is also feasible to
work directly with other properties of the PDE (such as conserved quantities)
[34, 6, 19, 16, 67, 66, 70, 14]. Incorporating such properties into the network
often results in improved stability as we will see in the numerical experiments
for the linear advection equation in the case of norm preservation.

We will test our method on several PDEs, including the Fisher nonlinear
reaction-diffusion equation. We anticipate the results for this PDE in figure
4.1.1, with details found in subsection 4.6.3.
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Figure 4.1.1: Visual representation of the prediction provided by the neural network.
We consider one specific test initial condition, and snapshots coming from the space-
time discretization of the reaction-diffusion equation (4.A.2). The network and PDE
parameters can be found respectively in subsection 4.6.3 and appendix 4.A. From the
left, we have the initial condition, the true space discretization of the solution at time
40δt , the network prediction, and the difference between the last two matrices.

The remainder of this paper is structured as follows: In section 4.2, we discuss
residual neural networks inspired by dynamical systems by introducing the
fundamental tools used to build our method. In section 4.3 we provide an anal-
ysis of the error terms involved in the approximation of time-sequences gen-
erated by PDE discretizations. Section 4.4, specializes this analysis to PDEs
on a two-dimensional spatial domain, presenting constructive approximation
results. Section 4.5 introduces two methodologies that we use to improve the
stability of the learned map, i.e., injecting noise while training the model and
preserving the norm of the solution when the underlying PDE is known to do
so. In section 4.6, we perform numerical experiments verifying the good dy-
namical behavior of the proposed methods. In section 4.7, we make concluding
remarks and comment on future extensions of this research.
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4.2 Residual neural networks for time sequences

We now present the considered problem for time sequences defined on a generic
Euclidean space RH .

Problem: Let {(U 0
n ,U 1

n , ...,U M
n )}N

n=1 be a set of N observed sequences each
containing M+1 temporal snapshots represented by U m

n ∈RH . The superscript
m = 0, ..., M represents the observation time tm = mδt , and the subscript n =
1, ..., N refers to the considered initial condition U 0

n ∈ RH . Suppose there is a
map Φ :RH →RH such that

U m+1
n =Φ(

U m
n

)
n = 1, ..., N , m = 0, · · · , M −1. (4.2.1)

We seek an accurate approximation of Φ that can reproduce unseen time se-
quences generated by the same dynamics (i.e., on a test set)1.

We consider sequences arising from numerical discretizations of scalar PDEs.
Since a dynamical system generates our data, it is natural to approximate the
map Φ with a ResNet, which results from composing L functions of the form

x 7→ x +Fθi (x) , θi ∈P , i = 1, ...,L, (4.2.2)

where P is the space of admissible parameters, Fθi is a vector field on RH ,
x ∈RH , and L is the number of layers. One can see (4.2.2) as an explicit Euler
step of size 1 for the parametric vector field x 7→ Fθi (x), [22, 30].

Throughout, we denote with Φt
F the exact flow, at time t , of the vector field

F : RH → RH , and we use Ψδt
F to denote one of its numerical approximations

at time δt , for example Ψδt
F (x) = x +δt F (x), δt = 1, in (4.2.2).

We follow three steps for the approximation of Φ:

1. Define a family of vector fields {Fθ : θ ∈ P} capable of providing ap-
proximations of a spatial semi-discretization of the unknown PDE that
is both qualitatively and quantitatively accurate.

2. Choose a one-step numerical method Ψδt
Fθ

that is compatible with the
dynamics to be approximated.

3. Choose a suitable loss function and minimize the discrepancy between
the model predictions and the training data.

1When we refer to a generic sequence, we suppress the subscript n and write {U m }m=0,...,M .
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4.2.1 Characterization of the vector field

We study parametrizations of Fθ of the form Fθ
(
U

) = L2σ
(
L1

(
U

))
where

L1,L2 are suitable linear maps, and σ is a non-linear activation function ap-
plied entry-wise. The linear maps we consider are represented by convolution
operations with unrestricted filters. Our choice of the activation functions is
so that Fθ can represent products between derivative discretizations that typi-
cally appear in PDEs. The details for this characterization of Fθ are provided
in section 4.4. Our construction is inspired by [3, 41, 40].

4.2.2 Numerical time integrator

Given a parametric vector field Fθ : RH → RH , we define a neural network
Nθ

(
U

)
:=Ψδt

Fθ

(
U

)
by using the numerical methodΨδt

Fθ
. In our experiments, the

map Ψδt
Fθ

will generally be defined by composing k substeps with a numerical
method ϕδt/k

Fθ
of time step δt/k. Thus, we can express Nθ as

Nθ

(
U

)=Ψδt
Fθ

(
U

)=ϕδt/k
Fθ

◦ ...◦ϕδt/k
Fθ︸ ︷︷ ︸

k times

(
U

)
.

This can be seen as a k-layer neural network with shared weights. In most
of our experiments, ϕδt/k

Fθ
corresponds to the explicit Euler method. The cho-

sen numerical method can also be structure-preserving in case the considered
dataset has some property that is worth preserving. Experimentally, we shall
consider one such problem in the linear advection equation, which is norm
preserving. We will see that preserving such an invariant leads to improved
stability in the predictions. We compare this to noise injection [10], see sec-
tion 4.5.

4.2.3 Optimization problem to solve

We conclude this section with the third step, reporting the loss function opti-
mized to find the final approximate function Nθ. Since this optimization step
is not the main focus of the paper, we adopt the standard mean squared error
loss function defined for the full dataset as

L(
θ,Q

)= 1

N ·Q
N∑

n=1

Q∑
q=1

∥∥∥∥N q
θ

(
U 0

n

)
−Φq

(
U 0

n

)∥∥∥∥2

, (4.2.3)

where Q < M is the number of steps we perform while training, and N q
θ
=

Nθ ◦ · · · ◦Nθ︸ ︷︷ ︸
q steps

. We note that Φq (U 0
n) =U q

n , as seen in (4.2.1). We use the Adam
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optimizer to minimize the loss in our experiments.

The strategy of composing q times the neural network while optimizing its
weights helps reduce the accumulation of error due to the iterative application
of the neural network, see [17, 15]. This strategy, hence, positively affects the
network’s temporal stability.

4.3 Error bounds for network-based approximations
of PDE solutions

Let us restrict our focus to seeking solutions u : R×Ω→ R, Ω ⊂ Rd , which
satisfy PDEs of the form

∂t u =Lu +
I∑

i=1
βi Da

i u ·Db
i u, βi ∈R, t ≥ 0, x ∈Ω, (4.3.1)

where L,Da
i ,Db

i are linear differential operators in the spatial variable x ∈Rd ,
and I is the number of quadratic interactions in the PDE.

A commonly adopted strategy to find approximate solutions to (4.3.1) is to use
the method of lines (see, e.g., [55, 54]). We introduce a spatial discretization
of the differential operators based on H spatial nodes in Ω and obtain an ODE
of the form

U̇ (t ) = LU (t )+
I∑

i=1
βi

(
Da

i U (t )
)
⊙

(
Db

i U (t )
)
= F

(
U (t )

) ∈RH , (4.3.2)

where the components of U are approximations of u in the grid-points of the
spatial discretization, ⊙ is the entry-wise product, and LU , Da

i U , and Db
i U

are spatial discretizations of Lu, Da
i u, and Db

i u. Going forward, we assume
that the dataset {(U 0,U 1, ...,U M )}, where U m ∈ RH , provides an approximate
solution to (4.3.2). That is to say that by introducing a time step δt and defining
tm = mδt , we have U m ≈U (tm) for t 7→U (t ) ∈RH which is the exact solution
of (4.3.2).

Let xh , h = 1, ..., H , be a generic point on the spatial grid over Ω. Then,
(U m)h ≈ u(tm , xh) where R×Ω ∋ (t , x) 7→ u(t , x) ∈ R is the analytical solu-
tion of (4.3.1). To account for possible measurement errors, we introduce the
function e :R×Ω→R representing the difference between the data and the true
solution u, which allows to write(

U 0
)

h
= u

(
0, xh

)
(4.3.3)(

U m)
h = u

(
tm , xh

)+e
(
tm , xh

)
, m = 1, ..., M . (4.3.4)
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4.3.1 Splitting of the approximation errors

Our goal is to find a map Nθ which accurately approximates the function

U m 7→Φ
(
U m)=U m+1, m = 0, ..., M −1.

We focus on the case m = 0, but the same analysis can be done for the other
values of m. Let Φδt

F be the exact flow map of the ODE in (4.3.2). Considering
the spatial error due to the discretization, which we assume is of a generic order
k, (4.3.4) implies

U 1 =Φδt
F

(
U 0

)
+O

(
δxk

)
+ε1,

where ε1 ∈ RH is defined such that
(
ε1

)
h
= e

(
t1, xh

)
, δx quantifies the mesh

size of the spatial grid, and k is the order of the method used to spatially
discretize the PDE (4.3.1) to obtain (4.3.2). We focus on approximating the
unknown ODE (4.3.2). More precisely, we will evaluate how well we can
approximate the flow map Φδt

F of F given a parametric set of functions

F =
{

Fθ
(
U

)=L2
(
θ
)
σ

(
L1

(
θ
)(

U
)) ∈RH : θ ∈P

}
(4.3.5)

for a set of admissible parameters P inducing mappings of the form

U 7→Ψδt
Fθ

(
U

)
, Fθ ∈F .

For simplicity, we will suppress the dependency of L1 and L2 on θ writing
Fθ(U ) =L2σ(L1U ) for two linear maps L1 =L1(θ) and L2 =L2(θ). Through
splitting the local error, starting from position U 0, we may write∥∥∥∥U 1 −Ψδt

Fθ

(
U 0

)∥∥∥∥
=

∥∥∥∥ε1 +O
(
δxk

)
+Φδt

F

(
U 0

)
−Ψδt

Fθ

(
U 0

)∥∥∥∥
≤

∥∥∥ ε1
∥∥∥ +O

(
δxk

)
+

∥∥∥∥Φδt
F

(
U 0

)
−Ψδt

F

(
U 0

)
+Ψδt

F

(
U 0

)
−Ψδt

Fθ

(
U 0

)∥∥∥∥
≤

∥∥∥ ε1
∥∥∥︸ ︷︷ ︸

measurement error

+ O
(
δxk

)
︸ ︷︷ ︸

spatial error

+
∥∥∥∥Φδt

F

(
U 0

)
−Ψδt

F

(
U 0

)∥∥∥∥︸ ︷︷ ︸
classical error estimate

+
∥∥∥∥Ψδt

F

(
U 0

)
−Ψδt

Fθ

(
U 0

)∥∥∥∥︸ ︷︷ ︸
network approximation

.

(4.3.6)

In this chain of inequalities, ∥ · ∥ denotes the Euclidean norm on RH . The
estimate’s classical error term only depends on the local truncation error of the
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numerical method Ψδt . Indeed, this term is O(δt r+1) if Ψδt is a method of
order r , allowing us to write Ψδt

F

(
U 0

)
=Φδt

F

(
U 0

)
+O

(
δt r+1

)
, which leads to

∥∥∥∥U 1 −Ψδt
Fθ

(
U 0

)∥∥∥∥≤O
(
δxk

)
+O

(
δt r+1

)
+

∥∥∥ε1
∥∥∥+∥∥∥∥Φδt

F

(
U 0

)
−Φδt

Fθ

(
U 0

)∥∥∥∥ .

We assume that for all the considered initial conditions U 0
n and time instants

t ∈ [0,δt ], the vectors Φt
F (U 0

n) and Φt
Fθ

(U 0
n) belong to a compact set Ω ⊂ RH .

Restricting to Ω, the vector field F in (4.3.2) is Lipschitz continuous, with a
Lipschitz constant denoted as Lip(F ). To handle the second term on the right-
hand side of (4.3.6), we work with Gronwall’s inequality applied to the integral
representation of the flow map:

∥∥∥∥Φδt
F

(
U 0

)
−Φδt

Fθ

(
U 0

)∥∥∥∥≤
∫ δt

0

∥∥∥∥∥F

(
Φs

F

(
U 0

))
−Fθ

(
Φs

Fθ

(
U 0

))∥∥∥∥∥d s

=
∫ δt

0

∥∥∥∥∥F

(
Φs

F

(
U 0

))
−F

(
Φs

Fθ

(
U 0

))
+F

(
Φs

Fθ

(
U 0

))
−Fθ

(
Φs

Fθ

(
U 0

))∥∥∥∥∥ d s

≤ Lip
(
F

)∫ δt

0

∥∥∥∥Φs
F

(
U 0

)
−Φs

Fθ

(
U 0

)∥∥∥∥ d s +δt sup
V ∈Ω

∥∥∥Fθ
(
V

)−F
(
V

)∥∥∥
=⇒

∥∥∥∥Φδt
F

(
U 0

)
−Φδt

Fθ

(
U 0

)∥∥∥∥≤ δt exp
(
Lip

(
F

)
δt

)
sup
V ∈Ω

∥∥∥Fθ
(
V

)−F
(
V

)∥∥∥ .

(4.3.7)

Thus, to control this quantity from above, we need to understand the approxi-
mation properties of F . In particular, we want to quantify how much complex-
ity F requires to guarantee the existence of an Fθ ∈F leading to

sup
V ∈Ω

∥∥∥Fθ
(
V

)−F
(
V

)∥∥∥< δt q (4.3.8)

for some q ≥ 1. We note that if q = r , such a result would guarantee that
the approximation of the map Φ provided by Ψδt

Fθ
can be as accurate as the

one provided by the numerical method Ψδt
F directly applied to the exact vector

field F . We now characterize the space F so that it can exactly represent F ,
i.e., so that there exists an element Fθ ∈F with F = Fθ. In practice, this exact
representation will never be obtained, and the presented derivation allows the
quantification of the approximation error. In the next section, we will focus on
two-dimensional PDEs, i.e., d = 2, and analyze (4.3.8) for that setting.
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4.4 Error analysis for PDEs on a two-dimensional spa-
tial domain

We now focus on PDEs defined on a two-dimensional spatial domain. These
PDEs are discretized on a uniform grid with p grid points along both the axes
over the spatial domain Ω= [0,1]2 ⊂ R2, i.e., we set d = 2 and H = p2. In this
two-dimensional setting, we denote the grid points by (xh , yk ), h,k = 1, ..., p.
Since the grid is uniform, we have xh+1 − xh = yk+1 − yk =: δx. For conve-
nience, we represent an element in Rp2

as a matrix in Rp×p . The only imme-
diate consequence is that the previously derived estimates involving the Eu-
clidean norm of RH now hold in the Frobenius norm of Rp×p . We assume that
the PDE is at most of the second order and that the spatial semi-discretization
in (4.3.2) comes from a second-order accurate finite differences scheme, i.e.,
k = 2 in (4.3.6). By restricting ourselves to the two-dimensional case, second-
order PDEs, and second-order accurate finite differences, we significantly sim-
plify the exposition. Our reasoning may be extended to higher-dimensional
domains discretized with regular grids and higher-order finite differences.

For our derivations, we use tensors of orders three and four. We denote a tensor
of order four as

XXXX = [
X1, ..., X J

] ∈RJ×K×R×S (4.4.1)

where X j ∈RK×R×S is a tensor of order three for every j = 1, ..., J defined as

X j =
[

X j ,1, ..., X j ,K

]
∈RK×R×S , (4.4.2)

where X j ,k ∈ RR×S for every k = 1, ...,K . We may access the components of
fourth-order tensors using the notation XXXX j = X j ∈ RK×R×S , and XXXX j ,k = X j ,k ∈
RR×S , for j = 1, ..., J and k = 1, ...,K . When X = [X1] ∈ R1×R×S , we will often
contract the first dimensionality and refer to it as X1 ∈RR×S .

We now show that any function with the same structure as F , as described in
(4.3.2), can be represented by the parametric space of functions F defined in
(4.3.5) with linear maps realized by convolution operations.

4.4.1 Convolutional layers as finite differences

The discrete convolution operation is the foundation of many successful ma-
chine learning algorithms, particularly for approximation tasks involving im-
ages. This work focuses on “same” convolutions, i.e., convolution operations
that do not change the input dimension. In this case, the input matrix has to be
padded compatibly with the application of interest. Specifically, the padding
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strategy in our setting should relate to how the PDE solution u behaves outside
the domain [0,1]2, i.e., to the boundary conditions. We focus on the case of
periodic boundary conditions, as considered in the numerical experiments.

For the specific situation U ∈ R3×3, i.e., p = 3, and 3×3 convolutional filters,
the periodic padding leads to

UP =


u33 u31 u32 u33 u31

u13 u11 u12 u13 u11

u23 u21 u22 u23 u21

u33 u31 u32 u33 u31

u13 u11 u12 u13 u11

.

Regardless of the value of p, for 3× 3 “same” convolutions, one has to add
two rows and two columns around the matrix U . The convolution operation
K ∗U defined by a 3× 3 filter K is a linear map obtained by computing the
Frobenius inner product of K with all the contiguous 3×3 submatrices of the
padded input UP . We show this procedure in the following example:

UP =


u33 u31 u32 u33 u31

u13 u11 u12 u13 u11

u23 u21 u22 u23 u21

u33 u31 u32 u33 u31

u13 u11 u12 u13 u11

, r11 = trace


u33 u31 u32

u13 u11 u12

u23 u21 u22


T

K

 ,

where r11 is the first entry of the output R obtained convolving K with U . This
operation is local as it only considers the entries of 3×3 submatrices.

The same locality property holds for finite difference operators (see, e.g., [64,
47]), which are discrete approximations of the derivatives of a function given
its nodal values sampled on a grid. For the PDE (4.3.1), if the solution u is
regular enough in the spatial variables, there exists a K ∈R3×3 such that

(K ∗U )hk =Lu
(
t̄ , xh , yk

)+O
(
δx2

)
,

where U ∈ Rp×p is defined as Uhk = u(t̄ , xh , yk ) for a fixed t̄ ≥ 0. An explicit
example is the well-known 5−point formula (see [1, Formula 25.3.30]) for
approximating the Laplace operator ∆, which is defined as

1

δx2


0 1 0

1 −4 1
0 1 0

∗U


hk

=∆u
(
t̄ , xh , yk

) +O
(
δx2

)
.

Similarly, any partial derivative of second-order or lower can be approximated
to second-order accuracy with a 3×3 convolution. Consequentially, one may
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observe that (4.3.2) with L, Da
i , and Db

i realized by 3× 3 convolution oper-
ations, can provide a second-order accurate spatial discretization of the PDE
(4.3.1).

The convolution operator can be extended from matrices to higher-order ten-
sors. Let U ∈ RCi×p×p be a generic third-order tensor and KKKK ∈ RCo×Ci×K×K a
fourth-order tensor representing the set of filters defining the convolution op-
eration. We denote with R ∈ RCo×p×p the result of the convolution operation
KKKK∗U = R . The components of R can be characterized as

Ri =
Ci∑

j=1

KKKKi , j ∗U j ∈Rp×p , i = 1, ...,Co .

As in the PyTorch library [44], we adopt the convention KKKK ∈RCo×Ci×K×K where
Ci and Co are the numbers of input and output channels respectively, while the
convolutional filters KKKKi , j are of shape K ×K .

4.4.2 Error analysis for Fθ based on convolution operations

Based on the connections between finite differences and discrete convolution,
we now show that building Fθ as

Fθ
(
U

)=L2σ
(
L1

(
U

))
(4.4.3)

with σ a suitable activation function applied entry-wise, L1(U ) =KKKK∗U +b1,
and L2

(
σ

(L1(U )
))=HHHH∗σ(L1(U )

)+b2 allows to exactly represent the right-
hand side F for a second-order accurate semi-discretization of the PDE (4.3.1),
where b1,b2 are bias terms added to the convolved inputs. In this case, θ =
(KKKK,HHHH,b1,b2) represents the set of parameters defining Fθ.

A common choice for σ is the rectified linear unit σ1(x) = ReLU(x) :=
max{0, x}. Some publications also considered powers of σ1 (see, e.g., [59, 37]),
calling them Rectified Power Units (RePUs). We first present a theoretical
derivation based on σ2(x) = ReLU2(x). Then, we demonstrate a simplifica-
tion of this result for linear partial differential equations (PDEs) based on
σ1(x) = ReLU(x). These two activation functions satisfy the important prop-
erty

xq = ReLUq (x)+ (−1)q ReLUq (−x) , q ∈N. (4.4.4)

This identity allows for polynomials of degrees 1 and 2 to be represented by
composing suitable linear functions and the two activation functions σ1 and
σ2. These two activation functions are not polynomials, which allows them
to be included in networks that can approximate sufficiently regular functions

154



4.4 Error analysis for PDEs on a two-dimensional spatial domain

as accurately as desired, see [45]. Therefore, they are more appealing than
polynomials when designing neural network architectures.

As an immediate consequence of (4.4.4), one can derive the following identi-
ties

D ∗U =σ1
(
D ∗U

)−σ1
(−D ∗U

)
, (4.4.5a)

D ∗U = 1

2

((
D ∗U +1

)2 − (
D ∗U

)2
)
− 1

2
(4.4.5b)

= 1

2

(
σ2

(
D ∗U +1

)+σ2
(−D ∗U −1

)
−σ2

(
D ∗U

)−σ2
(−D ∗U

))− 1

2
,(

D1 ∗U
)⊙ (

D2 ∗U
)= 1

2

(((
D1 +D2

)∗U
)2 − (

D1 ∗U
)2 − (

D2 ∗U
)2

)
(4.4.5c)

= 1

2

(
σ2

((
D1 +D2

)∗U
)
+σ2

(
−(

D1 +D2
)∗U

)
−σ2

(
D1 ∗U

)−σ2
(−D1 ∗U

)
−σ2

(
D2 ∗U

)−σ2
(−D2 ∗U

))
.

These identities show how one can handle the linear term and the quadratic
non-linearities arising in (4.3.2) using parametrizations like those in (4.4.3).
More explicitly, (4.4.5a) and (4.4.5b) show how to handle the linear term L∗U ,
and (4.4.5c) the quadratic interactions, as formalized in the following theorem.

Theorem 4.1. Let U ∈Rp×p and

F
(
U

)= L∗U +
I∑

i=1
βi

(
D2i−1 ∗U

)⊙ (
D2i ∗U

) ∈Rp×p ,

for L,D1,D2, ...,D2I ∈R3×3. Further, let Fθ be the parametric map defined by

Fθ
(
U

)=HHHH∗σ2
(KKKK∗U +b1

)+b2. (4.4.6)

Then, Fθ can represent F for suitably chosen parameters

KKKK ∈R4+6I×1×3×3, HHHH ∈R1×4+6I×1×1, b1 ∈R4+6I , b2 ∈R.

Proof. The proof is constructive since we report the exact expression of a fam-
ily of weights that achieves the desired goal. We only specify the parts of the
convolutional filters that are non-zero, which follow from (4.4.5). We first fix
the bias terms as

b1 =
[

1 −1 0 0 0 · · · 0
]
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and b2 =−1/2. For the first convolutional filter, we instead set

KKKK1,1 =−KKKK2,1 =KKKK3,1 =−KKKK4,1 = L

taking care of the linear part and

KKKK4+6i−5,1 =−KKKK4+6i−4,1 = D2i−1 +D2i , i = 1, ..., I ,

KKKK4+6i−3,1 =−KKKK4+6i−2,1 = D2i−1, i = 1, ..., I ,

KKKK4+6i−1,1 =−KKKK4+6i ,1 = D2i , i = 1, ..., I ,

which allows us to deal with quadratic interactions. This choice lets us get

KKKK∗U +b1 =
[

L∗U +1,−L∗U −1,L∗U ,−L∗U ,(
D1 +D2

)∗U ,−(
D1 +D2

)∗U ,D1 ∗U ,−D1 ∗U ,

D2 ∗U ,−D2 ∗U , ...,
(
D2I−1 +D2I

)∗U ,−(
D2I−1 +D2I

)∗U ,

D2I−1 ∗U ,−D2I−1 ∗U ,D2I ∗U ,−D2I ∗U
]

.

Based again on (4.4.5), we can conclude that, by setting

HHHH1,1 =HHHH1,2 =−HHHH1,3 =−HHHH1,4 = 1

2
,

HHHH1,4+6i−5 =HHHH1,4+6i−4 =−HHHH1,4+6i−3

=−HHHH1,4+6i−2 =−HHHH1,4+6i−1 =−HHHH1,4+6i = βi

2
, i = 1, ..., I ,

the result follows.

We remark that the considered Fθ is not limited to representing only functions
with the same structure as F , and this is the primary motivation behind the
choice of not explicitly defining Fθ as

Fθ
(
U

)= L∗U +
I∑

i=1
βi

(
D2i−1 ∗U

)⊙ (
D2i ∗U

)
.

Indeed, it is generally hard to know if some temporal observations come from
the discretization of a PDE. For this reason, we work with a more general
neural network architecture. We note that any space of parametric functions
F that contains parametric functions as those in theorem 4.1 can represent
F . That is to say that many overparametrized networks can be used while
maintaining the theoretical guarantees.

We now simplify the construction for the case of linear PDEs.
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4.4 Error analysis for PDEs on a two-dimensional spatial domain

Theorem 4.2. Let U ∈Rp×p and

F
(
U

)= L∗U ∈Rp×p ,

for L ∈R3×3. Further, let Fθ be the parametric map defined by

Fθ
(
U

)=HHHH∗σ1
(KKKK∗U +b1

)+b2. (4.4.7)

Then, Fθ can represent F for suitably chosen parameters

KKKK ∈R2×1×3×3, HHHH ∈R1×2×1×1, b1 ∈R2, b2 ∈R.

Proof. One can set b1 =
[
0,0

]
, b2 = 0, KKKK1,1 =−KKKK2,1 = L, and HHHH1,2 =−HHHH1,2 = 1,

which allows to conclude the proof.

These two theorems can be extended to any activation function satisfying
(4.4.4). More explicitly, what is essential is to be able to represent linear maps
and quadratic interactions composing σ with suitable linear maps. Apart from
polynomial activation functions, the LeakyReLU activation function also al-
lows the representation of the right-hand side for linear PDEs. Indeed, such
activation function is defined as LeakyReLU

(
x; a

) = max
{

ax, x
}

, a ∈ (
0,1

)
,

and theorem 4.2 extends to this activation function since

x = 1

1+a

(
LeakyReLU

(
x; a

)−LeakyReLU
(−x; a

))
.

We conclude with a corollary combining this section’s derivations with those
in section 4.3, providing the central insight into our theoretical analysis.

Corollary 2. Let Ψδt be a numerical method of order r . Let U 0 7→Φ
(
U 0

)
be

the target one-step map obtained on a uniform mesh of Ω = [0,1]2 and with
time step δt , for the PDE (4.3.1). Further, assume the measurement error is
either zero or of order equal to or higher than r in time and 2 in space. Then,
the map U 0 7→Ψδt

Fθ

(
U 0

)
can provide an approximation of Φ accurate to order

2 in space and r in time if Fθ is defined as in theorem 4.1.

We remark that the same result holds for linear PDEs and parametric spaces of
functions as in theorem 4.2.

Proof. The proof immediately follows by combining the error splitting in
(4.3.6) and theorem 4.1. Indeed, one can get
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∥∥∥∥Φ(U 0)−Ψδt
Fθ

(
U 0

)∥∥∥∥≤O
(
δx2

)
+O

(
δt r+1

)
+

∥∥∥ε1
∥∥∥+∥∥∥∥Ψδt

F

(
U 0

)
−Ψδt

Fθ

(
U 0

)∥∥∥∥
=O

(
δx2

)
+O

(
δt r+1

)
+

∥∥∥ε1
∥∥∥

since there exists a θ ∈P such that F ∋ Fθ = F .

This result ensures the possibility of getting approximations of PDE solutions
that are second-order accurate in space and r in time, with networks having
a number of parameters growing linearly with the quadratic interactions in
(4.3.1).

Remark. Our expressivity results rely on showing that the neural networks
we consider can exactly represent a class of classical numerical methods and,
hence, inherit their approximation rates. This reasoning is common when an-
alyzing neural networks, e.g., [2, 34]. In the experiments, the parametric func-
tion Fθ is never forced to reproduce the spatial semi-discretization of a PDE,
meaning that the presented derivations are intended as an upper bound for
how poor the found approximation can be. If there is a better approximation
of Φ that can be provided given the available data, the training phase will aim
at that target.

4.5 Improving the stability of predictions

The stability of an iterative method is often as crucial as its quantitative accu-
racy. When predicting the next frame of a time sequence, we consider a map
stable if it is not overly sensitive to input perturbations. In our setting, iter-
atively applying the network leads to artifacts in the predictions, resulting in
data points on which the network has not been trained. The goal is to mini-
mize the impact of these artifacts, preventing a significant degradation in the
accuracy of subsequent predictions.

We work on improving the stability of our networks on two levels. The spatial
stability of the model is linked to how the parametric vector field Fθ, which
provides an approximate spatial semi-discretization of the PDE, processes the
input matrices. For this, we have increased the size of the convolutional filters
from 3×3 to 5×5 so that the pixel perturbations are better averaged out due
to the wider window of action of the convolutional layers. For the temporal
stability, we explore two strategies, both detailed in this section. The first is
noise injection, and the second involves building norm-preserving neural net-
works when dealing with data coming from norm-preserving PDEs. In the
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experiments associated with linear advection, which is known to be norm pre-
serving, we will show that preserving the norm results in the most significant
stability improvements, followed by the noise injection strategy. Both these
approaches improve on the results obtained without applying any temporal
stability-enhancing strategy.

4.5.1 Noise injection

A technique often used in the literature to improve the training of a neural net-
work is to introduce noise into the training set before sending the data through
the network. This is generally additive noise with an expected value of zero.
This helps to reduce the chance of overfitting the dataset. It has been shown,
for example in [10], that introducing noise in the inputs is equivalent to regu-
larizing the network weights. Weight regularization is a commonly used tech-
nique in machine learning to improve the generalization capabilities of these
parametric models, as discussed in [27, Chapter 7].

To introduce noise, we modify the loss function to the form

Lε

(
θ,Q

)= 1

N ·Q
N∑

n=1

Q∑
q=1

∥∥∥∥N q
θ

(
U 0

n +δn

)
−Φq

(
U 0

n

)∥∥∥∥2

, (4.5.1)

where δn ∼ U (−ε,ε)p×p are independent identically distributed uniform ran-
dom variables. More precisely, a new perturbation δn is generated at each
training iteration. In the context of approximating the dynamics of unknown
PDEs, one can also think of this noise injection strategy as a way to reduce
the sensitivity of the learned dynamical system to perturbations in the initial
condition. Indeed, (4.5.1) ensures that the trajectories of a neighborhood of the
initial condition U 0

n are pushed towards the trajectory of U 0
n .

4.5.2 Norm preservation

We now move to the next technique we consider: incorporating in the neural
network architecture a conservation law that the PDE is known to have. We
analyze the linear advection equation ∂t u = b · ∇u, ∇ · b = 0, with periodic
boundary conditions on Ω = [0,1]2. For this PDE, the L2(Ω) norm of u is
preserved since

d

d t

1

2

∫
Ω

u2 d x d y =
∫
Ω

u∂t u d x d y =
∫
Ω

u
(
b ·∇u

)
d x d y

=
∫
Ω

b ·∇
(

u2

2

)
d x d y =

∫
∂Ω

n ·
(

b
u2

2

)
d s = 0,
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where n is the outer pointing normal vector. To generate the training data, we
use a norm-preserving numerical method, see appendix 4.A for details about
it.

To design a neural network that preserves the Frobenius norm of the input
matrix, we first define a parametric space F of vector fields whose solutions
preserve the Frobenius norm and then use a norm-preserving numerical method
Ψδt . We define F as

F =

Fθ
(
U

)=L2σ
(
L1

(
U

))−U
trace

(
U TL2σ

(
L1

(
U

)))
trace

(
U T U

) : θ ∈P

 .

Fθ(U ) is the orthogonal projection of L2σ(L1(U )) onto the tangent space at U
of the manifold of p ×p matrices having the same Frobenius norm of U . As a
consequence, for every U0 ∈Rp×p and Fθ ∈F , one has

d

d t

∥∥∥Φt
Fθ

(
U0

)∥∥∥2 = 2 · trace

(
Φt

Fθ

(
U0

)T Fθ
(
Φt

Fθ

(
U0

)))= 0,

and hence
∥∥∥Φt

Fθ

(
U0

)∥∥∥= ∥∥U0
∥∥ for every t ≥ 0.

We now present the numerical method Ψδt used in the experiments. Such an
integrator is a correction of the explicit Euler method aiming to preserve the
norm through a Lagrange multiplier. The method is described as follows

Ũ m+1 =U m +δtFθ
(
U m)

U m+1 = Ũ m+1 +λŨ m+1 =:Ψδt
Fθ

(
U m)

,

where λ ∈ R is chosen so that ∥U m+1∥2 = ∥U m∥2. For this relatively simple
constraint, λ can be exactly computed as follows

∥∥∥U m+1
∥∥∥2 = (

1+λ)2
∥∥∥Ũ m+1

∥∥∥2 = ∥∥U m
∥∥2 =⇒ λ=−1±

∥∥U m
∥∥∥∥∥Ũ m+1
∥∥∥ .

Given that when δt = 0 one wants to have λ = 0, the physical choice for λ is
the one with the plus sign, hence leading to

U m+1 =Ψδt
Fθ

(
U m)= U m +δtFθ

(
U m

)∥∥∥U m +δtFθ
(
U m

)∥∥∥
∥∥U m

∥∥ . (4.5.2)
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4.6 Numerical experiments

This section collects numerical experiments supporting the network architec-
ture introduced in section 4.4. All neural networks are implemented with the
PyTorch library [44] and are trained with the Adam optimizer. Our implemen-
tation can be found in [33]. We consider the three following problems:

1. linear advection equation, ∂t u = b ·∇u = ∂x u +∂y u,

2. heat equation, ∂t u =α∆u =α
(
∂xx u +∂y y u

)
, and

3. Fisher equation, ∂t u =α∆u +u(1−u).

All these PDEs are considered with doubly periodic spatial boundary condi-
tions and solved on Ω = [0,1]2 ⊂ R2. We have not used the finite difference
method to generate the training data to reduce the bias introduced by our data-
generation technique. Indeed, we obtain the space-time observations from fi-
nite element simulations as described in appendix 4.A. These simulations yield
a local truncation error of O(δt 3 +δx2), allowing us to quantify our measure-
ment error ∥εm∥ within this section. Further, when we refer to a numerical
method Ψδt , we perform 5 sub-steps of step size δt/5 and omit this to sim-
plify the notation.

In subsection 4.6.1, we consider linear advection and compare the results ob-
tained with two networks. These have the same number of parameters, but
one is corrected for norm preservation, as presented in section 4.5.2, and based
on the Lagrange multiplier method presented there, while the other is with-
out these correction and projection steps. As with the other PDEs, we also
compare the effects of noise injection on the error accumulation of the learned
models.

In subsection 4.6.2, we deal with the heat equation with a neural network based
on the presented theoretical derivations and choose the explicit Euler method
as Ψδt . Finally, in subsection 4.6.3, we report results for the Fisher equation
based on the explicit Euler method.

To remain consistent with the results in section 4.4, we conduct numerical
experiments using networks with the same number of channels as those we
theoretically studied. However, based on numerical evidence, we employ 5×5
convolutional filters rather than 3×3 and 1×1. The expressivity results still
apply for these filters since they can represent convolutions with smaller filters,
and, in practice, this choice leads to improved temporal stability of the network
as a next-frame predictor.
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Two out of the three PDEs we consider are linear. Hence, we adopt the more
efficient parametrization provided by theorem 4.2, i.e., for the linear advection
and heat equations, we define

Fθ
(
U

)=HHHH∗ReLU
(KKKK∗U +b1

)+b2 (4.6.1)

where KKKK ∈ R2×1×5×5, HHHH ∈ R1×2×5×5, b1 ∈ R2 and b2 ∈ R. For the Fisher equa-
tion, we use the parametrization based on ReLU2(x) as in theorem 4.1.

To demonstrate the network’s accuracy, we present figures showing the evo-
lution of three metrics as the network makes predictions over 40 time steps.
These metrics rely on 30 test initial conditions and are defined as

maxE (m) = max

{∣∣∣∣∣
(
Nm
θ

(
U 0

n

)
−U m

n

)
hk

∣∣∣∣∣ : n = 1, ...,30,h,k ∈ {
1, ..., p

}}
,

(4.6.2a)

mse (m) = 1

30

30∑
n=1

(
1

p2

∥∥∥∥Nm
θ

(
U 0

n

)
−U m

n

∥∥∥∥2
)

, (4.6.2b)

rE (m) = 1

30

30∑
n=1


∥∥∥Nm

θ
(U 0

n)−U m
n

∥∥∥∥∥U m
n

∥∥
 , (4.6.2c)

Nm
θ =Nθ ◦ ...◦Nθ︸ ︷︷ ︸

m times

, m = 1, ...,40.

We refer to (4.6.2a) as the maximum absolute error, to (4.6.2b) as the mean
squared error (MSE), and to (4.6.2c) as the average relative error. All experi-
ments are conducted with p = 100, i.e., with matrices of size 100×100.

To train the networks, we optimize either the function L(θ, M) in (4.2.3) or
Lε(θ, M) in (4.5.1). For noise injection, we set the noise magnitude to ε =
10−2. We adopt a training procedure which, as described in algorithm 2, pre-
trains the network on shorter sequences of snapshots, decreasing the learning
rate as we increase the sequence length, as in curriculum learning [60]. The
algorithm is presented for the complete set of training initial conditions and
uses a step learning rate scheduler, dividing the learning rate by 10 every 135
epochs. In practice, we implement a mini-batch version of this algorithm with
a cyclic learning rate scheduler, [58]; however, the training procedure follows
the same logic. All experiments use batches of size 32, i.e., 32 different initial
conditions.
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Algorithm 2 Training with the full training set and step learning rate scheduler
1: Initialize Nθ

2: Epochs ← 300
3: ℓ← 5 ·10−3 ▷ Set the starting learning rate
4: for M ∈ [2,3,4] do
5: lr← ℓ

6: while e<Epochs do
7: One optimization step of L(θ, M) with learning rate lr
8: if e ∈ [135,270] then
9: lr←lr/10 ▷ Learning rate scheduler

10: end if
11: e←e+1
12: end while
13: ℓ← ℓ/2 ▷ Now we add another time step, but we do smaller

optimization steps
14: end for

4.6.1 Linear advection equation

Before presenting the numerical results, we briefly recall the neural networks
we consider. We define two neural networks: one corresponds to the explicit
Euler method applied to the vector field Fθ in (4.6.1), and the other corresponds
to the projected version presented in subsection 4.5.2.

In these experiments, we compare the effects of noise injection and norm
preservation on the accuracy and stability of the time series approximations
provided by the trained neural network. The results are presented in figure
4.6.1. We note that, as expected, even though the neural networks we con-
sider have the same number of parameters, their different arrangements con-
siderably change the results we recover. Firstly, injecting noise while training
the network and preserving the norm of the initial condition both improve the
stability of the predictions since the error accumulates at a lower speed than
without these changes. Secondly, even if we carefully specify the correct value
of the norm to preserve in the experiments, combining the two strategies does
not improve the results beyond only injecting noise. To conclude, we highlight
that these experiments imply that such small networks not only have the po-
tential to be expressive enough to represent the desired target map Φ, but that
one can also find a set of weights leading to an accurate and stable solution.
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Figure 4.6.1: Test errors for the linear advection equation.

4.6.2 Heat equation

For the heat equation, we consider the same neural network architecture
used for linear advection. The time step is imposed following the Courant–
Friedrichs–Lewy (CFL) condition2 and is

δt = 0.24 · δx2

α
≈ 2.445 ·10−3.

We report the results of this experiment in figure 4.6.2. The network is based
on the explicit Euler method. Unlike what occurs for the linear advection equa-
tion, we notice that introducing additive noise in the training procedure wors-
ens the results. This behavior is primarily a consequence of the inability of the
training phase to find a good set of weights. While with clean data we can con-
sistently reach a loss value of the order of 10−8, the additive injection of noise
leads to a final training loss of the order of 10−5. The dynamics of the heat
equation are dissipative, leading to the need for a more complex regularization
strategy than additive noise.

2The details on the values of the diffusivity constant α can be found in appendix 4.A.1
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Figure 4.6.2: Test errors for the heat equation.

4.6.3 Fisher equation

The Fisher equation is a nonlinear PDE with I = 1 quadratic nonlinear interac-
tions (see theorem 4.1). For this reason, the theoretical derivations in section
4.4 guarantee that a CNN Fθ with two layers, ReLU2 as activation function, and
ten channels is sufficient to represent the semi-discretization of the PDE cor-
responding to centered finite differences of the second order. This architecture
is precisely the one we use in the experiments.

The dynamics of this system are more complicated than those of the heat equa-
tion. As presented in appendix 4.A.3, we generate the initial conditions to train
and test the network similarly to the heat equation, and the time step δt has the
same value. To obtain the results in figure 4.6.3, we select only the training and
test initial conditions for which ∥U 0∥F > 10. We choose the value 10 to obtain
a more uniform dataset and avoid working with inputs of entirely different
scales. This change is due to the low frequency of the initial conditions with
small norms obtained through random data generation. Overall, the numerical
results in figure 4.6.3 align with those we get for the other two PDEs. As with
the heat equation, the dissipative nature of this PDE makes noise injection less
effective than it is for linear advection, and possibly different regularization
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strategies are needed to improve the stability of the network.
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Figure 4.6.3: Test errors for the Fisher equation.

4.7 Conclusion and further work

In this manuscript, we presented expressivity results for two-layer CNNs used
for approximating temporal sequences. We focused on PDE space-time obser-
vations, examining CNNs’ ability to represent PDE solutions for PDEs with
quadratic nonlinear terms.

Exploiting the connections between finite difference operators and discrete
convolution, we showed that it is sufficient to consider relatively small two-
layer networks, where the size increases linearly in the number of quadratic
interactions in the unknown model. Moreover, the networks that we investi-
gated can represent broader classes of sequence data than just PDE solutions.

We also experimentally analyzed the effects of norm preservation and noise
injection. Norm preservation as a means to improve the network stability can
be beneficial for other PDE-generated datasets, such as for the Schrödinger
equation, see [52]. Furthermore, the effects of other conservation laws could
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also be considered. Our proposed approach to leveraging the conservation laws
relies on projection methods, which extend naturally to other conserved prop-
erties. However, it would be interesting to understand if stability is enhanced
by applying these other conservation properties and if the simplicity of pro-
jection methods becomes a limiting factor in the extension to more general
conservation laws or if it remains a valuable strategy.

While our theoretical results rely on specific choices of activation functions,
in practice, many more activation functions are successfully included in neural
networks for time-series approximations. Hence, it is of interest to extend our
results to other classes of functions.
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Appendix

4.A Data generation

We have relied on finite element discretizations to generate data throughout
our numerical experiments in section 4.6. This dataset can be found in [32].
For completeness, we now briefly outline the methods used. Throughout, spa-
tially, we utilize piecewise continuous linear Lagrange finite elements which,
to a reasonable extent, respect the PDE dynamics. Crucially, any generated
data must be interpolated (preferably in a structure-preserving manner) as a set
of matrices. Recall that the matrix entries represent points in two-dimensional
space, with each matrix corresponding to a discrete “snapshot” of the solution
in time. With this matrix structure in mind, we choose to mesh our domain
with regular quadrilaterals (as opposed to the more typical triangulation) and
utilize bi-quadratic basis functions. Indeed, by doing so with linear elements,
the degrees of freedom of the methods will be represented precisely by the ma-
trix values. In particular, we shall write this finite element space as V, which
implicitly depends on the meshing of our domain. Throughout, we fix our ma-
trix dimension to be R100×100, which fixes our mesh resolution to be p = 100,
where p corresponds to the number of subrectangles in both the x and y direc-
tion. Temporally, we utilize second-order implicit time-stepping methods and
define the temporal evolution through the time step δt . For ease of implemen-
tation, we use the finite element library Firedrake [49], and our implementation
can be found in [33]. Each simulation is initialized by “random” initial data,
which is problem-dependent, as described below.

4.A.1 Linear advection

Let u = u(t , x, y), where (x, y) ∈ Ω := [0,1]2 doubly periodic and t ∈ [0,T ].
Then, we may express linear advection as∂t u = b ·∇u,

u
(
0, x, y

)= u0
(
x, y

)
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where b ∈ R2 is some specified constant. To clarify exposition, we shall focus
on the first step of the method, which may be easily extrapolated at all times.
Let U0 be given by the interpolation of the initial data u0 into the finite element
space, then the solution at the next time step is given by seeking U1 ∈V such
that ∫

Ω

(
U1 −U0

δt
+b ·∇U 1

2

)
φd x d y ∀φ ∈V,

where U 1
2
= 1

2

(
U0 +U1

)
.

One fundamental property of this method is that it preserves both a dis-
crete mass and momentum. To be more concise, the mass

∫
ΩU1 d x d y =∫

ΩU0 d x d y is constant over time, as can be observed by the periodic bound-
ary conditions and after choosing φ = 1. More importantly, the momentum∫
ΩU 2

1 d x d y = ∫
ΩU 2

0 d x d y is conserved, as may be observed after choosing
φ = U 1

2
. Conservation of momentum is equivalent to preserving the norm of

the underlying matrix.

In section 4.6.1, our random initial conditions are generated by

u0 = sin
(
2πα1

(
x −xs

))
cos

(
2πα2

(
y − ys

))+1,

where αi ∼U ({5,6,7,8}) are independently sampled with equal likelihood and
xs , ys ∼U ([0,1]) are sampled from a unitary uniform distribution. Further, we
fix the time step to be δt = 0.02 and b⃗ = (1,1) throughout the experiments.

4.A.2 Heat equation

Here, we utilize the same setup as the heat equation. That is to say, we let
u = u(t , x, y) where (x, y) ∈ Ω = [0,1]2 (doubly periodic) and t ∈ [0,T ], be
given by ut =α∆u

u(0, x, y) = u0(x, y),

where α ∈R is the dissipation constant. Letting U0 be the interpolation of some
given randomized initial data into the finite element space V, the numerical
method is described by seeking U1 ∈V such that

∫
Ω

((
U1 −U0

δt

)
φ+α∇U 1

2
·∇φ

)
d x d y = 0 ∀φ ∈V.

In section 4.6.2, we exploit the dissipative behavior of this equation. Indeed,
this numerical method respects the physical rate of dissipation. By choosing
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φ=U
1
2 , we observe∫

Ω
U 2

1 d x d y =
∫
Ω

(
U 2

0 −α∇U 2
1
2

)
d x d y,

which is consistent with the true rate of dissipation in the heat equation.

In section 4.6.2, our random initial conditions are generated by

u0 = sin

(
kπ

(
x −xp

))
sin

(
kπ

(
y − yp

))
, (4.A.1)

where k ∼ U ({2,3,4,5,6,7}) is randomly selected and xp , yp ∼ N (1,0.5) are
normally distributed with mean 1 and variance 0.5. Further, throughout our
experiments, we fix δt = 0.024 and α= 0.01.

4.A.3 Fisher equation

By modifying the heat equation (maintaining our doubly periodic spatial do-
main), let us consider a nonlinear reaction-diffusion equation. In particular, let
u = u(t , x, y) solve the reaction-diffusion equation{

ut =α∆u +u (1−u)

u(0, x, y) = u0(x, y),
(4.A.2)

where u0 represents our randomized initial data. Letting U0 be given by the
interpolation of u0 into the finite element space, the first step of the method is
given by seeking U1 ∈V such that∫

Ω

(
U1 −U0

δt

)
φ+α∇U 1

2
·∇φ−

(
U 1

2
+ 1

3

(
U 2

1 +U1U0 +U 2
0

))
φd x d y = 0,

for all φ ∈V. Note here that the choice of temporal discretization for the non-
linear term is not unique, and we have chosen a second-order accurate temporal
discretization. In section 4.6.3, the random initial conditions generated are the
same as for the heat equation due to similarities in the setup (see (4.A.1)).
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Abstract. Since their introduction in the 1990s, Lie group integrators have
become a method of choice in many application areas. These include multi-
body dynamics, shape analysis, data science, image registration, and biophys-
ical simulations. Two important classes of intrinsic Lie group integrators are
the Runge–Kutta–Munthe–Kaas methods and the commutator-free Lie group
integrators. We give a short introduction to these classes of methods. The
Hamiltonian framework is attractive for many mechanical problems, and in
particular, we shall consider Lie group integrators for problems on cotangent
bundles of Lie groups where a number of different formulations are possible.
There is a natural symplectic structure on such manifolds and through vari-
ational principles one may derive symplectic Lie group integrators. We also
consider the practical aspects of the implementation of Lie group integrators,
such as adaptive time stepping. The theory is illustrated by applying the meth-
ods to two nontrivial applications in mechanics. One is the N-fold spherical
pendulum where we introduce the restriction of the adjoint action of the group
SE(3) to T S2, the tangent bundle of the two-dimensional sphere. Finally, we
show how Lie group integrators can be applied to model the controlled path
of a payload being transported by two rotors. This problem is modeled on
R6 × (

SO(3)×so(3)
)2 × (T S2)2 and put in a format where Lie group integra-

tors can be applied.

5.1 Introduction

In many physical problems, including multibody dynamics, the configuration
space is not a linear space but rather consists of a collection of rotations and
translations. A simple example is the free rigid body, whose configuration
space consists of 3D rotations. A more advanced example is the simplified
model of the human body, where the skeleton at a given time is described
as a system of interacting rods and joints. Mathematically, the structure of
such problems is usually best described as a manifold. Since manifolds, by
definition, can be equipped with local coordinates, one can always describe
and simulate such systems locally as if they were linear spaces. There are
of course many choices of local coordinates, for rotations some famous ones
are: Euler angles, the Tait-Bryan angles commonly used in aerospace appli-
cations, the unit length quaternions, and the exponentiated skew-symmetric
3×3-matrices. Lie group integrators represent a somewhat different strategy.
Rather than specifying a choice of local coordinates from the outset, in this ap-
proach, the model and the numerical integrator are expressed entirely in terms
of a Lie group and its action on the phase space. This often leads to a more ab-
stract and simpler formulation of the mechanical system and of the numerical
schemes, deferring further details to the implementation phase.

In the literature, one can find many different types and formats of Lie group
integrators. Some of these are completely general and intrinsic, meaning that
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they only make use of inherent properties of Lie groups and manifolds as was
suggested in [11, 40, 6]. However, many numerical methods have been sug-
gested that add structure or utilize properties that are specific to a particular Lie
group or manifold. Notable examples of this are the methods based on canon-
ical coordinates of the second kind [45], and the methods based on the Cayley
transformation [31, 13], applicable e.g. to the rotation groups and Euclidean
groups. In some applications, e.g., in multibody systems, it may be useful
to formulate the problem as a mix between Lie groups and kinematic con-
straints, introducing, for instance, Lagrange multipliers. Sometimes, this may
lead to more practical implementations where a basic general setup involving
Lie groups can be further equipped with different constraints, depending on
the particular application. Such constrained formulations are outside the scope
of the present paper. It should also be noted that the Lie group integrators de-
vised here do not make any a priori assumptions about how the manifold is
represented.

The applications of Lie group integrators for mechanical problems also have
a long history. Two of the early important contributions were the Newmark
methods of Simo and Vu–Quoc [49] and the symplectic and energy-momentum
methods by Lewis and Simo [31]. Mechanical systems are often described as
Euler–Lagrange equations or as Hamiltonian systems on manifolds, with or
without external forces, [28]. Important ideas for the discretization of mechan-
ical systems also originated from the work of Moser and Veselov [51, 37] on
discrete integrable systems. This work served as motivation for further devel-
opments in the field of geometric mechanics and for the theory of (Lie group)
discrete variational integrators [27, 20, 29]. The majority of Lie group methods
found in the literature are one-step type generalizations for classical methods,
such as Runge–Kutta type formulas. In mechanical engineering, the classical
BDF methods have played an important role and were recently generalized
[54] to Lie groups. Similarly, the celebrated α-method for linear spaces pro-
posed by Hilber, Hughes, and Taylor [22] has been popular for solving prob-
lems in multibody dynamics, and in [1, 2, 4] this method is generalized to a
Lie group integrator.

The literature on Lie group integrators is rich and diverse, and the interested
reader may consult the surveys [26, 10, 7, 44] and Chapter 4 of the monograph
[18] for further details.

In this paper, we discuss different ways of applying Lie group integrators to
simulate the dynamics of mechanical multibody systems. Our point of depar-
ture is the formulation of the models as differential equations on manifolds.
Assuming to be given either a Lie group acting transitively on the manifold M
or a set of frame vector fields on M, we use them to describe the mechanical

183



Lie Group integrators for mechanical systems

system and further to build the numerical integrator. We shall here mostly con-
sider schemes of the types commonly known as Crouch–Grossman methods
[11], Runge–Kutta–Munthe–Kaas methods [39, 40] and Commutator-free Lie
group methods [6].

The choice of Lie group action is often not unique and thus the same mechan-
ical system can be described in different equivalent ways. Under numerical
discretization, the different formulations can lead to the conservation of differ-
ent geometric properties of the mechanical system. In particular, we explore
the effect of these different formulations on a selection of examples in multi-
body dynamics. Lie group integrators have been successfully applied for the
simulation of mechanical systems, and in problems of control, bio-mechanics
and other engineering applications, see for example [46], [27] [9], [25]. The
present work is motivated by applications in modeling and simulation of slen-
der structures like Cosserat rods and beams [49], and one of the examples pre-
sented here is the application to a chain of pendula. Another example considers
an application for the controlled dynamics of a multibody system.

In section 5.2, we give a review of the methods using only the essential in-
trinsic tools of Lie group integrators. The algorithms are simple and amenable
to a coordinate-free description suited to object-oriented implementations. In
section 5.3, we discuss Hamiltonian systems on Lie groups, and we present
three different Lie group formulations of the heavy top equations. These sys-
tems (and their Lagrangian counterpart) often arise in applications as building
blocks of more realistic systems, which also comprise damping and control
forces. In section 5.4, we discuss some ways of adapting the integration step
size in time. In section 5.5, we consider the application to a chain of pendula.
Section 5.6 considers the application of a multibody system of interest in the
simulation and control of drone dynamics.

5.2 Lie group integrators

5.2.1 The formulation of differential equations on manifolds

Lie group integrators solve differential equations whose solutions evolve on a
manifold M. For ease of notation, we restrict the discussion to the case of au-
tonomous vector fields, although allowing for explicit t-dependence could eas-
ily have been included. This means that we seek a curve y(t ) ∈M whose tan-
gent at any point coincides with a vector field F ∈X (M) and passing through
a designated initial value y0 at t = t0

ẏ(t ) = F |y(t ), y(t0) = y0. (5.2.1)
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5.2 Lie group integrators

Before addressing numerical methods for solving (5.2.1), it is necessary to in-
troduce a convenient way of representing the vector field F . There are different
ways of doing this. One is to furnish M with a transitive action ψ : G ×M→
M by some Lie group G of dimension d ≥ dimM. We denote the action of
g on m as g ·m, i.e. g ·m =ψ(g ,m). Let g be the Lie algebra of G , and de-
note by exp : g→G the exponential map. We define ψ∗ : g→X (M) to be the
infinitesimal generator of the action, i.e.

Fξ
∣∣∣
m
= ψ∗

(
ξ
)∣∣∣

m
= d

d t

∣∣∣∣∣
t=0

ψ
(
exp

(
tξ

)
,m

)
(5.2.2)

The transitivity of the action now ensures that ψ∗(g)
∣∣
m = TmM for any m ∈

M, such that any tangent vector vm ∈ TmM can be represented as vm =
ψ∗(ξv )

∣∣
m for some ξv ∈ g (ξv may not be unique). Consequently, for any

vector field F ∈X (M) there exists a map f :M→ g1 such that

F |m = ψ∗
(

f (m)
)∣∣∣

m
, for all m ∈M (5.2.3)

This is the original tool [40] for representing a vector field on a manifold with
a group action. Another approach was used in [11] where a set of frame vector
fields E1, . . . ,Ed in X (M) was introduced assuming that for every m ∈M,

span
{

E1
∣∣
m , . . . , Ed

∣∣
m

}
= TmM.

Then, for any vector field F ∈ X (M) there are, in general non-unique, func-
tions fi : M → R, which can be chosen with the same regularity as F , such
that

F |m =
d∑

i=1
fi (m) Ei

∣∣
m .

A fixed vector ξ ∈Rd will define a vector field Fξ on M similar to (5.2.2)

Fξ
∣∣∣
m
=

d∑
i=1

ξi Ei |m (5.2.4)

If ξi = fi (p) for some p ∈M, the corresponding Fξ will be a vector field in the
linear span of the frame which coincides with F at the point p. Such a vector
field was named by [11] as a the vector field frozen at p.

The two formulations just presented are, in many cases, connected and can
then be used in an equivalent manner. Suppose that e1, . . . ,ed is a basis of the

1If the Lie group action is smooth, a map f of the same regularity as F can be found [53]
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Lie algebra g, then we can simply define frame vector fields as Ei =ψ∗(ei ) and
the vector field we aim to describe is,

F |m = ψ∗
(

f (m)
)∣∣∣

m
= ψ∗

(∑
i

fi (m)ei

)∣∣∣∣∣∣
m

=∑
i

fi Ei
∣∣
m .

As mentioned above, there is a non-uniqueness issue when defining a vector
field by means of a group action or a frame. A more fundamental description
can be obtained using the machinery of connections. The assumption is that
the simply connected manifold M is equipped with a connection which is flat
and has constant torsion. Then Fp , the frozen vector field of F at p defined
above, can be defined as the unique element Fp ∈X (M) satisfying

1. Fp |p = F |p
2. ∇X Fp = 0 for any X ∈X (M).

So Fp is the vector field that coincides with F at p and is parallel transported
to any other point on M by the connection ∇. Since the connection is flat, the
parallel transport from the point p to another point m ∈M does not depend on
the chosen path between the two points. For further details, see e.g. [32].

Example 1. For mechanical systems on Lie groups, two important construc-
tions are the adjoint and coadjoint representations. For every g ∈G there is an
automorphism Adg : g→ g defined as

Adg (ξ) = T Lg ◦T Rg−1 (ξ)

where Lg and Rg are the left and right multiplications respectively, Lg (h) =
g h and Rg (h) = hg . Since Ad is a representation, i.e., Adg h = Adg ◦Adh , it
also defines a left Lie group action by G on g. From this definition and a
duality pairing 〈·, ·〉 between g and g∗, we can also derive a representation on
g∗ denoted Ad∗

g , simply by〈
Ad∗

g

(
µ
)

,ξ
〉
=

〈
µ,Adg

(
ξ
)〉

, ξ ∈ g, µ ∈ g∗.

The action g ·µ= Ad∗
g−1 (µ) has infinitesimal generator given as

ψ∗
(
ξ
)∣∣∣
µ
=−ad∗

ξµ

Following [34], for a Hamiltonian H : T ∗G →R, define H− to be its restriction
to g∗. Then, the Lie-Poisson reduction of the dynamical system is defined on
g∗ as

µ̇=−ad∗
∂H−
∂µ

µ
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and this vector field is precisely of the form (5.2.3) with f (µ) = ∂H−
∂µ (µ). A side

effect of this is that the integral curves of these Lie-Poisson systems preserve
coadjoint orbits, making the coadjoint action an attractive choice for Lie group
integrators.

Let us now detail the situation for the very simple case where G = SO(3). The
Lie algebra so(3) can be modeled as 3×3 skew-symmetric matrices, and via
the standard basis, we identify each such matrix ξ̂ by a vector ξ ∈ R3, this
identification is known as the hat map

ξ̂=

 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

 . (5.2.5)

Now, we also write the elements of so∗(3) as vectors in R3 with duality pairing
〈µ,ξ〉 = µT ξ. With these representations, we find that the coadjoint action can
be expressed as

g ·µ=ψ(
g ,µ

)= Ad∗
g−1µ= gµ

the rightmost expression being a simple matrix-vector multiplication. Since g
is orthogonal, it follows that the coadjoint orbits foliate 3-space into spherical
shells, and the coadjoint action is transitive on each of these orbits. The free
rigid body can be cast as a problem on T ∗SO(3) with a left-invariant Hamilto-
nian, which reduces to the function

H− (
µ
)= 1

2

〈
µ, I−1µ

〉
on so∗(3) where I : so(3) → so∗(3) is the inertia tensor. From this, we can now
set f (µ) = ∂H−/∂µ= I−1µ. We then recover the Euler free rigid body equation
as

µ̇= ψ∗
(

f
(
µ
))∣∣∣∣

µ

=−ad∗
I−1µ

µ=−I−1µ×µ

where the last expression involves the cross product of vectors in R3.

5.2.2 Two classes of Lie group integrators

The simplest numerical integrator for linear spaces is the explicit Euler method.
Given an initial value problem ẏ = F (y), y(0) = y0 the method is defined as
yn+1 = yn +hF (yn) for some step size h. In the spirit of the previous section,
one could think of the Euler method as the h-flow of the constant vector field
Fyn (y) = F (yn), that is

yn+1 = exp
(
hFyn

)
yn .
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This definition of the Euler method also makes sense when F is replaced by
a vector field on some manifold. In this general situation it is known as the
Lie–Euler method.

We shall here consider the two classes of methods known as Runge–Kutta–
Munthe–Kaas (RKMK) methods and Commutator-free Lie group methods.

For RKMK methods, the underlying idea is to transform the problem from the
manifold M to the Lie algebra g, take a time step, and map the result back to
M. The transformation we use is

y(t ) = exp(σ(t )) · y0, σ(0) = 0.

The transformed differential equation for σ(t ) makes use of the derivative of
the exponential mapping. The reader should consult [40] for details about the
derivation. We give the final result

σ̇(t ) = dexp−1
σ(t )

(
f
(
exp(σ(t )) · y0

))
. (5.2.6)

The map v 7→ dexpu(v) is linear and invertible when u belongs to some suffi-
ciently small neighborhood of 0 ∈ g. It has an expansion in nested Lie brackets
[21]. Using the operator adu(v) = [u, v] and its powers ad2

u v = [u, [u, v]] etc,
one can write

dexpu(v) = ez −1

z

∣∣∣∣∣
z=adu

(v) = v + 1

2
[u, v]+ 1

6
[u, [u, v]]+·· · (5.2.7)

and the inverse is

dexp−1
u (v) = z

ez −1

∣∣∣∣
z=adu

(v) = v − 1

2
[u, v]+ 1

12
[u, [u, v]]+·· · . (5.2.8)

The RKMK methods are now obtained simply by applying some standard
Runge–Kutta method to the transformed equation (5.2.6) with a time step h,
using the initial value σ(0) = 0. This leads to an output σ1 ∈ g and one simply
sets y1 = exp(σ1) · y0. Then one repeats the procedure replacing y0 by y1 in
the next step etc. While solving (5.2.6), one needs to evaluate dexp−1

u (v) as
a part of the process. This can be done by truncating the series (5.2.8) since
σ(0) = 0 implies that we always evaluate dexp−1

u with u =O(h), and thus, the
kth iterated commutator adk

u =O(hk ). For a given Runge–Kutta method, there
are some clever tricks that can be done to minimize the total number of com-
mutators to be included from the expansion of dexp−1

u v , see [5, 41]. We give
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here one concrete example of an RKMK method proposed in [5]

fn,1 = h f
(
yn

)
,

fn,2 = h f

(
exp

(
1
2 fn,1

)
· yn

)
,

fn,3 = h f

(
exp

(
1
2 fn,2 − 1

8

[
fn,1, fn,2

]) · yn

)
,

fn,4 = h f
(
exp

(
fn,3

) · yn

)
,

yn+1 = exp

(
1
6

(
fn,1 +2 fn,2 +2 fn,3 + fn,4 − 1

2

[
fn,1, fn,4

])) · yn .

The other option is to compute the exact expression for dexp−1
u (v) for the par-

ticular Lie algebra we use. For instance, it was shown in [8] that for the Lie
algebra so(3) one has

dexp−1
u (v) = v − 1

2
u × v +α−2

(
1− α

2 cot α2

)
u × (u × v).

We will present the corresponding formula for se(3) in Section 5.2.3.

The second class of Lie group integrators to be considered here are the commu-
tator-free methods, named this way in [6] to emphasize the contrast to RKMK
schemes which usually include commutators in the method format. These
schemes include the Crouch-Grossman methods [11] and they have the for-
mat

Yn,r = exp

(
h

∑
k
αk

r,J fn,k

)
· · ·exp

(
h

∑
k
αk

r,1 fn,k

)
· yn

fn,r = f
(
Yn,r

)
yn+1 = exp

(
h

∑
k
βk

J fn,k

)
· · ·exp

(
h

∑
k
βk

1 fn,k

)
· yn .

Here the Runge–Kutta coefficients αk
r, j , β

r
j are related to a classical Runge–

Kutta scheme with coefficients ak
r , br in that ak

r =∑
j α

k
r, j and br =∑

j β
r
j . The

αk
r, j , β

r
j are usually chosen to obtain computationally inexpensive schemes

with the highest possible order of convergence. The computational complexity
of the above schemes depends on the cost of computing an exponential as
well as of evaluating the vector field. Therefore, it makes sense to keep the
number of exponentials J in each stage as low as possible, and possibly also the
number of stages s. A trick proposed in [6] was to select coefficients that make
it possible to reuse exponentials from one stage to another. This is perhaps
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best illustrated through the following example from [6], a generalization of the
classical 4th-order Runge–Kutta method.

Yn,1 = yn

Yn,2 = exp
(

1
2 h fn,1

)
· yn

Yn,3 = exp
(

1
2 h fn,2

)
· yn

Yn,4 = exp
(
h fn,3 − 1

2 h fn,1

)
·Yn,2

yn+ 1
2
= exp

(
1

12 h
(
3 fn,1 +2 fn,2 +2 fn,3 − fn,4

)) · yn

yn+1 = exp
(

1
12 h

(− fn,1 +2 fn,2 +2 fn,3 +3 fn,4
)) · yn+ 1

2

(5.2.9)

where fn,i = f (Yn,i ). Here, we see that one exponential is saved in computing
Yn,4 by making use of Yn,2.

5.2.3 An exact expression for dexp−1
u (v) in se(3)

As an alternative to using a truncated version of the infinite series for dexp−1
u

(5.2.8), one can consider exact expressions obtained for certain Lie algebras.
Since se(3) is particularly important in applications to mechanics, we give here
its exact expression. For this, we represent elements of se(3) as a pair (A, a) ∈
R3 ×R3 ∼= R6, the first component corresponding to a skew-symmetric matrix
Â via (5.2.5) and a is the translational part. Now, let ϕ(z) be a real analytic
function at z = 0. We define

ϕ+(z) = ϕ(i z)+ϕ(−i z)

2
, ϕ−(z) = ϕ(i z)−ϕ(−i z)

2i

We next define the four functions

g1(z) = ϕ−(z)

z
, g̃1(z) = g ′

1(z)

z
, g2(z) = ϕ(0)−ϕ+(z)

z2 , g̃2(z) = g ′
2(z)

z

and the two scalars ρ = AT a, α= ∥A∥2. One can show that for any (A, a) and
(B ,b) in se(3), it holds that

ϕ
(
ad(A,a)

)(
B ,b

)= (
C ,c

)
where

C =ϕ(0)B + g1(α)A×B + g2(α) A× (
A×B

)
c =ϕ(0)b + g1(α)

(
a ×B + A×b

)+ρg̃1(α) A×B +ρg̃2(α) A× (
A×B

)
+ g2(α)

(
a × (

A×B
)+ A× (

a ×B
)+ A× (

A×b
))

.

190



5.3 Hamiltonian systems on Lie groups

Considering for instance (5.2.8), we may now use ϕ(z) = z
ez−1 to calculate

g1(z) =−1

2
, g̃1(z) = 0, g2(z) = 1− z

2 cot z
2

z2 , g̃2(z) = 1

z

d

d z
g2(z), ϕ(0) = 1,

and thereby obtain an expression for dexp−1
(A,a)(B ,b) with the formula above.

Similar types of formulas are known for computing the matrix exponential as
well as functions of the ad-operator for several other Lie groups of small and
medium dimension. For instance in [38] a variety of coordinate mappings for
rigid body motions are discussed. For Lie algebras of larger dimension, both
the exponential mapping and dexp−1

u may become computationally infeasible.
For these cases, one may benefit from replacing the exponential with some
other coordinate map for the Lie group φ : g→G . One option is to use canon-
ical coordinates of the second kind [45]. Then, for some Lie groups, such as
the orthogonal, unitary, and symplectic groups, there exist other maps that can
be used and which are computationally less expensive. A popular choice is the
Cayley transformation [13].

5.3 Hamiltonian systems on Lie groups

In this section, we consider Hamiltonian systems on Lie groups. These systems
(and their Lagrangian counterpart) often appear in mechanics applications as
building blocks for more realistic systems with additional damping and control
forces. We consider canonical systems on the cotangent bundle of a Lie group
and Lie-Poisson systems which can arise by symmetry reduction or otherwise.
We illustrate the various cases with different formulations of the heavy top
system.

5.3.1 Semidirect products

The coadjoint action by G on g∗ is denoted Ad∗
g defined for any g ∈G as〈

Ad∗
gµ,ξ

〉
=

〈
µ,Adgξ

〉
, ∀ξ ∈ g, (5.3.1)

where Ad : g → g is the adjoint representation and for a duality pairing 〈·, ·〉
between g∗ and g.

We consider the cotangent bundle of a Lie group G , T ∗G and identify it with
G×g∗ using the right multiplication Rg : G →G and its tangent mapping Rg∗ :=
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T Rg . The cartesian product G ×g∗ can be given a semidirect product structure
that turns it into a Lie group G :=G ⋉g∗ where the group multiplication is

(
g1,µ1

) · (g2,µ2
)= (

g1 · g2,µ1 +Ad∗
g−1

1
µ2

)
. (5.3.2)

Acting by left multiplication any vector field F ∈X (G) is expressed by means
of a map f : G → Te G,

F
(
g ,µ

)= Te R(g ,µ) f
(
g ,µ

)= (
Rg∗ f1, f2 −ad∗

f1
µ
)

, (5.3.3)

where f1 = f1(g ,µ) ∈ g, f2 = f2(g ,µ) ∈ g∗ are the two components of f .

5.3.2 Symplectic form and Hamiltonian vector fields

The right trivialized2 symplectic form pulled back to G reads

ω(g ,µ)

((
Rg∗ξ1,δν1

)
,
(
Rg∗ξ2,δν2

))
= 〈

δν2,ξ1
〉−〈

δν1,ξ2
〉−〈

µ, [ξ1,ξ2]
〉

, ξ1,ξ2 ∈ g.
(5.3.4)

See [31] for more details, proofs, and for the left trivialized symplectic form.
The vector field F is a Hamiltonian vector field if it satisfies

iFω= d H ,

for some Hamiltonian function H : T ∗G → R, where iF is defined as iF (X ) :=
ω(F, X ) for any vector field X . This implies that the map f for such a Hamil-
tonian vector field gets the form

f (g ,µ) =
(
∂H

∂µ
(g ,µ),−R∗

g
∂H

∂g
(g ,µ)

)
. (5.3.5)

The following is a one-parameter family of symplectic Lie group integrators
on T ∗G:

2ω(g ,µ) is obtained from the natural symplectic form on T∗G (which is a differential two-
form), defined as

Ω(
g ,pg

) ((
δv1,δπ1

)
,
(
δv2,δπ2

))= 〈
δπ2,δv1

〉−〈
δπ1,δv2

〉
,

by right trivialization.
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Mθ = dexp∗
−ξ(µ0 +Ad∗

exp(θξ)(n̄))−θdexp∗
−θξAd∗

exp(θξ)(n̄), (5.3.6)(
ξ, n̄

)= h f
(
exp

(
θξ

) · g0, Mθ

)
, (5.3.7)(

g1,µ1
)= (

exp
(
ξ
)

,Ad∗
exp

(
(θ−1)ξ

)n̄)
· (g0,µ0

)
. (5.3.8)

For higher-order integrators of this type and a complete treatment, see [3].

5.3.3 Reduced equations Lie Poisson systems

A mechanical system formulated on the cotangent bundle T ∗G with a left or
right invariant Hamiltonian can be reduced to a system on g∗ [33]. In fact for
a Hamiltonian H right invariant under the left action of G , ∂H

∂g = 0, and from
(5.3.3) and (5.3.5) we get for the second equation

µ̇=∓ad∗
∂H
∂µ

µ, (5.3.9)

where the positive sign is used in case of left invariance (see e.g. section 13.4
in [35]). The solution to this system preserves coadjoint orbits, thus using the
Lie group action

g ·µ= Ad∗
g−1µ,

to build a Lie group integrator results in preservation of such coadjoint orbits.
Lie group integrators for this interesting case were studied in [15].

The Lagrangian counterpart to these Hamiltonian equations are the Euler–
Poincaré equations3, [24].

5.3.4 Three different formulations of the heavy top equations

The heavy top is a simple test example for illustrating the behavior of Lie group
methods. We will consider three different formulations for this mechanical
system. The first formulation is on T ∗SO(3) where the equations are canonical
Hamiltonian, a second point of view is that the system is a Lie–Poisson system
on se∗(3), and finally it is canonical Hamiltonian on a larger group with a
quadratic Hamiltonian function. The three different formulations suggest the
use of different Lie group integrators.

3The Euler–Poincaré equations are Euler–Lagrange equations with respect to a Lagrange–
d’Alembert principle obtained taking constraint variations.
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Figure 5.3.1: Illustration of the heavy top, where C M is the center of mass of the
body, O is the fixed point, g⃗ is the gravitational acceleration vector, and ℓ,Q, χ⃗ follow
the notation introduced in Section 5.3.4

Heavy top equations on T ∗SO(3).

The heavy top is a rigid body with a fixed point in a gravitational field. The
phase space of this mechanical system is T ∗SO(3), where the equations of the
heavy top are in canonical Hamiltonian form. Assuming (Q, p) are coordinates
for T ∗SO(3), Π = (Te LQ )∗(p) is the left trivialized or body momentum. The
Hamiltonian of the heavy top is given in terms of (Q,Π) as

H : SO(3)⋉so∗(3) →R, H(Q,Π) = 1

2

〈
Π, I−1Π

〉
+M gℓΓ ·X , Γ=Q−1Γ0,

where I : so(3) → so∗(3) is the inertia tensor, here represented as a diagonal
3× 3 matrix, Γ = Q−1Γ0, where Γ0 ∈ R3 is the axis of the spatial coordinate
system parallel to the direction of gravity but pointing upwards, M is the mass
of the body, g is the gravitational acceleration, X is the body fixed unit vector
of the oriented line segment pointing from the fixed point to the center of mass
of the body, ℓ is the length of this segment. The equations of motion on SO(3)⋉
so∗(3) are

Π̇=Π× I−1Π+M gℓΓ×X , (5.3.10)

Q̇ =Q �I−1Π. (5.3.11)

The identification of T ∗SO(3) with SO(3)⋉so∗(3) via right trivialization leads
to the spatial momentum variable π= (Te RQ )∗(p) =QΠ. The equations written
in the space variables (Q,π) get the form

π̇= M gℓΓ0 ×QX , (5.3.12)

Q̇ = ω̂Q ω=QI−1QTπ, (5.3.13)
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where the first equation states that the component of π parallel to Γ0 is constant
in time. These equations can be obtained from (5.3.3) and (5.3.5) on the right
trivialized T ∗SO(3), SO(3)⋉ so∗(3), with the heavy top Hamiltonian and the
symplectic Lie group integrators (5.3.7)-(5.3.8) can be applied in this case.
Similar methods were proposed in [31] and [48].

Heavy top equations on se∗(3)

The Hamiltonian of the heavy top is not invariant under the action of SO(3),
so the equations (5.3.10)-(5.3.11) given in Section 5.3.4 cannot be reduced
to so∗(3). Nevertheless the heavy top equations are Lie–Poisson on se∗(3),
[52, 17, 47].

Observe that the equations of the heavy top on T ∗SO(3) (5.3.10)-(5.3.11) can
be easily modified eliminating the variable Q ∈ SO(3) and replacing it with
Γ ∈R3 Γ=Q−1Γ0 to obtain

Π̇=Π× I−1Π+M gℓΓ×X , (5.3.14)

Γ̇= Γ×
(
I−1Π

)
. (5.3.15)

We will see that the solutions of these equations evolve on se∗(3). In what
follows, we consider elements of se∗(3) to be pairs of vectors in R3, e.g. (Π,Γ).
Correspondingly the elements of SE(3) are represented as pairs (g ,u) with g ∈
SO(3) and u ∈R3. The group multiplication in SE(3) is then(

g1,u1
) · (g2,u2

)= (
g1g2, g1u2 +u1

)
,

where g1g2 is the product in SO(3) and g1u is the product of a 3×3 orthogonal
matrix with a vector in R3. The coadjoint representation and its infinitesimal
generator on se∗(3) take the form

Ad∗
(g ,u)

(
Π,Γ

)= (
g−1 (

Π−u×Γ)
, g−1Γ

)
,

ad∗
(ξ,u)

(
Π,Γ

)= (−ξ×Π−u×Γ,−ξ×Γ)
.

Using this expression for ad∗
(ξ,u) with (ξ= ∂H

∂Π ,u = ∂H
∂Γ ), it can be easily seen that

the equations (5.3.9) in this setting reproduce the heavy top equations (5.3.14)-
(5.3.15). Therefore the equations are Lie–Poisson equations on se∗(3). How-
ever, since the heavy top is a rigid body with a fixed point and there are no
translations, these equations do not arise from a reduction of T ∗SE(3). More-
over, the Hamiltonian on se∗(3) is not quadratic, and the equations are not
geodesic equations. Implicit and explicit Lie group integrators applicable to
this formulation of the heavy top equations and preserving coadjoint orbits
were discussed in [15], for a variable step size integrator applied to this formu-
lation of the heavy top see [12].
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Heavy top equations with quadratic Hamiltonian.

We rewrite the heavy top equations one more time considering the constant
vector p =−M gℓX as a momentum variable conjugate to the position q ∈ R3

and where p =Q−1Γ0+ q̇, and the Hamiltonian is a quadratic function of Π, Q,
p and q:

H : T ∗SO(3)×R3∗×R3 →R,

H((Π,Q), (p,q)) = 1

2

〈
Π, I−1Π

〉
+ 1

2

∥∥∥p−Q−1Γ0

∥∥∥2 − 1

2

∥∥∥Q−1Γ0

∥∥∥2
,

see [23, section 8.5]. This Hamiltonian is invariant under the left action of
SO(3). The corresponding equations are canonical on T ∗S ≡ S ⋉ s∗ where
S = SO(3)×R3 with Lie algebra s := so(3)×R3 and T ∗S can be identified with
T ∗SO(3)×R3∗×R3. The equations are

Π̇=Π× I−1Π−
(
Q−1Γ0

)
×p, (5.3.16)

Q̇ =Q �I−1Π, (5.3.17)

ṗ = 0, (5.3.18)

q̇ = p−Q−1Γ0, (5.3.19)

and in the spatial momentum variables

π̇=−Γ0 ×Qp, (5.3.20)

Q̇ = ω̂Q, ω=QI−1QTπ, (5.3.21)

ṗ = 0, (5.3.22)

q̇ = p−Q−1Γ0. (5.3.23)

Similar formulations were considered in [30] for the stability analysis of an
underwater vehicle. A similar but different formulation of the heavy top was
considered in [4].

Numerical experiments.

We apply various implicit Lie group integrators to the heavy top system. The
test problem we consider is the same as in [4], where Q(0) = I , ℓ= 2, M = 15
I = diag(0.234375,0.46875,0.234375), π(0) = I(0,150,−4.61538), X = (0,1,0)
Γ0 = (0,0,−9.81).

In Figure 5.3.2 we report the performance of the symplectic Lie group integra-
tors (5.3.6)-(5.3.8) applied both on the equations (5.3.12)-(5.3.13) with θ = 0,
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Figure 5.3.2: Symplectic Lie group integrators integration on the time interval [0,1].
Left: 3D plot of MℓQ−1Γ0. Center: components of QX . The left and center plots are
computed with the same step size. Right: verification of the order of the methods.

θ = 1
2 and θ = 1 (SLGI), and to the equations (5.3.20)-(5.3.23) with θ = 1

2
(SLGIKK). The methods with θ = 1

2 attain order 2. In Figure 5.3.3, we show
the energy error for the symplectic Lie group integrators with θ = 1

2 and θ = 0
integrating with step size h = 0.01 for 6000 steps.

Figure 5.3.3: Symplectic Lie group integrators, long time integration, h = 0.01, 6000
steps.. Top: energy error, bottom 3D plot of MℓQ−1Γ0.
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5.4 Variable step size

One approach for varying the step size is based on the use of an embedded
Runge–Kutta pair. This principle can be carried from standard Runge–Kutta
methods in vector spaces to the present situation with RKMK and commutator-
free schemes via minor modifications. We briefly summarize the main princi-
ple of embedded pairs before giving more specific details for the case of Lie
group integrators. This approach is very well documented in the literature and
goes back to Merson [36], and a detailed treatment can be found in [19, p.
165–168].

An embedded pair consists of a main method used to propagate the numerical
solution, together with some auxiliary method that is only used to obtain an
estimate of the local error. This local error estimate is, in turn, used to derive
a step size adjustment formula that attempts to keep the local error estimate
approximately equal to some user-defined tolerance tol in every step. Suppose
the main method is of order p and the auxiliary method is of order p̃ ̸= p.
4 Both methods are applied to the input value yn and yields approximations
yn+1 and ỹn+1 respectively, using the same step size hn+1. Now, some distance
measure5 between yn+1 and ỹn+1 provides an estimate en+1 for the size of the
local truncation error. Thus, en+1 =C h p̃+1

n+1 +O(h p̃+2). Aiming at en+1 ≈ tol in
every step, one may use a formula of the type

hn+1 = θ
(

tol

en+1

) 1
p̃+1

hn (5.4.1)

where θ is a ‘safety factor’, typically chosen between 0.8 and 0.9. In case the
step is rejected because en > tol, we can redo the step with a step size obtained
by the same formula. We summarize the approach in the following algorithm

Given yn , hn , tol
Let h := hn

repeat
Compute yn+1, ỹn+1, en+1 from yn , h

Update step size h := θ
(

tol
en+1

)α
h

accepted := en+1 < tol
if accepted

4In this paper, we will assume p̃ < p in which case the local error estimate is relevant for the
approximation ỹn+1

5There are many options for how to do this in practice, and the choice may also depend on
the application. For example, a Riemannian metric is a natural and robust alternative.
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update step index: n := n +1
hn := h

until accepted

Here we have used again the safety factor θ, and the parameter α is generally
chosen as α= 1

1+min(p,p̃) .

5.4.1 RKMK methods with variable step size

We need to specify how to calculate the quantity en+1 in each step. For RKMK
methods, the situation is simplified by the fact that we are solving the local
problem (5.2.6) in the linear space g, where the known theory can be applied
directly. So any standard embedded pair of Runge–Kutta methods described by
coefficients (ai j ,bi , ãi j , b̃i ) of orders (p, p̃) can be applied to the full dexpinv-
equation (5.2.6) to obtain local Lie algebra approximations σ1, σ̃1 and one
uses e.g. en+1 = ∥σ1 − σ̃1∥ (note that the equation itself depends on yn). For
methods that use a truncated version of the series for dexp−1

u , one may also try
to optimize performance by including commutators that are shared between
the main method and the auxiliary scheme.

5.4.2 Commutator-free methods with variable step size

For the commutator-free methods of section 5.2.2, the situation is different
since such methods do not have a natural local representation in a linear space.
One can still derive embedded pairs, and this can be achieved by studying
order conditions [43] as was done in [12]. Now one obtains after each step
two approximations yn+1 and ỹn+1 on M both by using the same initial value
yn and step size hn . One must also have access to some metric d to calculate
en+1 = d(yn+1, ỹn+1) We give a few examples of embedded pairs.

Pairs of order
(
p, p̃

)= (3,2)

It is possible to obtain embedded pairs of order 3(2) which satisfy the require-
ments above. We present two examples from [12]. The first one reuses the

199



Lie Group integrators for mechanical systems

second stage exponential in the update

Yn,1 = yn

Yn,2 = exp
(

1
3 h fn,1

)
· yn

Yn,3 = exp
(

2
3 h fn,2

)
· yn

yn+1 = exp

(
h

(
− 1

12 fn,1 + 3
4 fn,3

))
·Yn,2

ỹn+1 = exp
(

1
2 h

(
fn,2 + fn,3

)) · yn .

One could also have reused the third stage Yn,3 in the update rather than Yn,2.

Yn,1 = yn

Yn,2 = exp
(

2
3 h fn,1

)
· yn

Yn,3 = exp
(
h( 5

12 fn,1 + 1
4 fn,2

)
· yn

yn+1 = exp

(
h

(
−1

6 fn,1 − 1
2 fn,2 + fn,3

))
·Yn,3

ỹn+1 = exp
(

1
4 h

(
fn,1 +3 fn,3

)) · yn .

It is always understood that the frozen vector fields are fn,i := fYn,i .

Order (4,3)

The procedure of deriving efficient pairs becomes more complicated as the
order increases. In [12] a low cost pair of order (4,3) was derived, in the sense
that one attempted to minimize the number of stages and exponentials in the
embedded pair as a whole. This came, however, at the expense of a relatively
large error constant. So rather than presenting the method from that paper, we
suggest a simpler procedure at the cost of some more computational work per
step, we simply furnish the commutator-free method of section 5.2 by a third
order auxiliary scheme. It can be described as follows:

1. Compute Yn,i , i = 1. . . ,4 and yn+1 from (5.2.9)

2. Compute an additional stage Ȳn,3 and then ỹn+1 as

Ȳn,3 = exp
(

3
4 h fn,2

)
· yn

ỹn+1 = exp

(
h
9

(
− fn,1 +3 fn,2 +4 f̄n,3

))
·exp

(
h
3 fn,1

)
· yn .

(5.4.2)
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5.5 The N -fold 3D pendulum

In this section, we present a model for a system of N connected 3-dimensional
pendulums. The modeling part comes from [28], and here we study the vector
field describing the dynamics in order to re-frame it into the Lie group inte-
grators setting described in the previous sections. The model we use is not
completely realistic since, for example, it neglects possible interactions be-
tween pendulums and assumes ideal spherical joints between them. However,
this is still a relevant example from the point of view of geometric numerical
integration. More precisely, we show a possible way to work with a configu-
ration manifold which is not a Lie group, applying the theoretical instruments
introduced before. The Lagrangian we consider is a function from (T S2)N to R.

Figure 5.5.1: 3−fold pendulum at a fixed time instant, with fixed point placed at the origin.

Instead of the coordinates (q1, ..., qN , q̇1, ..., q̇N ), where q̇i ∈ Tqi S2, we choose
to work with the angular velocities. Precisely,

Tqi S2 =
{

v ∈R3 : vT qi = 0
}
= 〈

qi
〉⊥ ⊂R3,

and hence for any q̇i ∈ Tqi S2 there exist ωi ∈ R3 such that q̇i =ωi ×qi , which
can be interpreted as the angular velocity of qi . So we can assume without
loss of generality that ωT

i qi = 0 (i.e. ωi ∈ Tqi S2) and pass to the coordinates
(q1,ω1, q2,ω2, ..., qN ,ωN ) ∈ (T S2)N to describe the dynamics. In this section,
we denote the masses of the pendulums with m1, ...,mN and their lengths with
L1, ...,LN . Figure 5.5.1 shows the case N = 3. We organize the section into
three parts:

1. We define the transitive Lie group action used to integrate this model
numerically,
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2. We show a possible way to express the dynamics in terms of the infinites-
imal generator of this action for the general case of N joint pendulums,

3. We focus on the case N = 2, as a particular example. For this setting,
we present some numerical experiments comparing various Lie group
integrators and some classical numerical integrators. Then, we conclude
with numerical experiments on variable step size.

5.5.1 Transitive group action on
(
T S2

)N

We characterize a transitive action for (T S2)N , starting with the case N = 1 and
generalizing it to N > 1. The action we consider is based on the identification
between se(3), the Lie algebra of SE(3), and R6. We start from the Ad-action
of SE(3) on se(3) (see [23]), which writes

Ad : SE(3)×se(3) → se(3),

Ad
((

R,r
)

,
(
u, v

))= (
Ru,Rv + r̂ Ru

)
.

Since se(3) ≃ R6, the Ad-action allows us to define the following Lie group
action on R6

ψ : SE(3)×R6 →R6, ψ
((

R,r
)

,
(
u, v

))= (
Ru,Rv + r̂ Ru

)
.

We can think of ψ as a Lie group action on T S2 since, for any q ∈R3, it maps
points of

T S2
|q| :=

{(
q̃ ,ω̃

) ∈R3 ×R3 : ω̃T q̃ = 0, |q̃| = |q|
}
⊂R6

into other points of T S2
|q|. Moreover, with standard arguments (see [42]), it is

possible to prove that the orbit of a generic point m = (q,ω) ∈R6 with ωT q = 0
coincides with

Orb(m) = T S2
|q|.

In particular, when q ∈R3 is a unit vector (i.e. q ∈ S2), ψ allows us to define a
transitive Lie group action on T S2 = T S2

|q|=1 which writes

ψ : SE(3)×T S2 → T S2

ψ
((

A, a
)

,
(
q,ω

))
:=ψ(A,a)

(
q,ω

)= (
Aq, Aω+ â Aq

)= (
q̄ ,ω̄

)
.

To conclude the description of the action, we report here its infinitesimal gen-
erator, which is fundamental in the Lie group integrator setting

ψ∗
((

u, v
))∣∣∣∣

(q,ω)
= (

ûq, ûω+ v̂ q
)

.
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We can extend this construction to the case N > 1 in a natural way, i.e., through
the action of a Lie group obtained from cartesian products of SE(3) and equip-
ped with the direct product structure. More precisely, we consider the group
G = (SE(3))N , and by direct product structure, we mean that for any pair of
elements

δ(1) = (δ(1)
1 , ...,δ(1)

N ), δ(2) = (δ(2)
1 , ...,δ(2)

N ) ∈G ,

denoted with ∗ the semidirect product of SE(3), we define the product ◦ on G
as

δ(1) ◦δ(2) :=
(
δ(1)

1 ∗δ(2)
1 , ...,δ(1)

N ∗δ(2)
N

)
∈G .

With this group structure defined, we can generalize the action introduced for
N = 1 to larger Ns as follows

ψ :
(
SE(3)

)N ×
(
T S2

)N →
(
T S2

)N
,

ψ
((

A1, a1, ..., AN , an
)

,
(
q1,ω1, ..., qN ,ωN

))=
= (

A1q1, A1ω1 + â1 A1q1, ..., AN qN , ANωN + âN AN qN
)

,

whose infinitesimal generator writes

ψ∗
(
ξ
)∣∣∣

m
= (

û1q1, û1ω1 + v̂1q1, ..., ûN qN , ûNωN + v̂N qN
)

,

where ξ = [u1, v1, ...,uN , vN ] ∈ se(3)N and m = (q1,ω1, ..., qN ,ωN ) ∈ (T S2)N .
We now have the only group action we need to deal with the N−fold spherical
pendulum. In the following part of this section, we work on the vector field
describing the dynamics and adapting it to the Lie group integrators setting.

5.5.2 Full chain

We consider the vector field F ∈ X((T S2)N ), describing the dynamics of the
N -fold 3D pendulum, and we express it in terms of the infinitesimal generator
of the action defined above. More precisely, we find a function F : (T S2)N →
se(3)N such that

ψ∗
(

f (m)
)∣∣∣

m
= F |m , ∀m ∈

(
T S2

)N
.

We omit the derivation of F starting from the Lagrangian of the system, which
can be found in the section devoted to mechanical systems on (S2)N of [28].
The configuration manifold of the system is (S2)N , while the Lagrangian, ex-
pressed in terms of the variables (q1,ω1, ..., qN ,ωN ) ∈ (T S2)N , writes

L
(
q,ω

)= T
(
q,ω

)−U
(
q
)= 1

2

N∑
i , j=1

(
Mi jω

T
i q̂T

i q̂ jω j

)
−

N∑
i=1

 N∑
j=i

m j

g Li eT
3 qi ,
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where

Mi j =
 N∑

k=max{i , j }
mk

Li L j I3 ∈R3×3

is the inertia matrix of the system, I3 is the 3× 3 identity matrix, and e3 =
[0,0,1]T . Noticing that when i = j we get

ωT
i q̂T

i q̂iωi =ωT
i

(
I3 −qi qT

i

)
ωi =ωT

i ωi ,

we simplify the notation writing

T
(
q,ω

)= 1

2

N∑
i , j=1

(
ωT

i R(q)i jω j

)
where R(q) ∈R3N×3N is a symmetric block matrix defined as

R(q)i i =
 N∑

j=i
m j

L2
i I3 ∈R3×3,

R(q)i j =
 N∑

k= j
mk

Li L j q̂T
i q̂ j ∈R3×3 = R

(
q
)T

j i , i < j .

The vector field on which we need to work defines the following first-order
ODE

q̇i =ωi ×qi , i = 1, ..., N ,

R(q)ω̇=

 N∑
j=1
j ̸=i

Mi j |ω j |2q̂i q j −
 N∑

j=i
m j

g Li q̂i e3


i=1,...,N

∈R3N

By direct computation, it is possible to see that, for any q = (q1, ..., qN ) ∈ (S2)N

and ω ∈ Tq1 S2 × ...×TqN S2, we have(
R

(
q
)
ω

)
i
∈ Tqi S2.

Therefore, there is a well-defined linear map

Aq : Tq1 S2 × ...×TqN S2 → Tq1 S2 × ...×TqN S2, Aq (ω) := R
(
q
)
ω.

We can even notice that R(q) defines a positive-definite bilinear form on this
linear space since

ωT R
(
q
)
ω=

N∑
i , j=1

ωT
i q̂T

i Mi j q̂ jω j =
N∑

i , j=1

(
q̂iωi

)T Mi j

(
q̂ jω j

)
= vT M v > 0.
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The last inequality holds because M is the inertia matrix of the system and
hence it defines a symmetric positive-definite bilinear form on Tq1 S2 × ... ×
TqN S2, see, e.g., [16]6. This implies the map Aq is invertible and hence we are
ready to express the vector field in terms of the infinitesimal generator. We can
rewrite the ODEs for the angular velocities as follows:

ω̇= A−1
q

([
g1, ..., gN

]T
)
=


h1

(
q,ω

)
...

hN
(
q,ω

)
=


a1

(
q,ω

)×q1
...

aN
(
q,ω

)×qN


where

gi = gi
(
q,ω

)= N∑
j=1
j ̸=i

M
(
q
)

i j

∣∣∣ω j

∣∣∣2
q̂i q j −

 N∑
j=i

m j

g Li q̂i e3, i = 1, ..., N

and a1, ..., aN : (T S2)N → R3 are N functions whose existence is guaranteed
by the analysis done above. Indeed, we can set ai (q,ω) := qi ×hi (q,ω) and
conclude that a mapping f from (T S2)N to (se(3))N such that

ψ∗
(

f
(
q,ω

))∣∣∣∣
(q,ω)

= F |(q,ω)

is the following one

f
(
q,ω

)=


ω1

q1 ×h1
...
ωN

qN ×hN

 ∈ se(3)N ≃R6N .

We will not go into the Hamiltonian formulation of this problem; however, we
remark that a similar approach works even in that situation. Indeed, following
the derivation presented in [28], we see that for a mechanical system on (S2)N

the conjugate momentum writes

T ∗
q1

S2 × ...×T ∗
qN

S2 ∋π= (
π1, ...,πN

)
, where πi =−q̂2

i
∂L

∂ωi

6It follows from the definition of the inertia tensor, i.e.,

0 ≤ T̃
(
q, q̇

)= 1

2

N∑
i=1

 ∑
j≥i

m j

Li L j q̇T
i q̇ j := 1

2
q̇T M q̇ .

Moreover, in this situation, it is even possible to explicitly find the Cholesky factorization of the
matrix M with an iterative algorithm.
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and its components are still orthogonal to the respective base points qi ∈ S2.
Moreover, Hamilton’s equations take the form

q̇i =
∂H

(
q,π

)
∂πi

×qi ,

π̇i =
∂H

(
q,π

)
∂qi

×qi +
∂H

(
q,π

)
∂πi

×πi ,

which implies that setting

f
(
q,π

)= [
∂q1 H

(
q,π

)
, ∂π1 H

(
q,π

)
, . . . , ∂qN H

(
q,π

)
, ∂πN H

(
q,π

)]
we can represent even the Hamiltonian vector field of the N−fold 3D pendulum
in terms of this group action.

Case N = 2

We have seen how it is possible to turn the equations of motion of a N−chain
of pendulums into the Lie group integrators setting. Now, we focus on the
example with N = 2 pendulums. The equations of motion write

q̇1 = ω̂1q1, q̇2 = ω̂2q2,

R
(
q
)[ω̇1

ω̇2

]
=


(
−m2L1L2

∣∣ω2
∣∣2 q̂2 +

(
m1 +m2

)
g L1ê3

)
q1(

−m2L1L2
∣∣ω1

∣∣2 q̂1 +m2g L2ê3

)
q2

 , (5.5.1)

where

R(q) =
[(

m1 +m2
)

L2
1I3 m2L1L2q̂T

1 q̂2

m2L1L2q̂T
2 q̂1 m2L2

2I3

]
.

As presented above, the matrix R(q) defines a linear invertible map of the space
Tq1 S2 ×Tq2 S2 onto itself:

A(q1,q2) : Tq1 S2 ×Tq2 S2 → Tq1 S2 ×Tq2 S2,
[
ω1,ω2

]T → R(q)
[
ω1,ω2

]T .

We can easily see that it is well-defined since

R
(
q
)[ω1

ω2

]
=

[(
m1 +m2

)
L2

1I3 m2L1L2q̂T
1 q̂2

m2L1L2q̂T
2 q̂1 m2L2

2I3

][
v̂1q1

v̂2q2

]
=

[
r̂1q1

r̂2q2

]
∈

(
T S2

)2

with
r1

(
q,ω

)
:= (

m1 +m2
)

L2
1v1 +m2L1L2q̂2v̂2q2,

r2
(
q,ω

)
:= m2L1L2q̂1v̂1q1 +m2L2

2v2.
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5.5 The N -fold 3D pendulum

This map guarantees that if we rewrite the pair of equations for the angular
velocities in (5.5.1) as

ω̇= R−1 (
q
)

(
−m2L1L2

∣∣ω2
∣∣2 q̂2 +

(
m1 +m2

)
g L1ê3

)
q1(

−m2L1L2
∣∣ω1

∣∣2 q̂1 +m2g L2ê3

)
q2

= R−1 (
q
)

b =

= A−1
(q1,q2)

(
b
)= [

h1

h2

]
∈ Tq1 S2 ×Tq2 S2,

then we are assured that there exists a pair of functions a1, a2 : T S2×T S2 →R3

such that

ω̇=
[

a1
(
q,ω

)×q1

a2
(
q,ω

)×q2

]
=

[
h1

(
q
)

h2
(
q
)] .

Since we want ai ×qi = hi , we just impose ai = qi ×hi and hence the whole
vector field can be rewritten as

q̇1

ω̇1

q̇2

ω̇2

=


ω1 ×q1(

q1 ×h1
)×q1

ω2 ×q2(
q2 ×h2

)×q2

= F |(q,ω) ,

with hi = hi (q,ω) and

[
h1

(
q,ω

)
h2

(
q,ω

)]= R−1 (
q
)

(
−m2L1L2

∣∣ω2
∣∣2 q̂2 +

(
m1 +m2

)
g L1ê3

)
q1(

−m2L1L2
∣∣ω1

∣∣2 q̂1 +m2g L2ê3

)
q2

 .

Therefore, we can express the whole vector field in terms of the infinitesimal
generator of the action of SE(3)×SE(3) as

ψ∗
(

f
(
q,ω

))∣∣∣∣
(q,ω)

= F |(q,ω)

through the function

f : T S2 ×T S2 → se(3)×se(3) ≃R12,
(
q,ω

)→ (
ω1, q1 ×h1,ω2, q2 ×h2

)
.

5.5.3 Numerical experiments

In this section, we present some numerical experiments for the N−chain of
pendulums. We start by comparing the various Lie group integrators that we
have tested (with the choice N = 2) and conclude by analyzing an implementa-
tion of variable step size. Lie group integrators allow us to keep the evolution
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of the solution in the correct manifold, which is T S2×T S2 when N = 2. Hence,
we briefly report two sets of numerical experiments. In the first one, we show
the convergence rate of all the Lie group integrators tested on this model. In
the second one, we check how they behave in terms of preserving the two
following relations:

• qi (t )T qi (t ) = 1, i.e. qi (t ) ∈ S2, i = 1,2,

• qi (t )Tωi (t ) = 0, i.e. ωi (t ) ∈ Tqi (t )S2, i = 1,2,

completing the analysis with a comparison with the classical Runge–Kutta
4 and with ODE45 of MATLAB. The Lie group integrators used to obtain
the following experiments are Lie Euler, Lie Euler Heun, three versions of
Runge–Kutta–Munthe–Kaas methods of order four and one of order three. The
RKMK4 with two commutators mentioned in the plots, is the one presented in
Section 5.2, while the other schemes can be found for example in [7].

Figure 5.5.2 presents the plots of the errors, in logarithmic scale, obtained con-
sidering as a reference solution the one given by the ODE45 method, with strict
tolerance. Here, we used an exact expression for the dexp−1

σ function. How-
ever, we could obtain the same results with a truncated version of this function,
keeping a sufficiently high number of commutators, or after some clever ma-
nipulations of the commutators (as with RKMK4 with two commutators, see
Section 5.2.2). The schemes show the right convergence rates, so we can move
to the analysis of the time evolution on T S2 ×T S2.

In Figure 5.5.3, we can see the comparison of the time evolution of the
2−norms of q1(t ) and q2(t ), for 0 ≤ t ≤ T = 5. As highlighted above, un-
like classical numerical integrators like the one implemented in ODE45 or the
Runge–Kutta 4, the Lie group methods preserve the norm of the base com-
ponents of the solutions, i.e., |q1(t )| = |q2(t )| = 1 ∀t ∈ [0,T ]. Therefore, as
expected, these integrators preserve the configuration manifold. However, to
complete this analysis, we show the plots making a similar comparison but
with the tangentiality conditions.

Indeed, in Figure 5.5.4, we compare the time evolution of the inner products
q1(t )Tω1(t ) and q2(t )Tω2(t ) for t ∈ [0,5], i.e., we see if these integrators pre-
serve the geometry of the whole phase space T S2 ×T S2. As we can see, while
for Lie group methods these inner products are of the order of 10−14 and 10−15,
the ones obtained with classical integrators show that the tangentiality condi-
tions are not preserved with the same accuracy.

We now move to some experiments on variable step size. In this last part, we
focus on the RKMK pair coming from the Dormand–Prince method (DOPRI

208



5.5 The N -fold 3D pendulum

Figure 5.5.2: Convergence rate of the implemented Lie group integrators, based on
global error considering as a reference solution the one of ODE45, with strict toler-
ance.

Figure 5.5.3: Visualization of the quantity 1−qi (t )T qi (t ), i = 1,2, for time t ∈ [0,5].
These plots focus on the preservation of the geometry of S2.
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Figure 5.5.4: Visualization of the inner product qi (t )Tωi (t ), i = 1,2, for t ∈ [0,5].
These plots focus on the preservation of the geometry of Tqi (t )S2.

5(4) [14]), which we denote with RKMK(5,4). The aim of the plots we show
is to compare the same schemes, both with constant and variable step size.
We start by setting a tolerance and solving the system with the RKMK(5,4)
scheme. Using the same number of time steps, we solve it again with RKMK
of order 5. These experiments show that, for some tolerance and some initial
conditions, the step size’s adaptivity improves the numerical approximation
accuracy. Since we do not have an available analytical solution to quantify
these two schemes’ accuracy, we compare them with the solution obtained
with a strict tolerance and ODE45. We compute such accuracy, at time T = 3,
by means of the Euclidean norm of the ambient space R6N .

Figure 5.5.5: Comparison of accuracy at the final time (on the left) and step adaptation
for the case N = 20 (on the right), with all pendulums of length Li = 1.
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5.5 The N -fold 3D pendulum

In Figure 5.5.5, we compare the performance of the constant and variable step
size methods, where the structure of the initial condition is always the same,
but what changes is the number of connected pendulums. The considered ini-
tial condition is (qi ,ωi ) =

(p
2/2,0,

p
2/2,0,1,0

)
, ∀i = 1, ..., N , and all the

masses and lengths are set to 1. From these experiments, we can notice situa-
tions where the variable step size beats the constant one in terms of accuracy at
the final time, like the case N = 2, which we discuss in more detail afterward.

The results presented in Figure 5.5.5 (left) do not aim to highlight any particu-
lar relation between how the number of pendulums increases and the regularity
of the solution. Indeed, as we add more pendulums, we keep incrementing the
total length of the chain since

∑N
i=1 Li = N . Thus, here, we do not have any

appropriate limiting behavior in the solution as N →+∞. The behavior pre-
sented in that figure seems to highlight an improvement in accuracy for the
RKMK5 method as N increases. However, this is biased by the fact that when
we increase N to achieve the fixed tolerance of 10−6 with RKMK(5,4), we
need more time steps in the discretization. Thus, this plot does not say that as
N increases, the dynamics become more regular; it suggests that the number
of required timesteps increases faster than the “degree of complexity" of the
dynamics.
For the case N = 2, we notice a relevant improvement passing to variable step
size. In Figures 5.5.6 and 5.5.7, we can see that, for this choice of the pa-
rameters, the solution behaves smoothly in most of the time interval, but then
there is a peak in the second component of the angular velocities of both the
masses, at t ≈ 2.2. We can observe this behavior both in the plots of Figure
5.5.6, where we project the solution on the twelve components, and even in
Figure 5.5.7c. In the latter, we plot two of the vector field components, i.e., the
second components of the angular accelerations ω̇i (t ), i = 1,2. They show an
abrupt change in the vector field in correspondence to t ≈ 2.2, where the step
is considerably restricted. Thus, to summarize, the gain we see with variable
step size when N = 2 is motivated by the unbalance in the length of the time
intervals with no abrupt changes in the dynamics and those where they appear.
Indeed, we see that apart from a neighborhood of t ≈ 2.2, the vector field does
not change quickly. On the other hand, for the case N = 20, this is the case.
Thus, the adaptivity of the step size does not bring relevant improvements in
the latter situation.

The motivating application behind our choice of this mechanical system has
been some intuitive relation with a beam model, as highlighted in the intro-
duction of this work. However, for this limiting behavior to make sense, we
should fix the length of the entire chain of pendulums to some L (the length of
the beam at rest) and then set the size of each pendulum to Li = L/N . In this
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(a) (q1(t ),ω1(t )) (b) (q2(t ),ω2(t ))

Figure 5.5.6: In these plots we represent the six components of the solution describing
the dynamics of the first mass (on the left) and of the second mass (on the right), for
the case N = 2. We compare the behavior of the solution obtained with constant step
size RKMK5, the variable step size RKMK(5,4), and ODE45.

(a) Step adaptation (b) Zoom at final times (c) Values of ω̇(2)
i (t )

Figure 5.5.7: On the left, we compare the adaptation of the step size of RKMK(5,4)
with the one of ODE45 and with the constant step size of RKMK5. In the center,
we plot the second component of the angular velocities ω(2)

i , i = 1,2, and we zoom
in on the last time interval t ∈ [2.1,3] to see that the variable step size version of the
method better reproduces the reference solution. On the right, we visualize the speed
of variation of the second component of the angular velocities.
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5.6 Dynamics of two quadrotors transporting a mass point

case, keeping the same tolerance of 10−6 for RKMK(5,4), we get the results
presented in Figure 5.5.8. We do not investigate more in details this approach,
which might be relevant for further work, however we highlight that here the
step adaptivity improves the results as we expected.

Figure 5.5.8: Comparison of accuracy at final time (on the left) and step adaptation
for the case N = 20 (on the right), with all pendulums of length Li = 5/N .

5.6 Dynamics of two quadrotors transporting a mass
point

In this section, we consider a multibody system made of two cooperating
quadrotor unmanned aerial vehicles (UAV) connected to a point mass (sus-
pended load) via rigid links. This model is described in [28, 50].

We consider an inertial frame whose third axis goes in the direction of gravity
but with opposite orientation, and we denote with y ∈ R3 the mass point and
with y1, y2 ∈R3 the two quadrotors. We assume that the links between the two
quadrotors and the mass point are of a fixed length L1,L2 ∈ R+. The configu-
ration variables of the system are: the position of the mass point in the inertial
frame, y ∈ R3, the attitude matrices of the two quadrotors, (R1,R2) ∈ (SO(3))2

and the directions of the links which connect the center of mass of each quadro-
tor respectively with the mass point, (q1, q2) ∈ (S2)2. The configuration mani-
fold of the system is Q =R3×(SO(3))2×(S2)2. In order to present the equations
of motion of the system, we start by identifying T SO(3) ≃ SO(3)× so(3) via
left-trivialization. This choice allows us to write the kinematic equations of
the system as

Ṙi = Ri Ω̂i , q̇i = ω̂i qi i = 1,2, (5.6.1)

where Ω1,Ω2 ∈ R3 represent the angular velocities of each quadrotor, respec-
tively, and ω1,ω2 express the time derivatives of the orientations q1, q2 ∈ S2,
respectively, in terms of angular velocities, expressed with respect to the body-
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Figure 5.6.1: Two quadrotors connected to the mass point my via massless links of
lengths Li .

fixed frames. From these equations, we define the trivialized Lagrangian

L
(
y, ẏ ,R1,Ω1,R2,Ω2, q1,ω1, q2,ω2

)
:R6 × (

SO(3)×so(3)
)2 ×

(
T S2

)2 →R,

as the difference of the total kinetic energy of the system and the total potential
(gravitational) energy, L = T −U , with:

T = 1

2
my

∥∥ẏ
∥∥2 + 1

2

2∑
i=1

(
mi

∥∥ẏ −Li ω̂i qi
∥∥2 +ΩT

i JiΩi

)
,

and

U =−my g eT
3 y −

2∑
i=1

mi g eT
3

(
y −Li qi

)
,

where J1, J2 ∈R3×3 are the inertia matrices of the two quadrotors and m1,m2 ∈
R+ are their respective total masses. In this system, each of the two quadrotors
generates a thrust force, which we denote with ui = −Ti Ri e3 ∈ R3, where Ti

is the magnitude, while e3 is the direction of this vector in the i−th body-
fixed frame, i = 1,2. The presence of these forces makes it a nonconservative
system. Moreover, the rotors of the two quadrotors generate a moment vector,
and we denote with M1, M2 ∈R3 the cumulative moment vector of each of the
two quadrotors. To derive the Euler–Lagrange equations, a possible approach
is through Lagrange–d’Alambert’s principle, as presented in [28]. We write
them in matrix form as

A(z)ż = h(z) (5.6.2)

where
z = [

y, v,Ω1,Ω2,ω1,ω2
]T ∈R18,
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A(z) =



I3 03 03 03 03 03

03 Mq 03 03 03 03

03 03 J1 03 03 03

03 03 03 J2 03 03

03 − 1
L1

q̂1 03 03 I3 03

03 − 1
L2

q̂2 03 03 03 I3


,

h(z) =



h1(z)
h2(z)
h3(z)
h4(z)
h5(z)
h6(z)


=



v

−∑2
i=1 mi Li∥ωi∥2qi +Mq g e3 +∑2

i=1 u∥
i

−Ω1 × J1Ω1 +M1

−Ω2 × J2Ω2 +M2

− 1
L1

g q̂1e3 − 1
m1L1

q1 ×u⊥
1

− 1
L2

g q̂2e3 − 1
m2L2

q2 ×u⊥
2


,

where Mq = my I3 +∑2
i=1 mi qi qT

i , and u∥
i ,u⊥

i are respectively the orthogonal
projection of ui along qi and to the plane Tqi S2, i = 1,2, i.e. u∥

i = qi qT
i ui ,

u⊥
i = (I −qi qT

i )ui . These equations, coupled with the kinematic equations in
(5.6.1), describe the dynamics of a point

P = [
y, v, R1, Ω1, R2, Ω2, q1, ω1, q2, ω2

] ∈ M = TQ.

Since the matrix A(z) is invertible, we pass to the following set of equations

ż = A−1(z)h(z) := h̃(z) := h̄(P ) = [h̄1(P ), ..., h̄6(P )]T . (5.6.3)

5.6.1 Analysis via transitive group actions

We identify the phase space M with M ≃ TR3×(
T SO(3)

)2×
(
T S2

)2
. The group

we consider is
Ḡ =R6 × (

T SO(3)
)2 × (

SE(3)
)2 ,

where the groups are combined with a direct-product structure and R6 is the
additive group. For a group element

g =
((

a1, a2
)

,
((

B1,b1
)

,
(
B2,b2

))
,
((

C1,c1
)

,
(
C2,c2

))) ∈ Ḡ

and a point P ∈ M in the manifold, we consider the following left action

ψg
(
P

)= [
y +a1, v +a2, B1R1, Ω1 +b1, B2R2, Ω2 +b2,

C1q1, C1ω1 + c1 ×C1q1, C2q2, C2ω2 + c2 ×C2q2

]
.
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The well-definiteness and transitivity of this action come from standard argu-
ments, see for example [42]. The infinitesimal generator associated to

ξ= [
ξ1, ξ2, η1, η2, η3, η4, µ1, µ2, µ3, µ4

] ∈ ḡ,

where ḡ= TeḠ , writes

ψ∗
(
ξ
)∣∣∣

P
=

[
ξ1, ξ2, η̂1R1, η2, η̂3R2, η4,

µ̂1q1, µ̂1ω1 + µ̂2q1, µ̂3q2, µ̂3ω2 + µ̂4q2

]
.

We can now focus on the construction of the function f : M → ḡ such that
ψ∗( f (P ))|P = F |P , where

F |P =
[

h̄1(P ), h̄2(P ), R1Ω̂1, h̄3(P ), R2Ω̂2,

h̄4(P ), ω̂1q1, h̄5(P ), ω̂2q2, h̄6(P )
]
∈ TP M

is the vector field obtained combining the equations (5.6.1) and (5.6.3). We
have

f
(
P

)= [
h̄1

(
P

)
, h̄2

(
P

)
, R1Ω1, h̄3

(
P

)
, R2Ω2, h̄4

(
P

)
,

ω1, q1 × h̄5
(
P

)
, ω2, q2 × h̄6

(
P

)] ∈ ḡ.

We have obtained the local representation of the vector field F ∈X(M) in terms
of the infinitesimal generator of the transitive group action ψ, hence we can
solve for one time step ∆t the IVP

σ̇(t ) = dexp−1
σ(t )

(
f

(
ψ

(
exp

(
σ (t )

)
,P (t )

)))
σ(0) = 0 ∈ ḡ

and then update the solution P (t +∆t ) =ψ(exp(σ(∆t )),P (t )).

The above construction is completely independent of the control functions
{u∥

i ,u⊥
i , Mi }i=1,2, and hence it is compatible with any choice of these parame-

ters.

5.6.2 Numerical experiments

We tested Lie group numerical integrators for a load transportation problem
presented in [50]. The control inputs {u∥

i ,u⊥
i , Mi }i=1,2 are constructed such
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5.6 Dynamics of two quadrotors transporting a mass point

that the point mass asymptotically follows a given desired trajectory yd ∈ R3,
given by a smooth function of time, and the quadrotors maintain a prescribed
formation relative to the point mass. In particular, the parallel components
u∥

i are designed such that the payload follows the desired trajectory yd (load
transportation problem), while the normal components u⊥

i are designed such
that qi converge to desired directions qi d (tracking problem in S2). Finally,
Mi are designed to control the attitude of the quadrotors.

In this experiment, we focus on a simplified dynamics model, i.e., we neglect
the construction of the controllers Mi for the attitude dynamics of the quadro-
tors. However, the full dynamics model can also be easily integrated once the
expressions for the attitude controllers are available.

In Figure 5.6.2, we show the convergence rate of four different RKMK meth-
ods compared with the reference solution obtained with ODE45 in MATLAB.

Figure 5.6.2: Convergence rate of the numerical schemes compared with ODE45

In Figures 5.6.3-5.6.7, we show results in the tracking of a parabolic trajectory
obtained by integrating the system in (5.6.2) with a RKMK method of order 4.
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Figure 5.6.3: Snapshots at 0 ≤ t ≤ 5. Figure 5.6.4: Components of the load po-
sition (in blue) and the desired trajectory
(in red) as a function time.

Figure 5.6.5: Deviation of the load posi-
tion from the target trajectory.

Figure 5.6.6: Direction error of the links.

Figure 5.6.7: Preservation of the norms of q1, q2 ∈ S2.
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5.7 Summary and outlook

In this paper, we have considered Lie group integrators with a particular focus
on problems from mechanics. In mathematical terms, this means that the Lie
groups and manifolds of particular interest are SO(n), n = 2,3, SE(n), n = 2,3
as well as the manifolds S2 and T S2. The abstract formulations by, e.g., Crouch
and Grossman [11], Munthe-Kaas [40], and Celledoni et al. [6] have often
been demonstrated on small toy problems in the literature, such as the free
rigid body or the heavy top systems. But in papers like [4], hybrid versions of
Lie group integrators have been applied to more complex beam and multibody
problems. The present paper is attempting to move in the direction of more
relevant examples without causing the numerical solution to depend on how the
manifold is embedded in an ambient space or the choice of local coordinates.

It will be the subject of future work to explore more examples and to aim for
a more systematic approach to applying Lie group integrators to mechanical
problems. In particular, it is of interest to the authors to consider models of
beams that could be seen as a generalization of the N -fold pendulum discussed
here.
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Abstract. Recently, there has been an increasing interest in the modeling and
computation of physical systems with neural networks. Hamiltonian systems
are an elegant and compact formalism in classical mechanics, where the dy-
namics is fully determined by one scalar function, the Hamiltonian. The so-
lution trajectories are often constrained to evolve on a submanifold of a linear
vector space. In this work, we propose new approaches for the accurate ap-
proximation of the Hamiltonian function of constrained mechanical systems
given sample data information of their solutions. We focus on the importance
of the preservation of the constraints in the learning strategy by using both
explicit Lie group integrators and other classical schemes.

6.1 Introduction

Neural networks have been proven to be effective in learning patterns from
data in many different contexts. Recently there has been an increasing interest
in applying neural networks to learn physical models from data, for example
models of classical mechanics. For Hamiltonian systems, multiple approaches
have been proposed to approximate the energy function, see, e.g., [9, 14, 26,
13, 23]. Building on these results, we propose an improved learning procedure.
Our main contribution is an approach to learning the Hamiltonian for systems
defined on the cotangent bundle T ∗Q of some manifold Q embedded in a
vector space. Under the assumption that T ∗Q is homogeneous, we show how
to do that while preserving the geometry during the learning phase. In this
paper, by preservation of the geometry, we mean the accurate conservation of
the constraints rather than of other geometric features such as symplecticity,
energy, or other first integrals of the system.

As in [13], we express the dynamics of constrained systems by embedding
the problem in a vector space of larger dimension, but in our approach we
do not make use of Lagrange multipliers. With the aim of understanding the
importance of the geometry in this approximation problem, we compare learn-
ing procedures based on numerical integrators that preserve the phase space of
the system with others that do not. We restrict to homogeneous spaces where
Lie group methods can preserve the geometry up to machine accuracy (see,
e.g., [8]). For example, multi-body lumped mass systems fall naturally in this
setting [20, Chapter 2]. This restriction still includes systems with the configu-
ration manifold that is a Lie group, as in some problems of rigid body and rod
dynamics, but we will not consider these applications here. The experiments
show that there are specific problems where approximating the Hamiltonian
using a Lie group method can be relevant. Surprisingly, in many other settings
classical Runge–Kutta integrators produce comparable results.

The main focus of the present paper is to learn an approximation of a Hamil-
tonian system where the training data are given as a set of trajectory segments.
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To do so, one could learn the dynamics either by approximating the Hamilto-
nian vector field or the Hamiltonian function as done in our work. Another
relevant difference in the learning framework consists of considering in the
training procedure either one time step of the flow map (see, e.g., [14]) or a se-
quence of successive time steps as proposed in [9]. The latter work shows ex-
perimental evidence that taking into account temporal dependencies improves
performance. We follow the second strategy when dealing with unconstrained
systems, whereas we test both of them with our approach to constrained sys-
tems.

In principle, the Hamiltonian can be any differentiable function. However, for
mechanical systems, it is often made by the sum of a (quadratic) kinetic energy
and a potential energy, [25, 15, 21]. Following [26], we make the ansatz that
the kinetic energy is characterized by a symmetric and positive definite matrix,
and hence we aim to estimate it.

We conclude this Section with a more precise definition of the problem of
interest. In the second Section, we introduce the Hamiltonian formalism for
both unconstrained and constrained systems. In the third Section, we focus on
unconstrained systems, presenting the general learning procedure that will be
extended to constrained systems in the fourth Section. We also discuss how
additional known information about the dynamical system can be included in
the network training procedure. The experimental results show that physics-
based regularization could be helpful to improve the extrapolation capability
of the network and its stability in the presence of noise. In the last Section,
we formalize the problem of learning a constrained Hamiltonian mechanical
system and discuss the importance of the geometry for this class of problems.
Finally, we complete this Section with numerical experiments in the PyTorch
framework, showing how the predicted Hamiltonian depends on some training
parameters and on the presence of noise. The numerical implementations are
available in the GitHub repository associated to the paper1.

6.1.1 Description of the problem

Suppose to be given a set of N sampled trajectories coming from a Hamilto-
nian system defined on a submanifold M = T ∗Q of R2n , where T ∗Q is the
cotangent bundle of the configuration manifold Q (see [19, Chapter 11] for
more details). Moreover, assume that each of these trajectories contains M

1https://github.com/davidemurari/learningConstrainedHamiltoni
ans
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equispaced (in time) points. In other words, suppose that{(
xi , ȳ2

i , ..., ȳ M
i

)}
i=1,...,N

, ȳ j
i =Φ( j−1)∆t

XH

(
xi

)
(6.1.1)

as a training set, where Φt
XH

is the time t-flow of the exact, unknown Hamilto-
nian system. In practice, we never have access to the exact trajectories but to
either a noisy version of them or a numerical approximation.

The approach we use aims to approximate the vector field XH ∈ X(M) that
governs the dynamics, where by X(M) we denote the collection of all smooth
vector fields on M. However, we know that such a vector field is Hamiltonian,
i.e., there exists a scalar function H :M→Rwhich, together with the geometry
given by M, characterizes the dynamics completely. For this reason, we do not
need to directly approximate XH , but just H and then eventually recover XH .

The problem under consideration can be described as an inverse problem since
we want to infer the function H from trajectory data of the corresponding dy-
namical system rather than from samples of the function H itself. This de-
scription of the problem motivates how we measure the accuracy of our ap-
proximation, denoted by a parametric model HΘ. Indeed, the target is not
to approximate the trajectories of the given Hamiltonian system with some
neural network but to approximate the Hamiltonian. Thus, the quality of the
approximation can be computed in at least two ways. First, one can compare
some measured trajectories with those obtained from the approximation. More
precisely, we randomly generate Ñ initial conditions zi ∈ M, their M̃ time
updates, and compute

E1

({
u j

i

} j=1,...,M̃

i=1,...,Ñ
,
{

v j
i

} j=1,...,M̃

i=1,...,Ñ

)
= 1

Ñ M̃

M̃∑
j=1

Ñ∑
i=1

∥∥∥u j
i − v j

i

∥∥∥2
, (6.1.2)

where ∥ ·∥ is the Euclidean norm of R2n , u1
i = zi , v1

i = zi , u j+1
i =Ψh

XH
(u j

i ) and

v j+1
i =Ψh

XHΘ
(v j

i ) for a numerical integrator Ψh of choice. One can randomly
generate these initial conditions for academic examples where the true Hamil-
tonian is actually known. In this case, Ñ and M̃ can be specified arbitrarily,
usually with Ñ less than the number of training trajectories N . On the other
hand, in more realistic applications, one has to work with the initial conditions
for which the related trajectory segments are known. In this case Ñ and M̃ are
constrained by the available data, in particular the number of total trajectories
is split into N for training and Ñ for test. In our experiments, we adopted the
SciPy implementation of the Dormand-Prince pair of order (5,4) with a strict
tolerance. In fact, following the PyTorch implementation of the mean squared
error, E1 is actually divided by 2n. Alternatively, as introduced in [11], one
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can compare pointwise values of the approximated and the true Hamiltonian,
when known. This gives

E2(H , HΘ) = 1

Ñ

Ñ∑
i=1

∣∣∣∣∣∣H
(
zi

)−HΘ

(
zi

)− 1

Ñ

Ñ∑
l=1

(
H

(
zl

)−HΘ

(
zl

))∣∣∣∣∣∣ , (6.1.3)

where E2 handles the fact that Hamiltonians differing, on M, by a constant
generate the same vector field. Indeed, E2(H , H + c) = 0.

6.2 Hamiltonian mechanical systems

In this work, we focus on Hamiltonian mechanical systems based on a con-
figuration manifold Q ⊆ Rn . We now introduce some basic elements of the
theory of unconstrained Hamiltonian dynamics on R2n , which corresponds to
the case Q= Rn . Then, we extend this formulation to constrained systems on
T ∗Q⊂R2n .

The Hamiltonian formalism gives a particular class of conservative vector
fields which, in contrast to the Lagrangian one, can always be expressed with
a system of first-order ordinary differential equations. For the unconstrained
case, the equations are of the form ẋ(t ) = J∇H(x(t )) := XH (x(t )) where x(t ) =
[q(t ), p(t )] ∈ R2n comprises the configuration variables and their conjugate
momenta. Here, H : R2n → R is a smooth function called the Hamiltonian
of the system, and J ∈R2n×2n is the symplectic matrix.

In this work, we focus on Hamiltonian systems whose energy function is of the
form

H
(
q, p

)= 1

2
pT M−1 (

q
)

p +V
(
q
)

where M(q) is the mass matrix of the system, possibly depending on the con-
figuration q ∈ Rn , and V (q) is the potential energy of the system. This is not
a too restrictive assumption since it still includes a quite broad family of sys-
tems. For unconstrained systems, we will further restrict to the case where
M is a constant matrix and the Hamiltonian is separable. This assumption al-
lows to implement symplectic numerical integration without needing implicit
updates. On the other hand, in the constrained setting, we aim at preserving
the geometry of the numerical flow map rather than other properties such as
symplecticity. As a consequence, we can work with variable mass matrices
still using explicit numerical integrators as in the unconstrained case.

We now briefly formalize how to extend this formulation to Hamiltonian sys-
tems that are holonomically constrained on some configuration manifold Q=
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{q ∈ Rn : g (q) = 0} embedded in Rn (for a more detailed derivation of this
formalism we refer to [20, Chapter 8]). Many mechanical systems relevant
for applications are characterized by the presence of some constraints that are
coupled to the ODE defining the dynamics. One way to model this kind of
problems is based on Lagrange multipliers, which lead to differential algebraic
equations (DAEs). There has been some work in the direction of extending
the Hamiltonian neural network’s framework to constrained systems (see, e.g.,
[13] in which this strategy of introducing Lagrange multipliers is applied).

In this manuscript, we want to present an alternative approach based on the
assumption that the constrained manifold Q is embedded in some linear space
Rn . This is actually not a restriction, since Whitney’s embedding theorem al-
ways guarantees the existence of such an ambient space (see, e.g., [19, Chapter
6]). More explicitly, because of this embedding property, constrained multi-
body systems can be modeled by means of some projection operator and the
vector field is written in such a way that it directly respects the constraints,
without the addition of algebraic equations.

Furthermore, we assume that the components gi :Rn →R, i = 1, ...,m, are func-
tionally independent on the zero level set, so that the Hamiltonian is defined
on the (2n −2m) dimensional cotangent bundle M= T ∗Q. Working with el-
ements of the tangent space at q , TqQ, as vectors in Rn , we introduce a linear
operator that defines the orthogonal projection of an arbitrary vector v ∈ Rn

onto TqQ, i.e.

∀q ∈Q, we set P
(
q
)

:Rn → TqQ, v 7→ P
(
q
)

v.

P (q)T can be seen as a map sending vectors of Rn into covectors in T ∗
q Q. If

g (q) is differentiable, assuming G(q) is the Jacobian matrix of g (q), we have

TqQ = KerG(q), and so P (q) = In −G(q)
(
G(q)T G(q))

)−1
G(q)T , where In ∈

Rn×n is the identity matrix. This projection map allows us to define Hamilton’s
equations as followsq̇ = P

(
q
)
∂p H

(
q, p

)
ṗ =−P

(
q
)T
∂q H

(
q, p

)+W
(
q, p

)
∂p H

(
q, p

)
,

(6.2.1)

where

W
(
q, p

)= P
(
q
)T
Λ

(
q, p

)T P
(
q
)+Λ(

q, p
)

P
(
q
)−P

(
q
)T
Λ

(
q, p

)T ,

with Λ
(
q, p

)= ∂P
(
q
)T p

∂q
.

It is important to remark that since T ∗Q ⊂ R2n , we can work with the coor-
dinates of the ambient space in the subsequent development. We notice that
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6.3 Learning unconstrained systems

when Q=Rn , we can set P (q) = I and recover the unconstrained formulation.
These equations of motion can be derived by the standard Hamilton’s varia-
tional principle on the phase space or by the Legendre transform applied to the
Euler-Lagrange equations. However, due to the geometry of the system, the
variations need to be constrained to the right spaces and this is done with the
projection map P (q). We will focus on the case Q = S2× ...×S2 = (S2)k in Sec-
tion 6.4.2, where the mass matrix M(q) and equation (6.2.1) take a structured
form, with S2 the unit sphere in R3.

6.3 Learning unconstrained systems

As in [9], we base the training on a recurrent approach, that is graphically
described in Figure 6.3.1.

As mentioned in Subsection 6.1.1, we work with numerically generated train-
ing trajectories that we denote by{(

xi , y2
i , ..., y M

i

)}
i=1,...,N

.

We limit the treatment of noisy training data to Subsection 6.3.2. To obtain an
approximation of the Hamiltonian H , we define a parametric model HΘ and
look for a Θ so that the trajectories generated by HΘ resemble the given ones.
HΘ in principle can be any parametric function depending on the parametersΘ.
In our approach, Θ will collect a factor of the mass matrix and the weights of a
neural network, as specified in equation (6.3.3). We use a numerical one-step
method Ψ∆t

XHΘ
to generate the trajectories

ŷ j
i

(
Θ

)
:=Ψ∆t

XHΘ

(
ŷ j−1

i

(
Θ

))
, ŷ1

i

(
Θ

)
:= xi , j = 2, . . . , M , i = 1, . . . , N . (6.3.1)

For unconstrained problems we use symplectic numerical integrators, since
they can take an explict form and their adoption in the training procedure al-
lows to have a target modified Hamiltonian to approximate (see, e.g., [27]).
We then optimize a loss function measuring the distance between the given
trajectories y j

i and the generated ones ŷ j
i , defined as

L(
Θ

)
:= 1

2n

1

N M

N∑
i=1

Li
(
Θ

)= 1

2n

1

N M

N∑
i=1

M∑
j=1

∥∥∥ŷ j
i

(
Θ

)− y j
i

∥∥∥2
, (6.3.2)

where ∥ · ∥ is the Euclidean metric of R2n . This is implemented with the Py-
Torch MSELoss loss function. Such a training procedure resembles the one
of Recurrent Neural Networks (RNNs), introduced in [24], as shown for the
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forward pass of a single training trajectory in Figure 6.3.1. Indeed, the weight
sharing principle of RNNs is reproduced by the time steps in the numerical
integrator which are all based on the same approximation of the Hamiltonian,
and hence on the same weights Θ. Finally, in Algorithm 3 we report one train-
ing epoch for a batch of data points.

Figure 6.3.1: Forward pass of an input training trajectory (xi , y2
i , ..., y M

i ). The picture
highlights the resemblance to an unrolled version of a Recurrent Neural Network. The
network outputs (ŷ2

i , ..., ŷ M
i ).

Algorithm 3 One epoch of the recurrent approximation of the Hamiltonian.
1: Choose a numerical integrator (s stages)
2: N̂ ←batch size, Loss← 0
3: for i = 1, . . . , N̂ do
4: ŷ1

i ← xi

5: for j = 1, . . . , M do
6: ŷ j ,[1]

i ← ŷ j
i

7: for k = 1, . . . , s −1 do
8: Compute current value of Hamiltonian HΘ

(
ŷ j ,[k]

i

)
9: Compute ∇HΘ

(
ŷ j ,[k]

i

)
▷ With automatic differentiation

10: Compute stage ŷ j ,[k+1]
i

11: end for
12: Compute ŷ j+1

i
13: Increase Loss following equation (6.3.2)
14: end for
15: end for
16: Optimize Loss
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6.3.1 Architecture of the network

In this work, the role of the neural network is to model the Hamiltonian, i.e., a
scalar function defined on the phase space R2n . Thus, the starting and arrival
spaces are fixed. For unconstrained systems we assume that

H
(
q, p

)= 1

2
pT M−1p +V

(
q
)= K

(
p

)+V
(
q
)

is separable. Here, the kinetic energy is a quadratic form defined by the sym-
metric positive definite matrix M−1. It can hence be modeled through a learn-
able matrix A, K (p) ≈ K A(p), by replacing M−1 or M with AT A during the
learning procedure. This modeling choice improves extrapolation properties
since it allows to learn local (on a compact set) information that is valid on a
larger domain, i.e., the mass matrix. In Section 6.4 we extend this reasoning to
some configuration dependent mass matrices, where M(q) is modeled through
a constant symmetric and positive definite matrix. Recalling that AT A can even
be singular or close to singular, one can promote the positive definiteness of
the modeled matrix adding a positive definite perturbation matrix to AT A. No-
tice that, in principle, the imposition of the positive (semi)definiteness of the
matrix defining the kinetic energy is not necessary, but it allows to get more
interpretable results. Indeed, it is known that the kinetic energy should define
a metric on Rn and the assumption we are making guarantees such a property.
For constrained systems we proceed in a similar way, as shown in equation
(6.4.3). For the potential energy, a possible modeling strategy is to work with
standard feedforward neural networks, and hence to define

V
(
q
)≈Vθ

(
q
)= fθm ◦ ...◦ fθ1

(
q
)

,

θi =
(
Wi ,bi

) ∈Rni×ni−1 ×Rni , θ := [
θ1, ...,θm

]
,

fθi (u) :=Σ(
Wi u +bi

)
, Rn ∋ z 7→Σ (z) =

[
σ

(
z1

)
, ...,σ

(
zn

)] ∈Rn ,

for example with σ(x) = tanh(x). In particular applications, where some addi-
tional information is known about the system, one can impose more structure
on the architecture modelling V (q). For example, in the case of odd potential
or rotationally symmetric potential, one can define respectively an odd neural
network Vθ or a rotationally equivariant one (see, e.g., [4]). Therefore, we have
that

Θ= [
A,θ

]
, H

(
q, p

)≈ HΘ

(
q, p

)= K A
(
p

)+Vθ
(
q
)

. (6.3.3)

We remark that the Hamiltonian does not need to be approximated by a neu-
ral network, and hence in a compositional way. Many other parametrizations
are possible. For example, starting from the sparse identification of dynam-
ical systems approach presented in [3], in [12] it is proposed to parametrize
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the Hamiltonian with a dictionary of functions, for example polynomials and
trigonometric functions. In our work, however, we opt for standard feedfor-
ward neural networks as the modeling assumption.

We now provide further details on the extrapolation capabilities of this net-
work model. The learning procedure presented above is based on extracting
temporal information coming from a set of trajectories belonging to a compact
subset Ω⊂ R2n . In general, there is no reason why the Hamiltonian should be
accurate outside of this set. To be more precise, denoting by T > 0 the largest
time at which we know the trajectories, we have that

1. given enough samples in set Ω, distributed in order to capture the be-
havior of the dynamical system, the prediction of the network is ex-
pected to be accurate in Ω[0,T ] := {Φt

XH
(x) : t ∈ [0,T ], x ∈Ω}, i.e., for any

z0 ∈Ω[0,T ] and any t̄ > 0 such that Φt (z0) ∈Ω[0,T ] for all t ∈ [0, t̄ ],

2. outside Ω[0,T ] one cannot guarantee that the prediction will be accurate.

If we think of classical regression problems or even classification ones, it seems
reasonable not to have information about the approximated quantity outside the
sampled area. In those cases, with generalization we mean being sufficiently
accurate close to the training points but still inside the sampled domain. How-
ever, here we know that the inferred function H(q, p) has physical meaning
and properties, so we might incorporate global known information about it to
extend the applicability of the predictions.

This discussion supports the architectural choice for the kinetic energy sug-
gested before (as in [26]). Indeed, supposing the Hamiltonian is separable, we
know that the variable p appears in the energy function only via the quadratic
form 1

2 pT M−1p. Thus, our modeling assumption allows us to approximate the
mass matrix M just from a set of trajectories, hence capturing the dependency
of H on the variable p also outside Ω[0,T ]. Other possible improvements can
be obtained when some symmetry structure is known for the Hamiltonian. On
a similar direction, in Subsection 6.3.2, we add some regularization based on
other prior physical knowledge.

We present in Figure 6.3.2 the comparison between ten learned trajectories
and the corresponding exact ones of the Hamiltonian system XH ∈X(R4) with
Hamiltonian

H(q, p) = 1

2

[
p1 p2

]T
[

5 −1
−1 5

][
p1

p2

]
+ q4

1 +q4
2

4
+ q2

1 +q2
2

2
. (6.3.4)

The training procedure of the network is based on 900 trajectories, sampled
uniformly in six time instants, on the interval 0 ≤ t ≤ 0.3. We remark that
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6.3 Learning unconstrained systems

(a) Projection on (q1, p1) (b) Projection on (q2, p2)

Figure 6.3.2: Comparison of real and predicted test trajectories for the Hamiltonian
(6.3.4). In this case, for the potential energy we used a feedforward network with
three hidden layers having respectively 100, 50 and 50 neurons and tanh as activation
function. The training integrator is Störmer-Verlet, with M = 6 and final time T = 0.3
and we use the Adam optimizer. The test trajectories, at M̃ = 20 uniformly distributed
points in the time interval [0,1], are obtained with ODE(5,4). These trajectories corre-
spond to Ñ = 100 initial conditions on which the network has not been trained.

the training initial conditions are carefully chosen so that their associated tra-
jectory segments well-capture the dynamics of interest. Figure 6.3.2 collects
test trajectories corresponding to the time interval [0,1]. Since we are inter-
ested in approximating the Hamiltonian and not directly the trajectories, we
are not constrained to evaluate the quality of the approximation with the same
time integrator as the one used for training. In fact, these test trajectories have
been generated with an embedded Runge–Kutta pair of order (5,4), with same
relative and absolute accuracies for both the real and learned systems. Exper-
imentally, it is clear that the qualitative behavior of the Hamiltonian is well
captured, as we can see from Figure 6.3.2. To quantify the agreement of the
prediction with the true Hamiltonian we report the E1 metric, as defined in
(6.1.2), that is 6.59 ·10−5. Furthermore, the training loss is 4.62 ·10−7.

6.3.2 Robustness to noise and regularization

In real-world applications, data is contaminated by noise, which usually comes
from the measurement process. Thus, we need to test the robustness of the
learning framework to the presence of noise in the training trajectories. To do
so, we synthetically generate the trajectories as before, and then add random
normal noise to all the points except the initial condition (for an averaging
strategy that allows to deal even with perturbed initial conditions, see, e.g.,
[9]). By construction, the network necessarily learns a Hamiltonian function,
that is expected to generate trajectories close to the noisy ones. Since the train-
ing does not rely on clean trajectories, it is reasonable not to expect neither
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a loss value which is as small as in the absence of noise, nor a too accurate
approximation of the Hamiltonian and the trajectories. Nevertheless, we aim
for a learned Hamiltonian with level sets close to the exact ones, hence giving
trajectories that resemble the true ones. One way of improving the quality of
the neural networks proposed here, is to make use of a priori known physical
properties of the dynamical system. We use an approach based on soft con-
straints which means that we take the known physical properties into account
by adding a regularization term in the cost function. An example of such a
property could be one or more known conserved quantities, so called first inte-
grals. Hamiltonian systems always have at least one first integral, namely the
Hamiltonian function itself, but there might be additional independent ones.
Enforcing the first integrals to be preserved or nearly preserved seems to be a
reasonable strategy for obtaining improved qualitative behavior of the resulting
approximation as shown in the following example.

Consider a Hamiltonian system with Hamiltonian function H : R2n → R, and
a functionally independent first integral G , i.e. ∇H(x) and ∇G(x) are never
parallel. Consider the numerical integration ŷ j

k , j = 1, ..., M of the approxi-
mated Hamiltonian vector field XHΘ

, starting at ŷ1
k = xk . In the ideal case in

which the learned Hamiltonian HΘ coincides with H and the numerical flow is
replaced with the exact one, both H and G should be conserved. For this rea-
son, we suggest adding to the loss function in equation (6.3.2) the following
“regularization” term:

µ
∑
j∈I

(
G

(
ŷ j

k

)
−G

(
xk

))2

for all the training points xk . Here I is a subset of indices contained in
{1, ..., M }, and µ is a regularization parameter that balances the importance of
the preservation of the additional first integral against the perfect fitting of the
training trajectories. We test this regularization procedure with the Hamilto-
nian system XH ∈X(R4) defined by

H
(
q1, q2, p1, p2

)= q2
1 +p2

1

2
+ p2

2

2
+ 1

2
q2

2 +
1

4
q4

2 = h1
(
q1, p1

)+h2
(
q2, p2

)
.

This system has G(q, p) := h1(q1, p1) as an additional independent first integral
other than H . We report in Figure 6.3.3 some plots of the obtained E1 values
as defined in (6.1.2). In these experiments, we add some random noise of the
form εδ to the points y j

i of the numerical trajectories, where δ∼N (0,1) follows
a standard normal distribution. The same experiment is run 5 times, and for
each of these we plot the obtained E1 value. For each experiment, we generate
new training and test trajectories, and these are used for both the regularized
training and the non-regularized one. Furthermore, each experiment has a dif-
ferent random initialization of the weights, which is however shared between
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the regularized and non regularized networks. We notice that with regulariza-
tion we can consistently get a better error in terms of the E1 measure. There
is not a huge difference between the results, however. This suggests that when
prior information is known, it might be important to experiment with this kind
of regularizing terms. To conclude the Section, we highlight how remarkable

(a) Case ε= 0.1 (b) Case ε= 0.3 (c) Case ε= 0.5

Figure 6.3.3: 5 repeated experiments for each perturbation regime. We plot on the
y axis the average accuracy, in terms of the E1 measure, obtained with the trained
network, when compared with the real (non-noisy) trajectories.

it is that even without the regularization term, the trajectories are qualitatively
well captured by the network and hence the test error is quite low. This is
mostly due to the prior physical knowledge we impose on the learning proce-
dure, i.e. that the vector field should be Hamiltonian. Indeed, since in the worst
case the network approximates the wrong Hamiltonian, we always expect that
it does not overfit the noisy trajectories, since they can not be learned exactly.
On the other hand, without the prior knowledge of the Hamiltonian nature of
the system, all the overfitting problems of standard neural networks reoccur
and the risk of being closer to an interpolant of the noisy trajectories is higher.

6.4 Learning constrained Hamiltonian systems

The approximation of the Hamiltonians of constrained mechanical systems
with neural networks has already been studied in the literature. Two main
approaches can be identified. One of them is based on local coordinates on
the constrained manifold (see, e.g., [9, 14]) and the other uses ambient space
coordinates and Lagrange multipliers (see [13]). In principle, both the formu-
lations apply to any constrained Hamiltonian system. However, as remarked in
[13], the choice of a redundant system of coordinates usually gives a simpler
expression for the Hamiltonian. This results in a more data-efficient training
procedure. In the second approach, an embedded Runge–Kutta pair of or-
der (5,4) is used to train the network. This choice inevitably leads to a drift
from the constrained manifold during the training, even if it can be reduced by
setting the tolerances of the integrator. However, in this way the cost of the
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integrator increases, hence this is not the most efficient way to preserve the
constraints.

In this work, we use an alternative global formulation of the dynamics, as
introduced in Section 6.2. In principle this formulation adapts to any con-
strained Hamiltonian system whose configuration manifold is a submanifold
of Rn . Coupling this description of the dynamics with the learning framework
introduced in Section 6.3, their Hamiltonian functions can be approximated.
To be more precise, one can use any numerical integrator to discretize the con-
strained trajectories and compare them with the training data. For example,
Runge–Kutta 4 method can be used and this experimentally gives fast training
procedures and accurate approximations of the Hamiltonian, as shown in the
experiments of Subsection 6.4.3.

We remark that in general numerical integrators do not preserve the geometry
of the system and there might be a drift from the constrained manifold (see,
e.g., [15, Chapter 7]). Experimentally this does not seem to have a great im-
pact on the quality of the predicted Hamiltonian in most of the cases. However,
as we present in the numerical experiments with Lie group integrators, there
might be situations in which one benefits from training the Hamiltonian with an
integrator preserving the phase space. Notice that the Hamiltonian that defines
the dynamics has non-unique extension outside the phase space M = T ∗Q.

This is due to the projection matrix P (q) = In −G(q)
(
G(q)T G(q))

)−1
G(q)T

appearing in equation (6.2.1), where G(q) is the Jacobian matrix of the con-
straint function g (q) defining Q. This justifies investigating the importance of
the preservation of the manifold T ∗Q in the training procedure.

As introduced in Section 6.2, in this work we assume that the constrained con-
figuration manifold Q is known. Referring to equation (6.2.1), we notice that
once the geometry is known, it is enough to specify the Hamiltonian func-
tion H : T ∗Q⊆R2n →R in order to characterize the dynamics of a system. We
show a setting in which the geometry can be preserved by Lie group integrators
(see, [18, 6, 8]) focusing on the case T ∗Q is homogeneous2. We see this even
as an opportunity to study the behavior of this class of methods in an applied
framework and combined with neural networks. This geometric setup applies,
for example, when Q is a homogeneous manifold and the transitive action
ψ : G ×Q→Q defines, for any q ∈Q, a submersion ψq : G →Q at the identity
element e ∈G (see, e.g., [2, 7]). Cartesian products of homogeneous manifolds
are homogeneous too. Usually, multibody systems have constrained configura-
tion manifolds given by cartesian products of S2, Rk , SO(3) and SE(3), which

2A smooth manifold M is homogeneous if for any pair of points m1,m2 ∈M there is g ∈G
such that ψ(g ,m1) = m2, where ψ : G ×M→M is a Lie group action. In other words, ψ is a
transitive action.
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are respectively the special orthogonal and Euclidean groups. These are all
homogeneous manifolds and so are their tangent and cotangent bundles.

6.4.1 Lie group methods and neural networks

Among the various classes of Lie group methods, we consider the Runge–
Kutta–Munthe–Kaas (RKMK) methods and the commutator-free ones (see,
e.g., [22, 5]). The underlying idea of RKMK methods, applied to F ∈X(M),
with M an homogeneous manifold, is to express F as F |m = ψ∗( f (m))|m .
Here ψ∗ is the infinitesimal generator of ψ, a transitive Lie group action of G
on M, and f : M→ g is a function that locally lifts the dynamics to the Lie
algebra g of G . On this linear space, we can perform a time step integration. We
then map the result back to M, and repeat this up to the final integration time.
More explicitly, let ∆t be the size of the uniform time step of the discretization,
we then update yn ∈M to yn+1 by

γ(0) = 0 ∈ g,

γ̇(t ) = dexp−1
γ(t ) ◦ f ◦ψ

(
exp

(
γ(t )

)
, yn

)
∈ Tγ(t )g,

yn+1 =ψ
(
exp

(
γ1

)
, yn

)
∈M,

(6.4.1)

where γ1 ≈ γ(∆t ) ∈ g is computed with a Runge–Kutta method, and dexp−1 is
the inverse of the differential of the exponential map exp : g→G as defined, for
example, in [18, Section 2.6]. We do not go into the details of commutator-free
methods, but the following development applies to them as well. In particular,
the function f still plays a fundamental role.

We now present a natural way to combine the learning framework typical
of unconstrained systems with Lie group integrators. This is done by in-
troducing a Lie group method during the learning procedure. Indeed, since
we want to apply a Lie group integrator to deal with nonlinear geometries,
we set Ψ∆t , defined in equation (6.3.1), to be the ∆t update given by some
RKMK method. In other words, using the notation of equation (6.4.1), we get
Ψ∆t (z) =ψ(exp(γ1), z) with γ1 ∈ g.

The setting presented above for generic vector fields on homogeneous mani-
folds simplifies considerably in the presence of Hamiltonian systems. Indeed,
for this type of systems, what is needed to fully determine the dynamics is the
geometry given by M= T ∗Q and the scalar Hamiltonian function H :M→R.
In other words, we can think of the function f : M→ g, that allows to express
the vector field in terms of the infinitesimal generator of the action, as the re-
sult of an operator F : C 1(M,R) → {M → g} acting on a scalar function H .
More explicitly, we can write f = F [H ] where F and H encode, respectively,
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the geometry and the dynamics of the system. This operator is not really nec-
essary, but it clarifies considerably how the neural network comes into play in
the learning framework. Indeed, because of this construction, we can write the
numerical flow Ψ∆t as the map sending yn into yn+1 =ψ(exp(γ∆t ,yn ), yn) with
γ∆t ,yn being an approximation of the solution γ(∆t ) of the following initial
value problemγ̇(t ) = dexp−1

γ(t ) ◦F
[
HΘ

]◦ψ(
exp

(
γ(t )

)
, yn

)
∈ Tγ(t )g,

γ(0) = 0 ∈ g.

Here HΘ is the approximation of the Hamiltonian given by the current weights
Θ of the neural network. Thus, applying a particular family of geometric nu-
merical integrators, we can directly study some constrained systems with the
same ideas coming from learning unconstrained ones. Since following this
procedure the geometry is preserved, one can consider replacing the Euclidean
distance in the loss function defined in equation (6.3.2) with a Riemannian
metric of the constrained manifold. This would bring to distances between
points that correspond to the length of the minimal geodesic connecting them,
which is, in general, different from the length of the segment in the ambient
space having them as extrema. In the remaining part of the Section, we spe-
cialize this reasoning to mechanical systems defined on copies of T ∗S2. We
focus on a chain of spherical pendula, but the geometric setting also applies to
other systems (see, e.g., [20, Section 10.5]).

6.4.2 Mechanical systems on
(
T ∗S2

)k

As anticipated in the introductory section, in this geometric setting, we do
not involve symplectic integrators, and we do not assume we have a separable
Hamiltonian anymore. Thus, we now model a more general family of Hamil-
tonians as

H
(
q, p

)= 1

2
pT M−1 (

q
)

p +V
(
q
)

. (6.4.2)

We model the potential energy as before. However, we need an alternative
strategy for the inverse of the mass matrix, which is no longer assumed to be
constant. Based on the problem, one can choose various parametrizations of
the mass matrix or its inverse. We decide to specialize the architecture based
on the fact that the geometry of the system is known to be M= (T ∗S2)k , where
S2 ⊂R3. We coordinatize M with (q, p) = (q1, . . . , qk , p1, . . . , pk ) ∈R6k . In this
case, when p ∈ R3k is intended as the vector of linear momenta, the matrix
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M(q) in equation (6.4.2) is a block matrix, with

i , j = 1, ...,k, R3×3 ∋ M(q)i j =
mi i I3, i = j

mi j (I3 −qi qT
i ), otherwise,

see [20, Section 8.3.3] for further details. Here, the matrix having constant
entries mi j is symmetric and positive definite. For this reason, we leverage
this form of the kinetic energy and learn a constant matrix A ∈ Rk×k and a
vector b ∈Rk so that

m11 ... m1k

m21 ... m2k
...

...
...

mk1 ... mkk

≈ AT A+


b̃1 0 ... 0

0 b̃2
. . .

...
...

. . . . . . 0
0 ... 0 b̃k

 (6.4.3)

where b̃i := max(0,bi ) are terms added to promote the positive definiteness
of the right-hand side. We also tested elevating to the second power the bi

instead of taking the maximum with 0, but we got better results with the choice
presented in equation (6.4.3). The matrix on the left-hand side of equation
(6.4.3) is exactly the one appearing in Hamiltonian formulations with Cartesian
coordinates, as the one used in [13].

For the spherical pendulum, we have k = 1, and hence, the Hamiltonian dy-
namics is defined on the cotangent bundle T ∗S2, which is a homogeneous
manifold. This can be obtained thanks to the transitivity of the group action

Ψ : SE(3)×T ∗S2 → T ∗S2,

((
R,r

)
,
(
q, pT

))
7→

(
Rq,

(
Rp + r ×Rq

)T
)

,

where the transpose comes from the usual interpretation of covectors as row
vectors. As in [16, Chapter 6], we represent a generic element of the special
Euclidean group G = SE(3) as an ordered pair (R,r ), where R ∈ SO(3) is a ro-
tation matrix and r ∈ R3 is a vector. With this specific choice of the geometry,
the formulation presented in equation (6.2.1) simplifies considerably. Indeed
P (q) = I3−qqT which implies W (q, p) = pqT −qpT . Replacing these expres-
sions in (6.2.1) and using the triple product rule, we end up with the following
set of ODEsq̇ =

(
I −qqT

)
∂p H

(
q, p

)
ṗ =−

(
I −qqT

)
∂q H

(
q, p

)+∂p H
(
q, p

)× (
p ×q

)
.

(6.4.4)

This vector field X (q, p) can be expressed as ψ∗(F [H ](q, p))(q, p) with

ψ∗
((
ξ,η

))(
q, p

)= (
ξ×q,ξ×p +η×q

)
,

(
ξ,η

) ∈ g= se(3)

241



Learning Hamiltonians of constrained mechanical systems

and

F
[
H

](
q, p

)= (
ξ,η

)= (
q × ∂H

(
q, p

)
∂p

,
∂H

(
q, p

)
∂q

×q + ∂H
(
q, p

)
∂p

×p

)
.

A similar reasoning can be extended to a chain of k connected pendula and
hence to a system on (T ∗S2)k . The main idea is to replicate both the equations
in (6.4.4) and the expression F [H ] for all the k copies of T ∗S2. A more detailed
explanation can be found in [8].

Figure 6.4.1: Comparison between 100 test trajectories obtained with the true Hamil-
tonian H and the predicted one HΘ. To train HΘ, a Lie group method is used. This
gives E1 = 2.65 ·10−6 and a final training loss of 1.6 ·10−9.

We present in Figure 6.4.1 the results obtained for the training of a double
pendulum, i.e. k = 2. To train the network, we generate a set of N = 500
training trajectories with the embedded Runge–Kutta pair of order (5,4) of
SciPy. The final integration time is T = 0.1 and M = 5. To model the potential
energy, we use a feedforward network with three hidden layers of 100 neurons
each. In the plots, we show the configuration variables, q1, q2 ∈ S2, obtained
for 100 test trajectories in the time interval [0,1], where the network HΘ has
been trained with a commutator-free method of order 4.

6.4.3 Experimental study of the learning procedure

We investigate the influence of the training setup on the error measures E1, E2,
defined in (6.1.3), and on the training loss. More precisely, we test how the
parameters M , N , the noise magnitude, and the training integrator affect the
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performance of the network. We quantify the magnitude of noise in the train-
ing trajectories with a parameter ε> 0, as in Subsection 6.3.2. The integrators
that we study are Lie Euler, explicit Euler (both of order 1), commutator-free,
and Runge–Kutta (both of order 4). In particular, Lie Euler and commutator-
free methods preserve the phase space M up to machine accuracy. To get a
sufficient sample of experiments, we repeat all the tests five times and look at
the medians and geometric means3 of the obtained results. To be precise, we
test N ∈ {50,500,1000,1500}, M ∈ {2,3,5}, and ε ∈ {0,0.001,0.01,0.1}. There-
fore, we perform a total of 960 experiments, and also here the potential energy
is modeled with a feedforward network of 3 hidden layers having 100 neu-
rons each. Furthermore, for the four experiments performed varying just the
integrator and with the other parameters fixed, the network’s weights are ini-
tialized to be the same, and the training and test initial conditions are the same.
For all these experiments, we focus on the single spherical pendulum, we keep
the final training time to T = 0.1, and we do not use regularization terms. The
training trajectories have been generated with the SciPy implementation of
the Dormand-Prince pair of order (5,4) with strict tolerance. As shown in Ta-

Order Integrator E1 E2 Training Loss
1 EE 5.7e-5 1.13e-2 2.12e-6
1 LE 4.9e-5 1.07e-2 1.17e-6
4 RK4 1.12e-5 3.83e-3 2.63e-7
4 CF4 1.12e-5 3.85e-3 2.64e-7

Table 6.4.1: In this table, we report the geometric means of the quantities E1, E2, and
the training loss. Here we average over all the 240 experiments that have the same
integrator. We denote the four integrators with EE (explicit Euler), LE (Lie Euler),
RK4 (Runge–Kutta 4), and CF4 (commutator-free 4).

ble 6.4.1, the order of the numerical integrator used to train the network plays
an important role. Indeed, we get results that are similar for methods of the
same order, but there is a noticeable decay in the errors and in the loss when
we increase the order from one to four. As highlighted in [27], this effect can
be explained with a standard argument of backward error analysis, see, e.g.,
[15, Chapter 9]. From the results reported in Table 6.4.1, we see that the local
error of the integrator is more important than the preservation of the geometry.
Therefore, even if, from a theoretical point of view, it seems relevant to remain
on the manifold during the training, in practice, this does not seem to be very
important in the particular experiment considered here. In Figure 6.4.2, we plot
the dependencies of E1, E2 and the training loss, on N , M , ε and the integrator.
We notice that values of E1 below a threshold of 10−7 can be reached only with

3The choice of geometric means is because of the exponential nature of the error measures
and the training loss.
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Figure 6.4.2: This is a parallel coordinate plot reporting the dependencies of E1, E2

and the training loss on the parameters N , M , ε and on the integrator. Each colored
polyline corresponds to the median over five experiments, i.e., same N , M , ε, and
same integrator. The lines in cyan color represent the combinations giving E1 < 10−7.

integrators of order four and with the smallest value of ε. The interplay of N ,
M , and ε is further investigated in Table 6.4.2. An interactive version of Figure
6.4.2, together with other parallel coordinate plots, can be found at the GitHub
Page https://davidemurari.github.io/learningConstrain
edHamiltonians/, while the dataset is available in the GitHub repository
associated to the paper.

We conclude this parameter study considering separately the case with and
without noise, ε > 0 and ε = 0 respectively. The results are reported in Table
6.4.2. In general, the lowest values of E1 are obtained with high N . For the
model under consideration, N = 1000 seems already high enough to achieve
good results. Regarding M , Table 6.4.2 shows that to achieve lower values
of E1 in the presence of noise, one needs to adopt a higher M . On the other
hand, in the absence of noise, it seems important to have a high M only for
low-order integrators. Finally, as may be expected, even if this Table does not
distinguish among the different magnitudes of the noise, we see that with ε= 0
better results can be achieved.

We also point out that the experiments were performed for short integration
times, where not only symplectic integrators can generate physically meaning-
ful trajectories. It would be interesting to explore the performance of symplec-
tic and constraint-preserving integrators in this setting (see, e.g., [1]), and we
defer this to further work.

Besides the theoretical aspect of the non-uniqueness of the extension of the
dynamics outside of M ⊂ R2n , we now report a numerical experiment where
the preservation of the geometry during the training is beneficial. We consider
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Without noise
Integrator of order 1 Integrator of order 4

N M Int. E1 E2 N M Int. E1 E2

1500 5 LE 1e-6 2.4e-3 1500 2 CF4 3.2e-8 1.3e-4
1000 5 LE 1e-6 2.3e-3 1500 5 RK4 3.3e-8 1.4e-4
1000 5 EE 1e-6 2.4e-3 1500 3 RK4 3.4e-8 1.4e-4
1500 5 EE 1e-6 2.5e-3 1500 2 RK4 3.6e-8 1.5e-4
500 5 LE 2e-6 2.6e-3 1500 3 CF4 3.7e-8 1.5e-4

With noise
Integrator of order 1 Integrator of order 4

N M Int. E1 E2 N M Int. E1 E2

1500 5 LE 1.2e-5 6.6e-3 1500 5 RK4 5e-6 3.4e-3
1500 5 EE 1.2e-5 6.3e-3 1500 5 CF4 6e-6 4.1e-3
1000 5 LE 1.5e-5 6.6e-3 1000 5 CF4 7e-6 3.8e-3
1000 5 EE 1.6e-5 6.8e-3 1000 5 RK4 8e-6 4.3e-3
500 5 LE 1.8e-5 6.7e-3 1000 3 RK4 8e-6 4.2e-3

Table 6.4.2: In this Table, we report the combinations that give the five best values of
E1, together with the corresponding value E2. These are the geometric means among
all the experiments. The two tables compare the performance on data with and without
noise.

again a simple spherical pendulum, and we assume to know that the potential
energy is linear. We hence impose this prior information on the architecture of
the network. Due to the problem’s simplicity, we aim to reach very low E1 and
E2 values. Training the same architecture for 200 epochs, both with Runge–
Kutta and commutator-free methods of order 4, we get the results in Table
6.4.3. Indeed, the geometric integrator outperforms the classical Runge-Kutta
method in this experiment.

Numerical method in the training E1 E2

Runge-Kutta of order 4 4.2e-12 1.5e-6
Commutator-free of order 4 1.1e-14 2.5e-7

Table 6.4.3: Comparison of the accuracy measures E1 and E2 obtained with the two
integrators. These results are obtained by imposing the linear structure of the potential
energy on the network modeling the Hamiltonian of the spherical pendulum. The
kinetic energy has been modeled as in previous experiments.

This experiment suggests that the choice of an integrator that does not fully
exploit the available information, like the geometry, might limit the quality
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of the obtained approximations. For those cases in which one is interested in
predictions that are as accurate as possible, this might be a relevant issue.

The experiments performed lead to the conclusion that modeling multi-body
systems with neural networks can be a valuable approach. However, to better
leverage the approximation capabilities of machine learning techniques (see,
e.g., [17, 10]), we believe that a deeper investigation and understanding of
how they interface with physical models is necessary.
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Abstract. Euler’s elastica is a classical model of flexible slender structures
relevant in many industrial applications. Static equilibrium equations can be
derived via a variational principle. The accurate approximation of solutions
to this problem can be challenging due to nonlinearity and constraints. We
present two neural network-based approaches for simulating Euler’s elastica.
Starting from a data set of solutions of the discretised static equilibria, we
train the neural networks to produce solutions for unseen boundary condi-
tions. We present a discrete approach learning discrete solutions from the
discrete data. We then consider a continuous approach using the same training
data set but learning continuous solutions to the problem. We present numer-
ical evidence that the proposed neural networks can effectively approximate
configurations of the planar Euler’s elastica for a range of different boundary
conditions.

7.1 Introduction

Modelling of mechanical systems is relevant in various branches of engineer-
ing. Typically, it leads to the formulation of variational problems and differen-
tial equations, whose solutions are approximated with numerical techniques.
The efficient solution of linear and nonlinear systems resulting from the dis-
cretisation of mechanical problems has been a persistent challenge of applied
mathematics. While classical solvers are characterised by a well-established
and mature body of literature [42, 36, 32, 18, 19, 3, 39], the past decade has
witnessed a surge in the use of novel machine learning-assisted techniques
[8, 5, 40, 44, 10, 17, 21, 26, 34, 29, 30, 6, 25, 45, 9, 13, 35]. These approaches
aim at enhancing solution methods by leveraging the wealth of available data
and known physical principles. The use of deep learning techniques to improve
the performance of traditional numerical algorithms in terms of efficiency, ac-
curacy, and computational scalability [5], is becoming increasingly popular
also in computational mechanics (see, e.g. [27]). Examples include a wide
range of problems that require the approximation of functions, as well as effi-
cient reduced order modelling [4] or more specific numerical tasks such as op-
timising the quadrature rule for computing the finite element stiffness matrix
[52] or the investigation of data-driven numerical frameworks for the bifurca-
tion analysis of partial differential equations [12, 15]. This recent literature is
evidence that neural networks can be used successfully as surrogate models for
the solution operators of various differential equations.

In the context of ordinary and partial differential equations, two main trends
can be identified. The first one aims at providing a machine learning-based
approximation to the discrete solutions of differential problems on a specific
space-time grid, for example, by solving linear or nonlinear systems efficiently
and accelerating convergence of iterative schemes [25, 6, 26, 21, 17]. The sec-
ond one provides instead solutions to the differential problem as continuous
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(and differentiable) functions of the temporal and spatial variables. Depend-
ing on the context, conditions on such approximate solutions are provided by
the differential problem itself, the initial values and boundary conditions, and
the available data. The idea of providing approximate solutions as functions
defined on the space-time domain and parametrised as neural networks was
proposed in the nineties [24] and was recently revived in the framework of
Physics-Informed Neural Networks in [40]. Since then, such an approach has
attracted much interest and developed in many directions [8, 45, 23].

In this work, we use neural networks to approximate the configurations of
highly flexible slender structures modelled as beams. Such models are of great
interest in industrial applications like cable car ropes, diverse types of wires or
endoscopes [37, 47, 31, 43]. Notwithstanding their ingenious and simple math-
ematical formulation, slender structure models can accurately reproduce com-
plex mechanical behaviour and, for this reason, their numerical discretisation
is often challenging. Furthermore, the use of 3-dimensional models requires
high computational time. Due to the fact that slender deformable structures
have one dimension (length) being orders of magnitude larger than their other
dimensions (cross-section), it is possible to reduce the complexity of the prob-
lem from a 3-dimensional elastic continuum to a 1-dimensional beam. A beam
is modelled as a centerline curve, q : [0,L] →Rn , s 7→ q(s), with n = 2 or n = 3,
along which a rigid cross-section Σ(s) is attached. The main model assump-
tion is that the diameter of Σ(s) is small compared with the undeformed length
L. The complexity of the model depends on factors such as the dimension of
the problem, the translational and rotational degrees of freedom (DOF) at each
node of the beam, and the analysis, i.e., static or dynamic. Exploring the nu-
merous beam models documented in the literature, we choose to approach the
challenge of approximating beam deformations using a simple yet widely em-
ployed model, i.e., the 2-dimensional Euler’s elastica [11]. The cross-section
Σ(s) is assumed to have unchanged geometrical and material properties and be
orthogonal to the centerline q(s). The latter is an inextensible curve and solu-
tion of a bending energy minimisation problem [28, 33, 46] for given boundary
conditions.

Although the 2-dimensional Euler’s elastica is relatively simple compared to
more comprehensive models, it can robustly represent interesting real-world
phenomena. For instance, the elastica model appropriately captures the high
bending deformations of flexible endoscopes, complex medical devices, dur-
ing surgeries [47]. The approximation of the elastica through neural networks
can help predict the deformed configuration of the beam for endoscopy simu-
lations, particularly when the beam encounters constraints in confined spaces.

When approximating static equilibria of Euler’s elastica via neural networks,
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a key issue is to ensure the inextensibility of the curve (having unit norm tan-
gents) as well as the boundary conditions. Two main approaches can be found
in the literature [23, 45, 41]. One is the weak imposition of constraints and
boundary conditions by adding appropriate extra terms to the loss function.
The other is a strong imposition strategy consisting in shaping the network ar-
chitectures to satisfy the constraints by construction. We show examples of
both the approaches in Sections 7.4 and 7.5.

The paper is organised as follows. In Section 7.2, we present the mathemati-
cal model of the planar Euler’s elastica, including its continuous and discrete
equilibrium equations. We describe the approach used to generate the data sets
for the numerical experiments. In Section 7.3, we introduce some basic theory
and notation for neural networks that we shall use in the succeeding sections.
Starting from general theory, we specialise in the task of approximating config-
urations of Euler’s elastica. In Section 7.4, we introduce the discrete approach,
which aims to approximate precomputed numerical discretisations of Euler’s
elastica. This represents the natural approach to approximate the discrete solu-
tion trajectories with a parametric method. We discuss some drawbacks associ-
ated with this approach and then propose an alternative approximation strategy
in Section 7.5, that leverages the fact that we are approximating a continuous
curve on a spatial grid. The continuous approach consists of computing an arc
length parametrisation of the beam configuration. We provide insights into two
additional networks and analyse how the test accuracy changes with varying
constraints, such as boundary conditions or tangent vector norms. Data and
codes for the numerical experiments are available in the GitHub repository
associated with the paper1.

Main contributions: This paper presents advancements in the approximation
of beam static configurations using neural networks. These advancements in-
clude: (i) A detailed experimental analysis of approximating numerical dis-
cretisations of Euler’s elastica configurations through what we call discrete
network, (ii) Identification and discussion of the limitations associated with
this discrete approach, and (iii) Introduction of a new parametrisation strategy
called continuous network to address some of these drawbacks.

7.2 Euler’s elastica model

We consider an inextensible beam model in which the cross-section Σ(s) is as-
sumed to be constant along the arc length s and perpendicular to the centerline
q(s), which means that no shear deformation can occur. Thus, the deformation

1https://github.com/ergyscokaj/LearningEulersElastica
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7.2 Euler’s elastica model

Nomenclature

L continuous Lagrangian function
S continuous action functional
Ld discrete Lagrangian function
Sd discrete action functional
q configuration of the beam
q′ first spatial derivative of q
θ tangential angle
s arc length parameter
κ curvature
L length of the undeformed beam

E I bending stiffness
q̂ numerical approximation of q

N +1 number of discretisation nodes, with N the number of intervals
h space step (length of each interval)

qd
ρ discrete neural network

qc
ρ continuous neural network approximating the curve q(s)
θc
ρ continuous neural network approximating the function θ(s)
ρ parameters of the neural network
ℓ number of layers in the neural network
σ activation function
M number of training data
B size of one training batch

MSE mean squared error
MLP multi layer perceptron

MULT multiplicative neural network
D differential operator
I quadrature operator

Table 7.1.1: List of abbreviations and notations.

of the centerline is a pure bending problem, precisely Euler’s elastica curve. In
the following, we assume q ∈ C 2([0,L],R2), i.e., the curve is planar and twice
continuously differentiable with length L. If s denotes the arc length parameter,
then ∥q′(s)∥ = 1, where ′ = d

d s , for all s ∈ [0,L]. The elastica problem consists
of minimising the following Euler-Bernoulli energy functional∫ L

0
κ(s)2ds,

where κ(s) denotes the curvature of q(s), [33]. Given the arc length parametri-
sation, then κ(s) = ∥q′′(s)∥.

We can reformulate this problem as a constrained Lagrangian problem as fol-
lows. Consider the second-order Lagrangian L : T (2)Q → R, where T (2)Q de-
notes the second-order tangent bundle [7] of the configuration manifold Q,
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which in this case is R2:

L(
q,q′,q′′)= 1

2
E I

∥∥q′′∥∥2 . (7.2.1)

Here, abusing the notation, ′ denotes a spatial derivative, but we do not initially
assume arc length parametrisation. The parameter E I is the bending stiffness,
which governs the response of the elastica under bending. This mechanical
parameter consists of material and geometric properties, where E is Young’s
modulus and I is the second moment of area of the cross-section Σ. For sim-
plicity, these parameters are assumed to be constant along the length of the
beam.

In order to recover the solutions of the elastica, the Lagrangian in (7.2.1) must
be supplemented with the constraint equation

Φ
(
q,q′)= ∥∥q′∥∥2 −1 = 0. (7.2.2)

This imposes arc length parametrisation of the curve q(s) and leads to the aug-
mented Lagrangian L̃ : T (2)Q ×R→R

L̃(
q,q′,q′′,Λ

)=L(
q,q′,q′′)+ΛΦ(

q,q′) , (7.2.3)

where Λ(s) is a Lagrange multiplier, see [46]. The Lagrangian function coin-
cides with the total elastic energy over solutions of the corresponding Euler-
Lagrange equations. The internal bending moment is directly related to the
curvature κ(s).

The continuous action functional S is defined as:

S [
q
]= ∫ L

0
L̃(

q,q′,q′′,Λ
)

ds. (7.2.4)

Applying Hamilton’s principle of stationary action, δS = 0, yields the Euler-
Lagrange equations

d2

ds2

(
∂L
∂q′′

)
− d

ds

(
∂L
∂q′

)
+ ∂L
∂q

= d

ds

(
∂Φ

∂q′Λ

)
− ∂Φ

∂q
Λ,

∥∥q′∥∥2 −1 = 0,

(7.2.5)

which need to be satisfied together with the boundary conditions on positions
and tangents, i.e., (q(0),q′(0)) = (q0,q′

0) and (q(L),q′(L)) = (qN ,q′
N ).

7.2.1 Space discretisation of the elastica

The continuous augmented Lagrangian L̃ in (7.2.3) and the action integral S
in (7.2.4) are discretised over the beam length L using constant step size h =
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L/N , with N +1 the number of the resulting equidistant nodes 0 = s0 < s1 <
. . . < sN−1 < sN = L. In second-order systems, the discrete Lagrangian is a
function L̃d : TQ ×T Q ×R×R→ R. In this study, we refer to a discretisation
of the Lagrangian function proposed in [14] based on the trapezoidal rule:

L̃d

(
qk ,q′

k ,qk+1,q′
k+1,Λk ,Λk+1

)
= h

2

[
L̃

(
qk ,q′

k ,
(
q′′

k

)−
,Λk

)
+ L̃

(
qk+1,q′

k+1,
(
q′′

k+1

)+
,Λk+1

)]
,

where qk , q′
k , and Λk are approximations of q(sk ), q′(sk ), and Λ(sk ), and the

curvature on the interval [sk , sk+1] is approximated in terms of lower order
derivatives as follows

q′′ (sk
)≈ (

q′′
k

)− =
(
−2q′

k+1 −4q′
k

)
h +6

(
qk+1 −qk

)
h2 ,

q′′ (sk+1
)≈ (

q′′
k+1

)+ =
(
4q′

k+1 +2q′
k

)
h −6

(
qk+1 −qk

)
h2 .

This amounts to a piece-wise linear and discontinuous approximation of the
curvature on [0,L].

The action integral in (7.2.4) along the exact solution q with boundary condi-
tions

(
q0,q′

0

)
and

(
qN ,q′

N

)
is approximated by

Sd =
N−1∑
k=0

L̃d

(
qk ,q′

k ,qk+1,q′
k+1,Λk ,Λk+1

)
. (7.2.6)

The discrete variational principle δSd = 0 leads to the following discrete Euler-
Lagrange equations:

D3L̃d

(
qk−1,q′

k−1,qk ,q′
k ,Λk−1,Λk

)
+D1L̃d

(
qk ,q′

k ,qk+1,q′
k+1,Λk ,Λk+1

)
= 0,

D4L̃d

(
qk−1,q′

k−1,qk ,q′
k ,Λk−1,Λk

)
+D2L̃d

(
qk ,q′

k ,qk+1,q′
k+1,Λk ,Λk+1

)
= 0,

D6L̃d

(
qk−1,q′

k−1,qk ,q′
k ,Λk−1,Λk

)
+D5L̃d

(
qk ,q′

k ,qk+1,q′
k+1,Λk ,Λk+1

)
= 0,

(7.2.7)
for k = 1, . . . , N −1, which approximate the equilibrium equations of the beam
in (7.2.5) and can be solved together with the boundary conditions. Here, Di

for i = 1, . . . ,6 denotes the differentiation with respect to the i -th argument.

7.2.2 Data generation

The elastica was one of the first examples displaying elastic instability and
bifurcation phenomena [48, 2]. Elastic instability implies that small pertur-
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bations of the boundary conditions might lead to large changes in the beam
configuration, which results in unstable equilibria. Under certain boundary
conditions, bifurcation can appear, leading to a multiplicity of solutions [33].
In particular, this means that the numerical problem may display history de-
pendence and converge to solutions that do not minimise the bending energy.
In order to generate a physically meaningful data set, avoiding unstable and
non-unique solutions is essential. Thus, in addition to the minimisation of the
discrete action Sd in (7.2.6), we ensure the fulfilment of the discrete Euler-
Lagrange equations (7.2.7), which can be seen as necessary conditions for the
stationarity of the discrete action. We exclude from the data set numerical so-
lutions computed with boundary conditions where minimisation of (7.2.6) and
accurate solution of (7.2.7) can not be simultaneously achieved.

In particular, we consider a curve of length L = 3.3 and bending stiffness E I =
10, divided into N = 50 intervals. We fix the endpoints q0 = (0,0), qN = (3,0).
The units of measurement are deliberately omitted as they have no impact on
the results of this work. We impose boundary conditions on the tangents in the
following two variants:

1. the angle of the tangents with respect to the x-axis at the boundary, θ0

and θN , is prescribed in the range [0,2π], in a specular symmetric fash-
ion, i.e., θN =π−θ0. Hereafter, we refer to this case as both-ends,

2. the angle of the left tangent is left fixed as θ0 = 0, and the angle of the
right tangent, θN , varies in the range of [0,2π]. We refer to this case as
right-end.

Based on these parameters and boundary values, and using cubic splines as ini-
tial guess, we generate a data set of 2000 trajectories (1000 trajectories for each
case) by minimising the particular action in (7.2.6), with the trust-constr
solver of the optimize.minimize procedure provided in SciPy [49]. We
check the resulting solutions by using them as initial guesses for the root
method of SciPy.optimize, solving the discrete Euler-Lagrange equations
(7.2.7).

The learning problem we consider relies on numerically generated solution
curves. This choice allows us to work with data points that are quantifiably
close to the analytical solution of Euler’s elastica. Consequently, showing that
the neural networks we propose can accurately approximate these curves trans-
lates into their ability to approximate the analytical solution accurately. The
motivation of this strategy is not to improve on the numerical solver we use
but to use its accuracy to train a model that is able to extrapolate to unseen
boundary conditions and generate their solution curves more efficiently than
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the numerical method itself. The chosen supervised learning setting is inde-
pendent of the fact that we use numerical solutions as data. Indeed, if one had
another reliable approximation of the analytical solution, for example, based
on realistic measurements, those could also be used or combined with numeri-
cally generated trajectories. Using numerical solutions as data is not an inher-
ent limitation of the proposed procedure but a choice we make to quotient out
the issue of not having reliable input data. Furthermore, we mainly focus on
the development of neural networks able to approximate such input data with
high accuracy.

7.3 Approximation with neural networks

We start by providing a concise overview of neural networks, which also serves
to define the notation used in Sections 7.4 and 7.5. We refer to [20, 23, 16] and
references therein for a more extensive introduction. A neural network is a
parametric function fρ : I →O with parameters ρ ∈Ψ given as a composition
of multiple transformations,

fρ := fℓ ◦ · · · ◦ f j ◦ · · · ◦ f1, (7.3.1)

where each f j represents the j -th layer of the network, with j = 1, . . . ,ℓ, and
ℓ is the number of layers. For example, multi-layer perceptrons (MLPs) have
each layer f j defined as

f MLP
j (x) =σ

(
A j x+b j

)
∈Rn j , (7.3.2)

where n j is the dimension of the output of the j -th layer, x ∈ Rn j−1 , and
A j ∈Rn j×n j−1 , b j ∈Rn j are the parameters of the j -th layer, i.e., ρ = {A j ,b j }ℓj=1.
The activation function σ is a continuous nonlinear scalar function, which
acts component-wise on vectors. The architecture of the neural network is
prescribed by the layers f j in (7.3.1) and determines the space of functions
F = { fρ : I →O, ρ ∈Ψ} that can be represented. The weights ρ are chosen
such that fρ approximates accurately enough a map of interest f : I →O. Usu-
ally, this choice follows from minimising a purposely designed loss function
Loss(ρ).

In supervised learning, we are given a data set Ω = {xi ,yi }M
i=1 consisting of

M pairs
(

xi ,yi = f
(
xi

))
. The loss function measures the distance between

the network predictions fρ
(
xi

)
and the desired outputs yi in some appropriate

norm ∥ ·∥,

Loss
(
ρ

)= 1

M

M∑
i=1

∥∥∥∥ fρ
(
xi

)
−yi

∥∥∥∥2

.
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The training of the network is the process of minimising Loss(ρ) with respect
to ρ and it is usually done with gradient descent (GD):

ρ(k) 7→ρ(k) −η∇Loss
(
ρ(k)

)
=:ρ(k+1).

The scalar value η is known as the learning rate. The iteration process is often
implemented using subsets of data B ⊂Ω of cardinality B = |B| (batches). In
this paper, we use an accelerated version of GD known as Adam [22].

During training, we evaluate the model’s prediction accuracy using inputs in a
validation set. This helps to prevent overfitting on the training data and may
serve as a stopping criterion if the training loss diminishes, but the validation
error rises. Once the training is complete, we assess the model’s accuracy in
predicting the correct output for new inputs included in a test set composed of
boundary conditions outside the training and validation sets. In the following,
we measure the accuracy on the training, validation, and test data using the
mean squared error of the difference between the predicted trajectories and the
true ones.

We now turn to the task of approximating the static equilibria of the planar
elastica introduced in Section 7.2, i.e., approximating a family of curves {qi :
[0,L] 7→R2} determined by boundary conditions,{

qi (0) = qi
0, qi (

L
)= qi

N ,
(
qi

)′
(0) =

(
qi

0

)′
,
(
qi

)′ (
L
)= (

qi
N

)′}
, (7.3.3)

where
(

qi
0,qi

N ,
(
qi

0

)′
,
(
qi

N

)′) ∈ R8. To tackle this problem, we require a set

of evaluations {qi
k , (qi

k )′} on the nodes sk ∈ [0,L] of a discretisation. More
precisely, in our setting, the data set includes numerical approximations q̂ of
the solution q(s) and its spatial derivative q′(s) at the N −1 discrete locations
sk = kh

L in the interval [0,L], for M pairs of boundary conditions, as described
in Section 7.2.2.

7.4 The discrete network

The discretisation of Euler’s elastica presented in Section 7.2.1 provides dis-
crete solutions on a set of nodes along the curve. These solutions can some-
times be hard to obtain since a global optimisation problem needs to be solved,
and the number of nodes can be large. This motivates using neural networks to
learn the approximate solution on the internal nodes for a given set of boundary
conditions. The data set Ω consists of M precomputed discrete solutions

Ω=
{(

xi ,yi
)}M

i=1
,
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where
xi =

(
qi

0,
(
qi

0

)′
,qi

N ,
(
qi

N

)′) ∈R8

are the input boundary conditions and

yi =
(

q̂i
1,

(
q̂i

1

)′
, . . . , q̂i

N−1,
(
q̂i

N−1

)′) ∈R4(N−1)

are the computed solutions at the internal nodes that serve as output data for
the network’s training.

For any symmetric positive definite matrix W , we define the weighted norm
∥x∥2

W = x⊤W x. The weighted MSE loss

Loss(ρ) = 1

4M(N −1)

M∑
i=1

∥∥∥∥qd
ρ

(
xi

)
−yi

∥∥∥∥2

W
(7.4.1)

will be used to learn the input-to-output map qd
ρ : R8 → R4(N−1), where the

superscript d stands for discrete. One should be aware that there is a numerical
error in yi compared to the exact solution, and the size of this error will pose a
limit to the accuracy of the neural network approximation.

7.4.1 Numerical experiments

This section provides experimental support to the proposed learning frame-
work using the machine learning library PyTorch [38]. The experiments of
this section are run on a CPU machine. We perform a series of experiments
varying some hyperparameters in the training procedure. We fix the batch size
B to 32 and use the Adam optimiser [22] for the training with learning rate
10−3 and weight decay set to 0. In (7.4.1) we use the weight matrix

W = I +γG⊤G ,

where G = S4 − I with S the forward shift operator on vectors of R4(N−1). This
choice of G allows us to compute differences between corresponding entries
of the input associated with neighbouring nodes. We determine the number of
epochs for training both the discrete and continuous networks based on exper-
imental evidence. We fix a high enough number which allows us to achieve
qualitatively accurate predictions and ensure that both training and validation
losses start to plateau a few epochs before the set maximum. We consider a
multi-layer perceptron with the hyperbolic tangent as an activation function,
and we vary the number of layers and the number of hidden nodes in each
layer. We also test different values of the parameter γ in the weight matrix
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W . We rely on the software framework Optuna [1], which employs Bayesian
optimisation methods to automate and efficiently conduct the search for the
combination that yields the best result. We collect in Table 7.B.1 the hyperpa-
rameters with the corresponding ranges and in Table 7.B.2 the selected values.
The resulting training error on the both-end data set is 1.14·10−7, the validation
error is 2.151 ·10−7, and the test error is 4.009 ·10−7. Figure 7.4.1 compares
test trajectories for q and q′. We remark that, as already clear from the low
value of the training and test errors, the network can accurately replicate the
behaviour of the training and test data. Furthermore, we have zero errors at
the end nodes since the network is trained only on the internal nodes, and the
boundary values are appended to the predicted solution in a post-processing
phase. On the other hand, since this discrete approach does not relate the com-
ponents as evaluations of a smooth curve, there is no regular behaviour in the
error.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
qx

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q y

Comparison over test trajectories (qx, qy)

True
Predicted

1.0 0.5 0.0 0.5 1.0
q ′x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

q
′ y

Comparison over test trajectories (q ′x, q ′y)

True
Predicted

0 10 20 30 40 50
node k

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

Av
er

ag
e n

or
m

 o
f e

rro
r

Mean error over test trajectories

Error on (qx, qy) 
Error on (q ′x, q ′y)

Figure 7.4.1: Comparison over test trajectories for q and q′ for the discrete network
qd
ρ tested on the both-ends data set with 80%−10%−10% splitting into training, val-

idation, and test sets. The mean squared error on the test set equals 4.009 ·10−7. For
presentation purposes, only ten randomly selected trajectories are considered in the
first two plots.

As an additional evaluation of the deep learning framework’s behaviour, we
conduct experiments to assess how the learning process performs when the
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7.5 The continuous network

number of training data varies, i.e., with different splittings of the data set
into training, validation, and test sets. We report the results in Table 7.4.1 and
summarise the corresponding hyperparameters in Table 7.B.2 of the Appendix.

Data set splitting
Training - validation - test

Training
accuracy

Validation
accuracy

Test
accuracy

10% - 10% - 10% 2.331 ·10−5 3.874 ·10−5 8.545 ·10−4

20% - 10% - 10% 1.852 ·10−6 1.327 ·10−6 1.361 ·10−4

40% - 10% - 10% 4.802 ·10−7 4.793 ·10−7 1.295 ·10−6

80% - 10% - 10% 1.140 ·10−7 2.151 ·10−7 4.009 ·10−7

Table 7.4.1: Behaviour of the discrete network qd
ρ tested on the both-ends data set

with fewer training data points. The size of the training set varies, while that of the
validation and the test sets is fixed. The last row corresponds to the results in Figure
7.4.1.

We also report results obtained by merging the both-end and the right-end
trajectories, with 80%− 10%− 10% splitting of the whole new data set into
training, validation, and test sets. The results are shown in Figure 7.4.2 and are
obtained with 3 layers, 616 hidden nodes, and γ = 7.323 ·10−3. The resulting
training, validation, and test errors are, respectively, 9.893 ·10−8, 1.126 ·10−7,
and 7.854 ·10−8.

7.5 The continuous network

The approach described in the previous section shows accurate results, given
a large enough amount of beam discretisations with a fixed number of nodes
N+1, equally distributed in [0,L]. It seems reasonable to expect the parametric
model’s approximation quality to improve when the number of discretisation
nodes increases. However, in this approach, the dimension of the predicted
vector grows with N , and hence minimising the loss function (7.4.1) becomes
more difficult. In addition, the fact that the discrete network approach depends
on the spatial discretisation of the training data restricts the output dimension
to a specific number of nodes. Consequently, there would be two main options
to assess the solution at different locations: training the network once more, or
interpolating the previously obtained approximation. These limitations make
such a discrete approach less appealing and suggest that having a neural net-
work that is a smooth function of the arc length coordinate s can be beneficial.
This modelling assumption would also be compatible with different discreti-
sations of the curve and would not suffer from the curse of dimensionality if
more nodes were added. In this setting, the discrete node sk at which an ap-
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Figure 7.4.2: Comparison over test trajectories for q and q′ for the discrete network
qd
ρ tested on the both-ends + right-end data set with 80%−10%−10% splitting into

training, validation, and test sets. The mean squared error on the test set equals
7.854 · 10−8. For presentation purposes, only ten randomly selected trajectories are
considered in the first two plots.

proximation of the solution is available, is included in the input data together
with the boundary conditions. As a result, we work with the following data set

Ω=
{(

sk , xi
)

, yi
k

}i=1,...,M

k=0,...,N
,

where, as in the previous section,

xi =
(

qi
0,

(
qi

0

)′
, qi

N ,
(
qi

N

)′) ∈R8,

and
yi

k =
(

q̂i
k ,

(
q̂i

k

)′)
.

Here q̂i
k is the numerical solution q̂ on the node sk , satisfying the i -th boundary

conditions in (7.3.3). Let us introduce the neural network

qc
ρ :R8 → C∞

([
0,L

]
,R2

)
,
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and the differential operator

D : C∞
([

0,L
]

,R2
)
→ C∞

([
0,L

]
,R2

)
, D

(
qc
ρ

(
xi

))(
sk

)= d

d s

(
qc
ρ

(
xi

))
(s)

∣∣∣
s=sk

,

so that we can define

yρ
(
xi

)(
sk

)
:=

(
qc
ρ

(
xi

)(
sk

)
, D

(
qc
ρ

(
xi

))(
sk

))
.

To train the network qc
ρ , we define the loss function

Loss
(
ρ

)= 1

4M(N +1)

M∑
i=1

N∑
k=0

(∥∥∥∥yρ
(
xi

)(
sk

)− y i
k

∥∥∥∥2

2

+γ
∥∥∥∥∥πD

(
yρ

(
xi

)(
sk

))∥∥∥∥∥
2

2

−1

2
 ,

(7.5.1)

where πD : R8 →R4 is the projection on the second component D(qc
ρ(xi ))(sk ),

and γ ≥ 0 weighs the violation of the normality constraint. The map qc
ρ is

now a neural network that associates each set of boundary conditions xi with
a smooth curve qc

ρ

(
xi

)
: [0,L] → R2 that can be evaluated at every point s ∈

[0,L]. We denote this network with the superscript c since this curve is, in
particular, continuous. The outputs qc

ρ

(
xi

)
(s) ∈ R2 are approximations of the

configuration of the beam at s ∈ [0,L].

We point out that, contrary to the discrete case, we learn approximations of
q(s) also on the end nodes, i.e., at s = 0 and s = L. This is because we do
not impose the boundary conditions by construction. Even though there are
multiple approaches to embed them into the network architecture, the one we
try in our experiments made the optimisation problem too complex, thus we
only impose the boundary conditions weakly in the loss function.

Another strategy is to compute the angles θk between the tangents (q̂k )′ and
the x-axis and to use them as training data. To this end, we define the neural
network

θc
ρ :R8 → C∞

([
0,L

]
,R

)
as θc

ρ = θ̂c
ρ ◦π, where

θ̂c
ρ :R2 → C∞

([
0,L

]
,R

)
(7.5.2)

is a neural network, and the function π :R8 →R2 extracts the tangential angles
from the boundary conditions, i.e., π

(
xi

)
=

(
θi

0,θi
N

)
. Such a network should
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approximate the angular function θ : [0,L] ∋ s →R, so that

τc
ρ

(
xi

)
(s) :=

(
cos

(
θc
ρ

(
xi

)
(s)

)
, sin

(
θc
ρ

(
xi

)
(s)

))
∈R2 (7.5.3)

gets close to the tangent vector q′(s). As a result, the constraint on the unit
norm of the tangents is satisfied by construction, and the inextensibility of the
elastica is guaranteed. The curve

q(s) = q0 +
∫ s

0
q′(s̄)ds̄

can then be approximated through the reconstruction formula

qc
ρ

(
xi

)
(s) = q0 +I

(
τc
ρ

(
xi

))
(s), (7.5.4)

where the operator I : C∞
(
[0,L],R2

)
→ C∞

(
[0,L],R2

)
is such that

I
(
τc
ρ

(
xi

))
(s) ≈

∫ s

0
τc
ρ

(
xi

)
(s̄)ds̄.

In the numerical experiments, I is based on the 3-point Gaussian quadrature
formula applied to a partition of the interval [0,L], see [39, Chapter 9]. As
done previously, we define the vector

yρ
(
xi

)(
sk

)
:=

(
qc
ρ

(
xi

)(
sk

)
, τc

ρ

(
xi

)(
sk

))
, (7.5.5)

with components defined as in (7.5.3) and (7.5.4). This allows us to train the
network θc

ρ by minimising the same loss function as in (7.5.1), where this time
yc
ρ is given by (7.5.5). Furthermore, since by construction this case satisfies∥∥∥∥πD (

yc
ρ(xi )(s)

)∥∥∥∥
2
=

∥∥∥∥τc
ρ

(
xi

)
(s)

∥∥∥∥
2
≡ 1, we set γ = 0. We present numerical

experiments for the two proposed continuous networks qc
ρ and θc

ρ . In the latter
case, by neural network architecture, we refer to θ̂c

ρ rather than θc
ρ in what

follows. We analyse qc
ρ more thoroughly in Section 7.5.1, mirroring most

of the discrete case experiments. In Section 7.5.2, we study how the results
are affected when we impose the arc length parametrisation and enforce the
boundary conditions to be exactly satisfied by the network θc

ρ .

7.5.1 Numerical experiments with qc
ρ

As for the case of the discrete network, we perform an in-depth investigation of
this learning setting. In this case, the experiments are run on a GPU-P100 ma-
chine. For this continuous setup, the standard MLP architecture does not pro-
vide accurate results even after a hyperparameter optimisation routine. Given
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7.5 The continuous network

that the simple MLP architecture does not seem to be flexible enough to capture
the complexity of the elastica solution in this continuous framework, we move
to a different architecture that we call MULT for the presence of multiplicative
interactions in its architecture. This network has demonstrated superior perfor-
mance to standard fully connected neural networks in the context of operator
learning, see e.g. [50]. Details on this architecture can be found in Appendix
7.A. We fix the learning rate η to 5·10−3 and only vary the number of layers and
of hidden nodes in the training procedure, with the range of options reported
in Appendix 7.B, Table 7.B.3. In this case, we define the loss as in (7.5.1),
with γ= 10−2. The weight decay is systematically set to 0. For the both-ends
data set, this leads to a training error equal to 3.554 ·10−6, a validation error
equal to 4.779 ·10−6, and a test error equal to 4.354 ·10−6. In Figure 7.5.1, the
comparison over test trajectories for q and q′ is shown. As we can see in the
plot showing the mean error over the trajectories, the error on the end nodes is
nonzero since we are not imposing boundary conditions by construction. This
is in contrast to the corresponding plot for the discrete network in Figure 7.4.1.
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Figure 7.5.1: Comparison over test trajectories for q and q′ for the continuous net-
work qc

ρ tested on the both-ends data set with 80%−10%−10% splitting into training,
validation, and test sets. The mean squared error on the test set equals 4.354 ·10−6.
For presentation purposes, only ten randomly selected trajectories are considered in
the first two plots.
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Also in this case, we examine the behaviour of the learning process with dif-
ferent splittings of the data set into training and test sets. We display the results
in Table 7.5.1 and summarise the corresponding hyperparameters in Appendix
7.B, Table 7.B.4.

Data set splitting
Training - validation - test

Training
accuracy

Validation
accuracy

Test
accuracy

10% - 10% - 10% 2.146 ·10−4 1.252 ·10−3 8.811 ·10−4

20% - 10% - 10% 4.187 ·10−5 4.239 ·10−5 6.279 ·10−5

40% - 10% - 10% 7.037 ·10−6 8.357 ·10−6 8.434 ·10−6

80% - 10% - 10% 3.554 ·10−6 4.779 ·10−6 4.354 ·10−6

Table 7.5.1: Behaviour of the continuous network qc
ρ tested on the both-ends data set

with fewer training data points. The size of the training set varies, while that of the
validation and the test sets is fixed. The last row corresponds to the results in Figure
7.5.1.

7.5.2 Numerical experiments with θc
ρ

Here we consider a neural network approximation of the angle θ(s) that
parametrises the tangent vector q′(s) = (

cosθ(s),sinθ(s)
)
. By design, the ap-

proximation τc
ρ of the tangent vector q′ satisfies the constraint ∥τc

ρ(xi )(s)∥2 = 1

for every s ∈ [0,L] and xi ∈ R8. We also analyse how the neural network
approximation behaves when the boundary conditions τc

ρ(xi )(0) = q′(0) and
τc
ρ(xi )(L) = q′(L) are imposed by construction. To do so, we model the para-

metric function θ̂c
ρ , defined in (7.5.2), in one of the two following ways:

θ̂c
ρ

(
xi

)
(s) = fρ

(
s,θi

0,θi
N

)
, (7.5.6)

θ̂c
ρ

(
xi

)
(s) = fρ

(
s,θi

0,θi
N

)
+

(
θi

0 − fρ
(
0,θi

0,θi
N

))
e−100s2

+
(
θi

N − fρ
(
L,θi

0,θi
N

))
e−100(s−L)2

,

(7.5.7)

where fρ : R3 → R is any neural network, and we recall that π(xi ) = (θi
0,θi

N ).
We remark that in the case of the parameterisation in (7.5.7), one gets
θc
ρ(xi )(0) = θi

0 and θc
ρ(xi )(L) = θi

N up to machine precision, due to the fast
decay of the Gaussian function. As in the previous sections, we collect the
hyperparameter and architecture options with the respective range of choices
in Table 7.B.5, and we report the results without imposing the boundary con-
ditions in Figure 7.5.2, while those imposing them in Figure 7.5.3, in both
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7.6 Discussion

cases using the both-ends data set, with 80%−10%−10% splitting into train-
ing, validation, and test sets. The results shown in the two figures correspond
respectively to training errors of 6.288 ·10−6 and 5.301 ·10−6, validation errors
5.874·10−6 and 5.065·10−6, and test errors of 5.089·10−6 and 4.385·10−6. The
best-performing hyperparameter combinations can be found in Table 7.B.6.
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Figure 7.5.2: Comparison over test trajectories for q and q′, for the case θc
ρ is mod-

elled as in (7.5.6), with 80%−10%−10% splitting of the both-ends data set into train-
ing, validation, and test sets. The mean squared error on the test set equals 6.289·10−6.
For presentation purposes, only ten randomly selected trajectories are considered in
the first two plots.

7.6 Discussion

The results in Figures 7.5.2 and 7.5.3 are comparable, especially looking at the
mean error plots. This suggests that the imposition of the boundary conditions,
in the proposed way, is not limiting the expressivity of the considered network.
Thus, given the boundary value nature of our problem, these figures advocate
the enforcement of the boundary conditions on the network θc

ρ . However, due
to the chosen reconstruction procedure in (7.5.4) for the variable q, we are
able to impose the boundary conditions on q only on the left node. Other more
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Figure 7.5.3: Comparison over test trajectories for q and q′, for the case θc
ρ is mod-

elled as in (7.5.7), with 80%−10%−10% splitting of the both-ends data set into train-
ing, validation, and test sets. The mean squared error on the test set equals 4.385·10−6.
For presentation purposes, only ten randomly selected trajectories are considered in
the first two plots.

symmetric reconstruction procedures can be adopted, but the proposed one has
provided better experimental results.

Comparing the results related to qc
ρ with those of θc

ρ , we notice similar per-
formances in terms of training and test errors. In both cases, they have one
order of magnitude more than the corresponding training and test errors of the
discrete network qd

ρ . Thus, as a result of our experiments, we can conclude
that

• if the accuracy and the efficient evaluation of the model at the discrete
nodes are of interest, the discrete network is the best option;

• for a more flexible model, not restricted to the discrete nodes, the con-
tinuous network is a better choice; among the two proposed modelling
strategies, working with qc

ρ is more suitable for an easy parametrisa-
tion of both q and q′, while θc

ρ is more suitable to impose geometrical
structure and constraints.
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The total accuracy error of a neural network model can be defined by splitting
it into three components: approximation error, optimisation error, and general-
isation error (see e.g. [29]). To achieve excellent agreement between predicted
and reference trajectories, it is crucial to select the appropriate architecture
and fine-tune the model hyperparameters. Our results demonstrate that we can
construct a network that is expressive enough to provide a small approximation
error and has very good generalisation capability.

Lastly, we have compared the time cost of the Neural Network prediction
against the traditional approach with numerical solvers as described in Section
7.2.2. The discrete and continuous approaches outperformed the traditional
solvers with an average speedup of 105.000 times and 260.000 times, respec-
tively, across the test trajectories. The training time of the continuous network
is 1.25 times larger than that of the discrete network. It’s important to note that
these results are subject to certain limitations, such as the specific choice of the
hyperparameters or the machine used to train and test the network. These find-
ings suggest that using neural networks to predict new solutions of the elastica
for unseen boundary conditions is much more time efficient than the classical
numerical methods, although requiring intensive offline training.

7.6.1 Future work

In the methods presented in this paper, the mathematical problem and the neu-
ral network model do not interact once the data set is created. To improve the
results presented here, one could include Euler’s elastica model directly into
the training process. This could be done either by directly imposing in the
loss function that q(s) satisfies the differential equations (7.2.5), or one could
add the constrained action integral from (7.2.4) into the loss function that is
minimised, see e.g. [24, 40, 10, 44].

There are many promising directions to follow up on this work. One is to
consider 3D versions of Euler’s elastica, another is to look at the dynamical
problem, and finally one may examine industrial applications, as mentioned in
the introduction.
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Appendix

7.A Architecture for the continuous network

We provide the expression of the forward propagation of the multiplicative
network MULT used for the experiments in Section 7.5:

U =σ(
W1x+b1

)
, V =σ(

W2x+b2
)

(7.A.1)

H1 =σ
(
W3x+b3

)
(7.A.2)

Z j =σ
(
Wz

j H j +bz
j

)
, j = 1, . . . ,ℓ (7.A.3)

H j+1 =
(
1−Z j

)
⊙U+Z j ⊙V, j = 1, . . . ,ℓ (7.A.4)

f MULT
ρ (x) = WHℓ+1 +b, (7.A.5)

where ⊙ denotes the component-wise multiplications. In this case,

ρ =
{

W1,b1,W2,b2,W3,b3,
(
Wz

j ,bz
j

)ℓ
j=1

,W,b
}

,

and the weight matrices and biases have shapes that allow for the expressions
(7.A.1)-(7.A.5) to be well-defined. This architecture is inspired by neural at-
tention mechanisms and was introduced in [51] to improve the gradient be-
haviour. A further motivation for our choice of including this architecture
is experimental since it has proven effective in solving the task of interest
while still having a similar number of parameters to the MLP architecture.
Throughout the paper, we refer to this architecture as multiplicative since it
includes component-wise multiplications, which help capture multiplicative
interactions between the variables.

7.B Details on hyperparameter optimisation

We provide here further details on the hyperparameter optimisation strategy
with Optuna, relative to the results in Sections 7.4 and 7.5. The tables be-
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7.B Details on hyperparameter optimisation

low display the hyperparameters we optimise for in each of the networks, the
ranges and the distribution, as well as the selected combinations used to per-
form the experiments in the paper.

Hyperparameter Range Distribution

# layers ℓ {0, ...,10} discrete uniform
# hidden nodes [10,1000]∩N discrete uniform

γ [0,1 ·10−2] uniform

Table 7.B.1: Hyperparameter ranges for the discrete network qd
ρ . The first column

of the table reports the hyperparameters we test. The second describes the set of
allowed values for each, while the third specifies how such values are explored through
Optuna.

Hyperparameter % of trajectories of the whole dataset in the training set
10% 20% 40% 80%

# layers ℓ 4 4 4 4
# hidden nodes 950 978 997 985

γ 7.044 ·10−3 6.336 ·10−3 9.004 ·10−3 3.853 ·10−3

Table 7.B.2: Choice of hyperparameters for the training of the discrete network qd
ρ

tested on the both-ends data set with different sizes of the training set, with the valida-
tion and test sets each containing 10% of trajectories of the dataset.

Hyperparameter Range Distribution

# layers ℓ {5, . . . ,10} discrete uniform
# hidden nodes [10,250]∩N discrete uniform

Table 7.B.3: Hyperparameter ranges for the continuous network qc
ρ . The first column

of the table reports the hyperparameters we test. The second describes the set of
allowed values for each, while the third specifies how such values are explored through
Optuna.
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Hyperparameter % of trajectories of the whole dataset in the training set
10% 20% 40% 80%

# layers ℓ 6 7 8 6
# hidden nodes 139 185 181 106

Table 7.B.4: Choice of hyperparameters for the training of the continuous network
qc
ρ tested on the both-ends data set with different sizes of the training set, with the

validation and test sets each containing 10% of trajectories of the dataset.

Hyperparameter Range Distribution

# layers ℓ {1, . . . ,10} discrete uniform
# hidden nodes [50,200]∩N discrete uniform

Table 7.B.5: Hyperparameter ranges for the continuous network θc
ρ .The first column

reports the hyperparameters we test. The second describes the set of allowed values
for each, while the third specifies how such values are explored through Optuna.

Hyperparameter θc
ρ as in (7.5.6) θc

ρ as in (7.5.7)

# layers ℓ 8 8
# hidden nodes 93 58

Table 7.B.6: Choice of the hyperparameters for the training of the continuous network
θc
ρ tested on the both-ends data set with 80%−10%−10% splitting. The second column

shows the combination of hyperparameters yielding the best result corresponding to
Figure 7.5.2, while the third column that corresponding to Figure 7.5.3.
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Abstract. This paper considers one of the fundamental parallel-in-time meth-
ods for the solution of ordinary differential equations, Parareal, and extends it
by adopting a neural network as a coarse propagator. We provide a theoreti-
cal analysis of the convergence properties of the proposed algorithm and show
its effectiveness for several examples, including Lorenz and Burgers’ equa-
tions. In our numerical simulations, we further specialize the underpinning
neural architecture to Extreme Learning Machines (ELMs), a 2−layer neural
network where the first layer weights are drawn at random rather than opti-
mized. This restriction substantially increases the efficiency of fitting ELM’s
weights in comparison to a standard feedforward network without negatively
impacting the accuracy, as demonstrated in the SIR system example.

8.1 Introduction

In this paper, we consider initial value problems expressed as a system of
first-order ordinary differential equations (ODEs). This wide class of prob-
lems arises in many social and natural sciences applications, including semi-
discretized, time-dependent partial differential equations. We express a generic
system of such differential equations asx′ (t ) =F (

x (t )
) ∈Rd ,

x (0) = x0,
(8.1.1)

which will be our reference problem. Here, ′ denotes the derivative with re-
spect to the time variable. To guarantee the existence and uniqueness of its
solutions, we assume that F : Rd → Rd is a Lipschitz-continuous vector field
and t ∈ [0,T ] for some T > 0. Solving an initial value problem like (8.1.1)
analytically is generally not a possibility, and hence one needs to rely on nu-
merical approximations to the solution curve t 7→ x(t ). Numerical techniques
rely on introducing a time discretization 0 < t1 < ·· · < tN = T of the interval
[0,T ], with steps ∆tn = tn+1 − tn , and computing approximations xn of the so-
lution x(tn) at the nodes tn , i.e., xn ≈ x(tn). A popular and established option
is provided by one-step methods, such as Runge–Kutta schemes, which relate
xn+1 to xn in terms of a map ϕ

∆tn
F of the form xn+1 = ϕ

∆tn
F (xn). Collocation

methods are a subset of Runge–Kutta methods [16, Section II.7] with particular
relevance to this paper. These methods aim to approximate the solution on each
interval [tn , tn+1] with a real polynomial x̃ of a sufficiently high degree and co-
efficients in Rd . The updated solution is then computed as xn+1 = ϕ

∆tn
F (xn)

evaluating the polynomial at t = tn+1 as xn+1 = x̃(tn+1) ≈ x(tn+1). To deter-
mine the coefficients of the polynomial x̃(t ), one needs to solve the system
of algebraic equations x̃′(tn,c ) = F (x̃(tn,c )) for a set of C collocation points
tn ≤ tn,1 < tn,2 < ·· · < tn,C ≤ tn+1.
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As initial value problems define causal processes, many time-stepping schemes
are sequential by nature, in the sense that to compute xn+1, one has to compute
xn first. Nonetheless, multiple successful approaches such as Parareal [26],
PFASST [9], and MGRIT [11] have introduced some notion of parallel-in-time
solution of initial value problems (8.1.1), see for instance [13] for an overview
of existing methods.

In this work, we build upon the Parareal algorithm [26]. The speedup in
Parareal is achieved by coupling a fine time step integrator with a coarse step
integrator. In each iteration, the coarse integrator updates the initial conditions
of initial value problems on time subintervals, which can be solved in paral-
lel and only entail fine step time integration over a short time. The elegance
and strong theoretical grounding of the idea (see [14, 15], for instance) led
to a number of variants of the Parareal algorithm, including combinations of
Parareal with neural networks [25, 20, 21].

In recent years, solving differential equations with machine learning approaches
gained in popularity; see, for instance, [22] for a review. For learned methods
to become staple solvers, understanding their properties and ensuring they re-
produce the qualitative behavior of the solutions is paramount. The problem
of convergence and generalization for neural network-based PDE solvers has
been considered in [29, 7, 5], for instance. An analysis of the approximation
properties of neural networks in the context of PDE solutions is provided in
[32, 23]. In the context of ODEs, there is an increasing interest in develop-
ing deep neural networks to learn time-stepping schemes unrestricted by con-
straints of the local Taylor series, including approaches based on flow maps
[27], model order reduction [36], and spectral methods [24].

In the context of combining Parareal with neural networks, Parareal with a
physics-informed neural network as a coarse propagator was suggested in [20].
In [25], the authors introduced a parallel (deep) neural network based on par-
allelizing the forward propagation following similar principles to those behind
Parareal. In [21], it was proposed to learn a coarse propagator by parameteriz-
ing its stability function and optimizing the associated weights to minimize an
analytic convergence factor of the Parareal method for parabolic PDEs.

Neural networks are generally considered as a composition of parametric maps
whose weights are all optimized so that a task of interest is solved with suffi-
cient accuracy. The common choice of the optimization procedure is gradient-
based algorithms, which start from a random set of initial weights and update
them iteratively until the stopping criterion has been reached. A class of neural
networks where some of the weights are not updated at all is often called Ex-
treme Learning Machines (ELMs) [19, 18]. Despite their seemingly reduced
capability of approximating functions, these neural networks retain most of the
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approximation results of more conventional neural networks. For example, as
derived in [19, Theorem 2.1], ELMs with two layers and H hidden neurons,
where only the last layer is optimized while all other weights are independently
sampled from any interval according to any continuous probability distribu-
tion, can interpolate with probability one any set of H distinct input-to-output
pairs. Their expressivity properties, see e.g. [34, 35], make them suitable for
the approximation of solutions of ODEs which were successfully considered in
[10, 30, 37, 8, 4], yielding accurate approximations in a fraction of the training
time when compared to more conventional networks.

8.1.1 Contributions

In this work, we build a hybrid numerical method based on the Parareal frame-
work, where an ELM constitutes the coarse time stepping scheme. We first
derive an a-posteriori error estimate for general neural network-based solvers
of ODEs. This theoretical result allows us to replace the coarse integrator of
the Parareal method with an ELM while preserving its convergence guarantees.
The ELMs are trained online during the Parareal iterations. There are several
benefits to the proposed procedure. First, our hybrid approach comes with the-
oretical guarantees and allows us to solve a differential equation such that the
produced solution is accurate to a certain degree. Additionally, using ELMs
rather than a more conventional neural network leads to a significant speedup
in the algorithm without sacrificing its capabilities. Indeed, as we show for
the SIR problem, using ELMs leads to about half of the computational time
of the other method, even without accounting for the offline training phase of
the more conventional network. Further, we demonstrate the effectiveness of
the proposed approach, together with the timings of the components of the
algorithm, and apply it to several examples in Section 8.6.

8.1.2 Outline

The outline of the paper is as follows. We start with introducing the Parareal al-
gorithm and its convergence properties in Section 8.2. Section 8.3 presents the
theoretical derivation of an a-posteriori error estimate for neural network-based
solvers. This result relies on a nonlinear variation of the constants formula,
also called the Gröbner-Alekseev Theorem. In Section 8.4, we propose a hy-
brid algorithm combining the Parareal framework with the ELM-based coarse
propagator. We study the convergence properties of this hybrid algorithm in
Section 8.5. The effectiveness of the proposed method is tested in Section 8.6
on the benchmark dynamical systems studied in [14] with the addition of the
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SIR and ROBER problems. We conclude with the summary and analysis of
the obtained results in Section 8.7.

8.2 Parareal method

This section introduces the Parareal algorithm [26] and presents a convergence
result needed for our derivations.

8.2.1 The method

The Parareal algorithm builds on two one-step methods that we call ϕ∆t
F ,ϕ∆t

C :
Rd → Rd , denoting the fine and coarse integrators with timestep ∆t , respec-
tively. There are multiple options to design such maps, one being to use the
same one-step method but with finer or coarser timesteps, e.g.,

ϕ∆t
F :=ϕ∆t/M

C ◦ · · · ◦ϕ∆t/M
C =

(
ϕ∆t/M

C

)M
, M ∈N.

This strategy motivates the subscripts of the two maps since these methods rely
on a fine and a coarse mesh. Another option to define ϕ∆t

F and ϕ∆t
C is to use

methods of different orders, hence different levels of accuracy with the same
timestep ∆t . Regardless of how we define these two methods, the map ϕ∆t

F is
more expensive to evaluate than ϕ∆t

C . The goal of the Parareal algorithm is to
get an approximate solution {xn}N

n=0 over the mesh t0 = 0 < t1 < ·· · < tN = T ,
∆tn = tn+1−tn , with the same degree of accuracy as the one obtained with ϕ∆tn

F
but in a shorter time. This is achieved by transforming (8.1.1) into a collection
of initial value problems on a shorter time interval by using ϕ∆tn

C . This zeroth
iterate of the method consists of finding intermediate initial conditions x0

n by
integrating (8.1.1) with ϕ∆tn

C to get

x0
0 = x0, x0

n+1 =ϕ∆tn
C

(
x0

n

)
, n = 0, . . . , N −1, ∆tn = tn+1 − tn ,

and define the N initial value problems on the subintervalsx′ (t ) =F (
x (t )

)
,

x
(
tn

)= x0
n ,

t ∈ [
tn , tn+1

]
, n = 0, . . . , N −1. (8.2.1)

These problems can now be solved in parallel using the fine integrator ϕ∆tn
F ,

which constitutes the parallel step in all successive Parareal iterates. A predictor-
corrector scheme is used to iteratively update the initial conditions on the
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subintervals [tn , tn+1]. Parareal iteration i +1 reads

xi+1
n+1 =ϕ∆tn

F

(
xi

n

)
+ϕ∆tn

C

(
xi+1

n

)
−ϕ∆tn

C

(
xi

n

)
, n = 0, . . . , N −1. (8.2.2)

A common choice of a stopping criterion is maxn=1,...,N ∥xi+1
n − xi

n∥2 < ε for
some tolerance ε > 0. The parallel speedup is achieved if this criterion is met
with far less iterates than the number of time intervals N .

8.2.2 Interpretation of the correction term

Following [14], we provide the interpretation of (8.2.2) as an approximation of
the Newton step for matching the exact flow at the time discretization points
t0 = 0, . . . , tN = T . We consider

H (
y
)

:=



y0 −x0

y1 −φ∆t0
F

(
y0

)
y2 −φ∆t1

F
(
y1

)
...

yN −φ∆tN−1
F

(
yN−1

)

= 0, y =


y0

y1
...

yN

 ∈Rd ·(N+1),

where φ∆t
F (xn) with xn ∈ Rd is the exact solution x(∆t ) of the initial value

problem x′ (t ) =F (
x (t )

)
,

x(0) = xn .

Linearizing H at the i th iterate, xi , equating it to 0 and solving for the i +1st
iterate, xi+1, we arrive at the Newton update

xi+1
n+1 =φ∆tn

F

(
xi

n

)
+∂x

(
φ
∆tn
F

)(
xi

n

)(
xi+1

n −xi
n

)
, n = 0, . . . , N −1

for the solution of the system H(y) = 0. The idea behind Parareal is then to
approximate the unknown φ∆tn

F (xi
n) with ϕ∆tn

F (xi
n), and the first order term with

∂x

(
φ
∆tn
F

)(
xi

n

)(
xi+1

n −xi
n

)
≈ϕ∆tn

C

(
xi+1

n

)
−ϕ∆tn

C

(
xi

n

)
,

which yields (8.2.2).

8.2.3 Convergence

Convergence of the Parareal iterations was proven in [14] under the assumption
that the fine integrator ϕ∆t

F and the exact flow map φ∆t
F coincide.
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Theorem 8.1 (Theorem 1 in [14]). Let us consider the initial value problem
(8.1.1) and partition the time interval [0,T ] into N intervals of size ∆t = T /N
using a grid of nodes tn = n∆t . Assume that the fine integrator ϕ∆t

F coincides
with the exact flow map φ∆t

F , i.e. ϕ∆t
F = φ∆t

F . Furthermore, suppose that there
exist p ∈ N, a set of continuously differentiable functions cp+1,cp+2, · · · , and
α> 0 such that

ϕ∆t
F (x)−ϕ∆t

C (x) = cp+1 (x) (∆t )p+1 + cp+2 (x) (∆t )p+2 +·· · , and∥∥∥ϕ∆t
F (x)−ϕ∆t

C (x)
∥∥∥

2
≤α(∆t )p+1

(8.2.3)

for every x ∈Rd , and also that there exists β> 0 such that∥∥∥ϕ∆t
C (x)−ϕ∆t

C

(
y
)∥∥∥

2
≤ (

1+β∆t
)∥∥x−y

∥∥
2 (8.2.4)

for every x,y ∈Rd . Then there exists a positive constant γ such that, at the i−th
iterate of the Parareal method, the following bound holds

∥∥∥x(tn)−xi
n

∥∥∥
2
≤ α

γ

(
γ(∆t )p+1

)i+1

(i +1)!

(
1+β∆t

)n−i−1
i∏

j=0

(
n − j

)
.

This result guarantees that as the iteration progresses, the method provides an
increasingly accurate solution. Furthermore, when i = n, the last product on
the right-hand side vanishes, which corresponds to the worst-case scenario of
the sequential solution, a.k.a. at the nth iterate, the above idealized Parareal
method replicates the analytical solution for the time subintervals up to tn .

We take advantage of this convergence result in Section 8.4, constructing the
coarse propagator as a neural network satisfying the assumptions of Theorem
8.1.

8.3 A-posteriori error estimate for solvers based on neu-
ral networks

We aim to design a hybrid parallel-in-time solver for (8.1.1) based on the
Parareal algorithm. This procedure consists of the Parareal iteration where
the coarse propagator ϕ∆t

C is replaced by a neural network. In Section 8.4, we
will focus on a particular class of neural networks called Extreme Learning
Machines (ELMs). For now, however, we do not specify the structure of the
neural network and define it as a map Nθ : [0,∆t ]×Rd → Rd , parametrized by
weights θ, and satisfying the initial condition of the ODE, Nθ

(
0;x0

)= x0.
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In the classical Parareal iteration, the coarse propagator ϕ∆tn
C is a map satis-

fying x(tn+1) ≈ ϕ
∆tn
C (x(tn)), where x(t ) solves (8.1.1). The coarse propaga-

tor balances the cost versus accuracy of the approximation, with the sweet
spot yielding optimal parallel speedup. With this in mind, we design our re-
placement to be a continuous function of time and to allow longer steps than
commonly taken by single-step numerical methods as employed by ϕ∆tn

C . Mo-
tivated by collocation methods [16, Chapter II.7], we choose the weights of
the neural network Nθ so that it satisfies the differential equation (8.1.1) at
some collocation points in the interval [0,∆t ]. More explicitly, given a set
{t1, . . . , tC } ⊂ [0,∆t ], we look for a set of weights θ minimizing the loss func-
tion

L(
θ,x0

)
:=

C∑
c=1

∥∥∥∥N ′
θ

(
tc ;x0

)−F
(
Nθ

(
tc ;x0

))∥∥∥∥2

2
. (8.3.1)

Consistent with our convention, in (8.3.1) ′ denotes the time derivative, i.e., the
derivative with respect to the first component.

In the following, we propose an error analysis for the approximate solution Nθ.
This error analysis allows us to provide a-posteriori theoretical guarantees on
both the accuracy of the network Nθ

(
∆t ;x0

)
as a continuous approximation of

the solution, as well as its potential as a replacement of ϕ∆t
C (x0) while keeping

intact the convergence guarantees of Parareal. We focus on a practical error
estimate based on quadrature rules. For an, albeit less practical, alternative
estimate based on defect control, see Appendix 8.A.

Assumption 1. Assume that the collocation points {t1, . . . , tC } ⊂ [0,∆t ], with
t1 < ·· · < tC , define a Lagrange quadrature rule exact up to order p for some
given p ≥ 1, i.e., there is a set of weights ρ1, . . . ,ρC for which∫ ∆t

0
f (t )dt =

C∑
c=1

ρc f
(
tc

)=: Ip
(

f ;0,∆t
)

, ∀ f ∈Pp−1, (8.3.2)

where Pp−1 is the set of real polynomials of degree p −1.

For a set of collocation points satisfying Assumption 1 and any scalar p−times
continuously differentiable function f ∈ Cp (R,R), it holds [33, Chapter 9]∣∣∣∣∣Ip

(
f ;0,∆t

)−∫ ∆t

0
f (t )dt

∣∣∣∣∣≤ κ(∆t )p+1 max
ξ∈[0,∆t ]

∣∣∣ f (p) (ξ)∣∣∣ , κ> 0, (8.3.3)

where f (p) is the derivative of f of order p.

We can now formulate a quadrature-based a-posteriori error estimate for the
continuous approximation Nθ

(
t ;x0

)
that only requires the defect to be suffi-

ciently small at the collocation points.
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8.3 A-posteriori error estimate for solvers based on neural networks

Theorem 8.2 (Quadrature-based a-posteriori error estimate). Let x(t ) be the
solution of the initial value problem (8.1.1) with F ∈ Cp+1(Rd ,Rd ). Suppose
that Assumption 1 on the C collocation points 0 ≤ t1 < ·· · < tC ≤∆t is satisfied
and assume that Nθ

(·;x0
)

: [0,∆t ] →Rd is smooth and satisfies the collocation
conditions up to some error of magnitude ε, i.e.∥∥∥∥N ′

θ

(
tc ;x0

)−F
(
Nθ

(
tc ;x0

))∥∥∥∥
2
≤ ε, c = 1, . . . ,C . (8.3.4)

Then, there exist two constants α,β> 0 such that, for all t ∈ [0,∆t ],∥∥∥x (t )−Nθ

(
t ;x0

)∥∥∥
2
≤α(∆t )p+1 +βε. (8.3.5)

The proof of Theorem 8.2 is based on the Gröbner-Alekseev formula [16, The-
orem 14.5] that we now state for completeness.

Theorem 8.3 (Gröbner-Alekseev). For F ∈ C1(Rd ,Rd ) and G : Rd → Rd con-
sider the solutions x(t ) and y(t ) of the two ODEsx′ (t ) =F (

x (t )
)

,

x (0) = x0,

y′ (t ) =F (
y (t )

)+G (
y (t )

)
,

y (0) = x0,

assuming they both have a unique solution. For any times 0 ≤ s ≤ t , let
φs,t
F (y(s)) be the exact solution of the initial value problemx′ (t ) =F (

x (t )
)

,

x (s) = y (s) .

Then, for any t ≥ 0, one has

y (t ) = x (t )+
∫ t

0

∂φs,t
F

(
x0

)
∂x0

∣∣∣∣
x0=y(s)

G(y (s))ds. (8.3.6)

We now prove the a-posteriori error estimate in Theorem 8.2 using Theorem
8.3.

Proof of Theorem 8.2. Let x(t ) be the solution of the initial value problem
(8.1.1). Further note that t 7→Nθ

(
t ;x

)
satisfies the initial value problemN ′

θ

(
t ;x0

)=F
(
Nθ

(
t ;x0

))+[
N ′
θ

(
t ;x0

)−F
(
Nθ

(
t ;x0

))]
,

Nθ

(
0;x0

)= x0.
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Setting G
(
Nθ

(
t ;x0

))=N ′
θ

(
t ;x0

)−F
(
Nθ

(
t ;x0

))
, from (8.3.6) we obtain

∥∥∥x (t )−Nθ

(
t ;x0

)∥∥∥
2
=

∥∥∥∥∥∥
∫ t

0

∂φs,t
F

(
y0

)
∂y0

∣∣∣∣
y0=Nθ(s;x0)

G
(
Nθ

(
s;x0

))
ds

∥∥∥∥∥∥
2

≤ δ
∥∥∥∥∥
∫ t

0

[
N ′
θ

(
s;x0

)−F
(
Nθ

(
s;x0

))]
ds

∥∥∥∥∥
2

,

where 0 < δ<∞ bounds the norm of the Jacobian matrix of φs,t
F for 0 ≤ s ≤ t ≤

∆t by virtue of F ∈ C1(Rd ,Rd ). Approximating the integral with the quadrature
and subsequently bounding the residual at the collocation points, we obtain

∥∥∥x (t )−Nθ

(
t ;x0

)∥∥∥
2
≤ δ

∥∥∥∥∥ C∑
c=1

ρc

[
N ′
θ

(
tc ;x0

)−F
(
Nθ

(
tc ;x0

))]∥∥∥∥∥
2

+ κ̄(∆t )p+1


≤ δ

(
ε

C∑
c=1

∣∣ρc
∣∣+ κ̄(∆t )p+1

)
,

where t ∈ [0,∆t ] and

κ̄ := κ ·
 max

t∈[0,∆t]

∥∥∥∥∥ d p

d t p

[
N ′
θ

(
t ;x0

)−F
(
Nθ

(
t ;x0

))]∥∥∥∥∥
2

> 0,

the right-hand side of (8.3.3). To conclude the proof we set α = κ̄δ, β =
δ

∑C
c=1

∣∣ρc
∣∣.

While for the proof it suffices that δ is finite, more practical bounds based on
the one-sided Lipschitz constant of the vector field can be obtained. We derive
such a bound in Appendix 8.B.

Given βε ≪ (∆t )p+1, Theorem 8.2 implies that the approximation provided
by the neural network is as accurate as the one provided by a pth order one-
step method with step size ∆t . This result allows us to replace the coarse
integrator ϕ∆t

C with a neural network-based solver maintaining the convergence
properties of Parareal.

8.4 Parareal method based on Extreme Learning Ma-
chines

The theoretical results presented in Section 8.3 hold for generic continuous
approximate solutions, particularly those provided by any neural network Nθ.
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8.4 Parareal method based on Extreme Learning Machines

We now restrict the neural architecture to Extreme Learning Machines (ELMs),
which allow a more efficient, hence faster, solution of the optimization problem
(8.3.1) as we will highlight in Section 8.6.

8.4.1 Architecture design

ELMs are feedforward neural networks composed of two layers, with trainable
parameters confined to the outermost layer. We draw the weights of the first
layer from the continuous uniform distribution U (ω,ω), for a lower bound ω

and an upper bound ω which are set to −1 and 1, respectively, in all our exper-
iments. We then aim to approximate the solution of (8.1.1) at a time t with the
parametric function

Nθ

(
t ;x0

)= x0 +
H∑

h=1
wh

(
ϕh (t )−ϕh (0)

)= x0 +
H∑

h=1
wh

(
σ

(
ah t +bh

)−σ(
bh

))

= x0 +θ⊤σ
(
a t +b

)
, a =


a1
...

aH

 , b =


b1
...

bH

 ∈RH , θ =


w⊤

1
...

w⊤
H

 ∈RH×d ,

(8.4.1)

by training the weights collected in the matrix θ. Here, ϕh(t ) =σ(ah t +bh) ∈
R, h = 1, . . . , H , is a given set of basis functions with ah ,bh ∼ U (ω,ω̄), and
σ ∈ C∞(R,R) a smooth activation function. In the numerical experiments, we
always choose σ(·) = tanh(·). The architecture in (8.4.1) satisfies the initial
condition of (8.1.1), i.e., Nθ

(
0;x0

)= x0. In addition, t 7→Nθ

(
t ;x0

)
and σ have

the same regularity.

8.4.2 Algorithm design

Our method closely mimics the Parareal algorithm but with the network (8.4.1)
deployed as a coarse propagator in the Parareal update (8.2.2). While in the
classical Parareal algorithm the coarse propagatorϕ∆tn

C is assumed to be known
for all sub-intervals and Parareal iterations, we do not make this assumption in
our approach. Instead, we determine individual weights for the update of each
of the initial conditions featuring in the update (8.2.2) to allow for a better
adaptation to the local behavior of the approximated solution. Furthermore,
our neural coarse integrator ϕ∆tn

C is not known ahead of time but is recovered
and changing in the course of the Parareal iteration. Learning the coarse in-
tegrator involves training an ELM on each of the sub-intervals to solve the
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ODE (8.1.1) at a set of fixed collocation points in the sub-interval. This pro-
cedure would be prohibitively expensive for generic neural networks trained
with gradient-based methods. However, for ELMs, estimating the matrix θ in
(8.4.1) is considerably cheaper and comparable with classical collocation ap-
proaches, striking a balance between the computational efficiency, desirable
behavior, and flexibility of the integrator. Finally, in Section 8.5 we demon-
strate that our approach is provably convergent.

8.4.3 Training strategy

The neural coarse propagator for solution (8.1.1) on the time interval [0,T ] is
obtained by splitting the interval into N sub-intervals, ∆tn = tn+1− tn , t0 = 0 <
t1 < ·· · < tN = T , and training N individual ELMs in sequence. On the nth
sub-interval [tn , tn+1] we train an ELM of the form (8.4.1) to solve the ODE
system (8.1.1) approximately on this sub-interval. The initial condition at time
tn is obtained by the evaluation of the previous Parareal correction step. Since
the vector field F in (8.1.1) does not explicitly depend on the time variable, we
can restrict our presentation to a solution on a sub-interval [0,∆tn]x′ (t ) =F (

x (t )
)

,

x (0) = xi
n ,

(8.4.2)

where the superscript i refers to i th Parareal iterate.

To train an ELM (8.4.1) on the sub-interval [0,∆tn], we introduce C collocation
points 0 ≤ tn,1 < ·· · < tn,C ≤ ∆tn , where the subscript n keeps track of the
interval length ∆tn emphasizing the independent choice of collocation points
on each sub-interval. For a given initial condition xi

n , we find a matrix θi
n such

that Nθi
n

approximately satisfies (8.4.2) for all tn,c , c = 1, . . . ,C , by solving the
optimization problem

θi
n = arg min

θ∈RH×d

C∑
c=1

∥∥∥∥∥N ′
θ

(
tn,c ;xi

n

)
−F

(
Nθ

(
tn,c ;xi

n

))∥∥∥∥∥
2

2

. (8.4.3)

This hybrid Parareal method returns approximations of the solution at the time
nodes t0, ..., tN , which we call x0, ...,xN . Furthermore, since the ELMs on
sub-intervals are smooth functions of time, one could also access a piecewise
smooth approximation of the curve [0,T ] ∋ t 7→ x(t ) by evaluating the individ-
ual ELMs upon convergence of the Parareal iteration

x̃ (t ) =Nθn

(
t − tn ;xn

)
, t ∈ [

tn , tn+1
)

, n = 0, . . . , N −1. (8.4.4)

Here, θn and xn are the weight matrix and the initial condition at the time tn

in the final Parareal iteration. Note that even though the points xi
n are updated
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in each Parareal iteration (8.2.2), they do not tend to change drastically, and
we can initialize θi+1

n in (8.4.3) with the previous iterate θi
n to speedup conver-

gence. We terminate the Parareal iteration when either the maximum number
of iterations is reached or the difference between two consecutive iterates sat-
isfies a given tolerance.

Algorithm 4 Hybrid Parareal algorithm based on ELMs

1: Inputs : x0, tol, max_it
2: error←tol+1, i ← 1, x0

0 ← x0

3: for n = 0 to N −1 do ▷ Zeroth iterate

4: Find θ0
n = argminθ∈RH×d

∑C
c=1

∥∥∥∥∥N ′
θ

(
tn,c ;x0

n

)
−F

(
Nθ

(
tn,c ;x0

n

))∥∥∥∥∥
2

2

5: x0
n+1 ←Nθ0

n

(
∆tn ;x0

n

)
, xS,−1

n+1 ←Nθ0
n

(
∆tn ;x0

n

)
6: end for
7: while i <max_it and error>tol do
8: error← 0
9: for n = 0 to N −1 do ▷ Fine integrator, Parallel For Loop

10: xF
n+1 ←ϕ

∆tn
F (xi−1

n )
11: end for
12: xi

0 ← x0

13: for n = 0 to N −1 do

14: Find θi
n = argminθ∈RH×d

∑C
c=1

∥∥∥∥∥N ′
θ

(
tn,c ;xi

n

)
−F

(
Nθ

(
tn,c ;xi

n

))∥∥∥∥∥
2

2

15: xS
n+1 ←Nθi

n

(
∆tn ;xi

n

)
▷ Next coarse approximation

16: xi
n+1 ← xF

n+1 +xS
n+1 −xS,−1

n+1 ▷ Parareal correction
17: xS,−1

n+1 ← xS
n+1

18: error← max

{
error,

∥∥∥xi
n+1 −xi−1

n+1

∥∥∥
2

}
19: end for
20: i ← i +1
21: end while
22: return

{
xi−1

0 , . . . ,xi−1
N

}
,
{
θi−1

0 , . . . ,θi−1
N−1

}

8.4.4 Implementation details

Our hybrid Parareal method is described in Algorithm 4, and the Python code
can be found in the associated GitHub repository1. The zeroth iterate of the

1https://github.com/davidemurari/ELMHybridParareal
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method, starting in line 3, only relies on ELMs to get intermediate initial con-
ditions x0

n , n = 0, . . . , N −1. These initial conditions are then used to solve with
the fine integrators ϕ∆tn

F the N initial value problems in parallel, see line 10.
These approximations are subsequently updated in the Parareal correction step
of line 16.

The Algorithm 4 relies on solving a nonlinear optimization problem in lines 4
and 14 to update the weights θi

n . For all systems studied in Section 8.6 but the
Burgers’ equation, we use the Levenberg–Marquardt algorithm [31, Chapter
10]. For Burgers’ equation, we rely on the Trust Region Reflective algorithm
[2] to exploit the sparsity of the Jacobian matrix. The optimization algorithms
are implemented with the least_squaresmethod of scipy.optimize.
In both cases, we provide an analytical expression of the Jacobian of the loss
function with respect to the weight θ, derived in Appendix 8.C. Additionally,
all the systems but the ROBER problem are solved on a uniform grid, i.e., tn =
nT /N . For the ROBER problem, we work with a non-uniform grid, refined in
[0,1], to capture the spike in the solution occurring at small times.

As common in neural network-based approaches for solving differential equa-
tions, see, e.g., [4], we opt for C equispaced collocation points in each time
interval. We also tested Lobatto quadrature points in the Lorenz example in
subsection 8.6.3. In all experiments, we set C = 5 and the number of hidden
neurons H =C = 5 to match.

8.5 Convergence of the ELM-based Parareal method

In this section, we study the convergence properties of Algorithm 4. Following
the Parareal analysis in Theorem 8.1, we only need to consider the time interval
[0,∆t ] and collocation points 0 < t1 < ·· · < tC <∆t satisfying Assumption 1.

We write our solution ansatz, (8.4.1), and its time derivative evaluated at the
collocation points as the matrices

X̃θ
(
x,∆t

)=

Nθ

(
t1;x

)⊤
...

Nθ

(
tC ;x

)⊤
 ∈RC×d , X̃′

θ

(
x,∆t

)=

N ′
θ

(
t1;x

)⊤
...

N ′
θ

(
tC ;x

)⊤
 ∈RC×d ,

and shorthand the evaluation of the vector field F on the rows of the matrix
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X ∈RC×d

F (X) =


F

(
X⊤e1

)⊤
...

F
(
X⊤eC

)⊤
 ∈RC×d ,

with e1, . . . ,eC ∈RC the canonical basis of RC .

We further rewrite the ansatz as X̃θ
(
x,∆t

) = 1C x⊤ + (H−H0)θ, where 1C =[
1 . . . 1

]⊤ ∈RC ,

H =


σ

(
a⊤t1 +b⊤

)
...

σ
(
a⊤tC +b⊤

)
 ∈RC×H , H′ =


σ′

(
a⊤t1 +b⊤

)
⊙a⊤

...
σ′

(
a⊤tC +b⊤

)
⊙a⊤

 ∈RC×H ,

with a⊤ =
[

a1 · · · aH

]
, b⊤ =

[
b1 · · · bH

]
, and σ ∈ C∞(R,R) evaluated

componentwise while ⊙ denotes the componentwise product. As for the ex-
periments, we restrict ourselves to the case C = H for which one can prove, see
[19, Theorem 2.1], that with probability one H and H′ are invertible for a,b

drawn from any continuous probability distribution. Finally, H0 = 1Cσ
(
b⊤

)
∈

RC×H in X̃θ
(
x,∆t

)
, accounts for the initial condition.

Theorem 8.4 (Existence and regularity of the solution). For the loss function

L(θ,x) :=
∥∥∥∥X̃′

θ

(
x,∆t

)−F
(
X̃θ

(
x,∆t

))∥∥∥∥2

F
(8.5.1)

with Nθ in X̃θ defined as in (8.4.1), σ a smooth 1−Lipschitz activation function,
and a choice of step size

∆t ∈
(

0,

(∥∥∥(
H′)−1

∥∥∥
2

Lip(F )
p

C∥a∥2

)−1
)

, (8.5.2)

there exists a unique Lipschitz continuous function Rd ∋ x 7→ θ(x) ∈RH×d such
that L(θ(x),x) = 0 for every x ∈Rd .

We remark that the loss function in (8.5.1) using the Frobenius norm ∥ · ∥F

is a reformulation of (8.3.1) in a matrix form. We now prove Theorem 8.4
using a parameterized version of Banach Contraction Theorem presented in
[3, Lemma 1.9].

295



Parallel-in-Time Solutions with Extreme Learning Machines

Proof. The requirement L(θ,x) = 0 implies that the ansatz X̃θ
(
x,∆t

)= 1C x⊤+
(H−H)θ and its derivative, X̃′

θ

(
x,∆t

)= H′θ, satisfy the ODE (8.4.2),

X̃′
θ

(
x,∆t

)= F
(
X̃θ

(
x,∆t

))
,

which can be equivalently written as H′θ = F
(

1C x⊤+
(
H−H

)
θ

)
. We introduce

the fixed point map

T
(
θ,x

)= (
H′)−1 F

(
1C x⊤+

(
H−H

)
θ

)
∈RH×d ,

and, when not differently specified, we denote with Lip( f ) the Lipschitz con-
stant of a Lipschitz continuous function f with respect to the ℓ2 norm. Since
Lip(σ) ≤ 1, we have∥∥∥H−H

∥∥∥2

F
=

C∑
c=1

∥∥∥∥σ(
a⊤tc +b⊤

)
−σ

(
b⊤

)∥∥∥∥2

2
≤C∥a∥2

2(∆t )2

as tc ∈ (0,∆t ). Furthermore,∥∥F(X)−F(Y)
∥∥2

F =
C∑

c=1

∥∥∥F (X⊤ec )−F (Y⊤ec )
∥∥∥2

2
≤ Lip

(F)2 ∥X−Y∥2
F

for any X,Y ∈ RC×d . Setting ℓθ =
∥∥∥(

H′)−1
∥∥∥

2
Lip(F )

p
C∥a∥2∆t we conclude

that T (·,x) is Lipschitz continuous with constant ℓθ < 1 for∆t satisfying (8.5.2),
as ∥∥T (θ2,x)−T (θ1,x)

∥∥
F ≤

∥∥∥(
H′)−1

∥∥∥
2

Lip(F )
p

C∥a∥2∆t
∥∥θ2 −θ1

∥∥
F

= ℓθ
∥∥θ2 −θ1

∥∥
F

for any θ1,θ2 ∈ RH×d . We note that the 2−norm of
(
H′)−1 can be used since

for any pair of matrices A,B of compatible dimensions, it holds ∥AB∥F ≤
∥A∥2∥B∥F . Furthermore, T (θ, ·) is Lipschitz continuous with Lipschitz con-
stant given by ℓx =

∥∥∥(
H′)−1

∥∥∥
2

Lip
(F)p

C , since∥∥∥T
(
θ,x2

)−T
(
θ,x1

)∥∥∥
F
≤

∥∥∥(
H′)−1

∥∥∥
2

Lip
(F)∥∥∥1C

(
x2 −x1

)⊤∥∥∥
F

, ∀x1,x2 ∈Rd

=
∥∥∥(

H′)−1
∥∥∥

2
Lip

(F)p
C

∥∥x2 −x1
∥∥

2 = ℓx
∥∥x2 −x1

∥∥
2 .

By [3, Lemma 1.9], we can hence conclude that, provided ∆t satisfies (8.5.2),
there is a well-defined Lipschitz continuous function θ :Rd →RH×d , with

Lip
(
θ
)≤ ℓx

1−ℓθ
=

∥∥∥(
H′)−1

∥∥∥
2

Lip
(F)p

C

1−
∥∥∥(

H′)−1
∥∥∥

2
Lip(F )

p
C∥a∥2∆t

,

such that θ(x) = T (θ(x),x) for every x ∈Rd , or equivalently L(θ(x),x) = 0.
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8.5 Convergence of the ELM-based Parareal method

Proposition 8.1 (Convergence of the hybrid Parareal method). Consider the
initial value problem (8.1.1) with F : Rd → Rd a smooth Lipschitz continu-
ous vector field. Suppose that the time interval [0,T ] is partitioned into N
intervals of size ∆t = T /N such that ∆t satisfies (8.5.2) and choose the C
collocation points 0 ≤ t1 < ·· · < tC ≤ ∆t to satisfy the Assumption 1. Let σ
be a smooth 1−Lipschitz function. Then for the coarse integrator ϕ∆t

C (x) =
x+θ(x)T

(
σ(a∆t +b)−σ(b)

)
with θ(x) as in Theorem 8.4 and the fine integra-

tor ϕ∆t
F =φ∆t

F , there exist positive constants α,γ,β such that, at the i−th iterate
of the hybrid Parareal method, the following bound holds

∥∥∥x(tn)−xi
n

∥∥∥
2
≤ α

γ

(
γ(∆t )p+1

)i+1

(i +1)!

(
1+β∆t

)n−i−1
i∏

j=0

(
n − j

)
. (8.5.3)

Proof. The proof is based on showing that our network satisfies assumptions
(8.2.3) and (8.2.4) of Theorem 8.1. Theorem 8.4 guarantees that, for ∆t satis-
fying (8.5.2), x 7→ θ(x) is Lipschitz continuous with Lipschitz constant Lip

(
θ
)
.

Further noting that
∥∥σ(a∆t +b)−σ(b)

∥∥
2 ≤ ∥a∥2∆t as Lip(σ) ≤ 1 we can write∥∥∥ϕ∆t

C

(
x2

)−ϕ∆t
C

(
x1

)∥∥∥
2
≤ ∥∥x2 −x1

∥∥
2 +∥a∥2∆t Lip

(
θ
)∥∥x2 −x1

∥∥
2

= (
1+β∆t

)∥∥x2 −x1
∥∥

2

for any x1,x2 ∈ Rd , where β := Lip
(
θ
)∥a∥2, and hence condition (8.2.4) is

satisfied. Given that θ(x) = T (θ(x),x), as guaranteed by Theorem 8.4, satisfies
the collocation conditions exactly, Theorem 8.2 ensures that there exists α >
0 such that

∥∥∥ϕ∆t
F (x)−ϕ∆t

C (x)
∥∥∥

2
≤ α

(
∆t

)p+1. Because of the smoothness of
F and σ, one can also Taylor expand in time and guarantee the existence of
continuously differentiable functions cp+1,cp+2, . . . such that

φ∆t
F (x)−Nθ

(
∆t ;x

)= cp+1(x)(∆t )p+1 + cp+2(x)(∆t )p+2 +·· · .

This allows concluding that (8.2.3) holds, and the hybrid Parareal satisfies
(8.5.3).

As for the classical Parareal method, at the nth iterate, our hybrid Parareal
method with the exact fine integrator replicates the analytical solution at the
time instants t0, . . . , tn .

In practice, as presented in the previous section, we do not have access to the
function x 7→ θ(x), but we only approximate its value at the points involved in
the hybrid Parareal iterates, i.e., θi

n ≈ θ(xi
n). Let us denote by θ̂ : Rd → RH×d
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the function approximating θ, so that θi
n = θ̂(xi

n). This function is typically pro-
vided by a convergent iterative method minimizing (8.5.1). Under the smooth-
ness assumptions of Proposition 8.1 and supposing the map x 7→ θ̂(x) is Lip-
schitz continuous, i.e., the adopted optimization method depends regularly on
the parameter x ∈ Rd , the convergence in Proposition 8.1 also holds for the
approximate case. To see this, note that condition (8.2.3) also holds for the ap-
proximate case as long as F is smooth enough and the collocation conditions
are solved sufficiently accurately. In practice, based on (8.3.4), it suffices to
have

max
c=1,...,C

∥∥∥∥∥
(

X̃′
θi

n

(
x,∆t

)−F
(
X̃θi

n

(
x,∆t

)))⊤
ec

∥∥∥∥∥
2

≤ α̃(
∆t

)p+1

for an α̃> 0, and every n = 0, . . . , N −1 and iterate i . Furthermore, assumption
(8.2.4) follows from the Lipschitz regularity of the approximate function θ̂.

8.6 Numerical results

This section collects several numerical tests that support our theoretical deriva-
tions. We consider six dynamical systems, four of which come from the exper-
imental section in [14], to which we add the SIR model and the ROBER prob-
lem. We assume that, for each of these systems, a single initial value problem
is of interest and explore how ELM-based coarse propagators perform for that
initial value problem. For the one-dimensional Burgers’ equation, we consider
a semi-discretization with centered finite differences and provide the experi-
mental results for different initial conditions, imposing homogeneous Dirichlet
boundary conditions on the domain [0,1].

The chosen fine integrators are classical Runge–Kutta methods with a smaller
timestep than the coarse one ∆t . More explicitly, we assume that the coarse
timestep ∆t is a multiple of the fine timestep δt and one coarse integrator step
∆t , corresponds to ∆t/δt steps of the size δt of the fine integrator. In all
experiments, we use equispaced time collocation points, and for the Lorenz
system, we also use Lobatto points. For stiff problems such as Burgers’ and
ROBER’s, we use the implicit Euler method (IE), with update xn+1 = xn +
δtF (xn+1), as a fine integrator, while for the others we found Runge-Kutta
(RK4),

xn+1 = xn + δt

6

(
k1 +2k2 +2k3 +k4

)
with

k1 =F (
xn

)
, k2 =F

(
xn +δt

k1

2

)
, k3 =F

(
xn +δt

k2

2

)
, k4 =F (

xn +δtk3
)

.
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8.6 Numerical results

to provide accurate solutions with moderately small step sizes. We specify the
adopted timesteps in the dedicated sections below.

The purpose of this paper is to demonstrate that our hybrid Parareal method
based on ELMs is theoretically motivated and practically effective, rather than
the high-performance implementation. Thus, most of our experiments are run
on a single processor where the parallel speedup would result from parallel ex-
ecution of the fine integrators on the sub-intervals in proportion to the number
of cores used. To demonstrate the principle in hardware we run the ROBER’s
problem on five processors available to us and compare to the serial application
of the fine integrator, however Parareal benefits will scale up with the number
of cores. For Burgers’ equation, we again use five processors for convenience
since this allows us to do 100 repeated experiments faster.

In all plots, the label “para” refers to the hybrid methodology with neural net-
works as coarse propagators, while “ref” refers to the reference solution ob-
tained by the sequential application of the fine solver. We always plot the
piecewise smooth Hybrid Parareal approximant constructed as (8.4.4). We run
the Hybrid Parareal until the difference between two consecutive iterates was
at most tol= 10−4. As a safeguard, we put a hard limit, max_it= 20, on the
iteration number, which was, however, not triggered in any of our experiments.
All experiments were run on a MacBook Pro 2020 with an Intel i5 processor,
and all the computational times averaged over 100 runs per experiment. For
each experiment, we report an average time per update of the coarse integra-
tor on a sub-interval, which is also averaged over the number of sub-intervals.
We measure the timing when computing the zeroth iterate in lines 3-6 of Al-
gorithm 4 to isolate the effects of warm starts used in Parareal update in later
iterations. We also report a total average time to compute the solution, includ-
ing the above mentioned coarse integrator updates along with possibly parallel
execution of the fine step integrators.

8.6.1 SIR

The SIR model is one of the simplest systems considered in mathematical bi-
ology to describe the spread of viral infections. SIR consists of three coupled
ODEs for x = [x1, x2, x3]⊤ with parameters β= 0.1, and γ= 0.1:

x ′
1 (t ) =−βx1 (t ) x2 (t ) ,

x ′
2 (t ) =βx1 (t ) x2 (t )−γx2 (t ) ,

x ′
3 (t ) = γx2 (t ) ,

x (0) =
[

0.3 0.5 0.2
]⊤

.

(8.6.1)
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We use this example to compare two different types of coarse propagators,
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Figure 8.6.1: SIR: Hybrid Parareal solution with (left) an ELM-based coarse propa-
gator, (right) flow map coarse propagator.
the ELM-based approach with a neural operator-type flow map trained to ap-
proximate the solutions of the dynamical system described by (8.6.1) for initial
conditions in the compact set Ω= [0,1]3, and times in [0,1], see also [12, 39].
Given that the Parareal method needs to evaluate the coarse propagator on sev-
eral initial conditions, the learned flow map is the most natural neural network-
based alternative, while a standard Physics Informed Neural Network, which
needs to be fitted for each initial condition, would be computationally too ex-
pensive. Both coarse propagators use the same coarse timestep ∆t = 1, while
the fine solver timestep is δt = 10−2. The piecewise smooth approximations
computed with both methods are plotted in Figure 8.6.1. We report the corre-
sponding timings in Table 8.6.1.

Timing breakdown ELM Flow
Offline training phase 0s ∼20 minutes
Average cost coarse step in the zeroth iterate 0.0009773s 0.0002729s
Average cost to produce the solution 0.3940s 0.8047s

Table 8.6.1: SIR: Computational time for the ELM and flow map based Hybrid
Parareal variants on a single core.

The ELM-based approach took an average of 0.3940 seconds to converge to
the final solution over 100 repeated experiments, while the flow map approach
took an average time of 0.8047 seconds. The reason behind the higher cost
of the flow map approach is that ELMs minimize the residual more accurately
than the flow map approach since they are trained for the specific initial con-
ditions of interest, leading to a faster convergence of the Parareal method. If
the offline training phase is accounted for, about 20 more minutes must be
considered for the flow map approach, while no offline training is required
for the ELM-based approach. The offline training cost depends on the chosen
architecture and training strategy. These details are provided in Appendix 8.D.

Given the reported results, it is clear that while both methods are comparable
in terms of accuracy, the distribution of the costs is considerably different. The
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8.6 Numerical results

flow map approach has a high training cost and a low evaluation cost but is also
less accurate, hence needing more Parareal iterations. On the other hand, the
ELM strategy, having no offline training phase and yielding more accurate so-
lutions and hence needing fewer Parareal iterations, saves substantial time. For
this reason, we will only focus on the ELM-based approach in the following
experiments.

8.6.2 ROBER

The ROBER problem is a prototypical stiff system of coupled ODEs with pa-
rameters k1 = 0.04, k2 = 3 ·107, and k3 = 104,

x ′
1 (t ) =−k1x1 (t )+k3x2 (t ) x3 (t ) ,

x ′
2 (t ) = k1x1 (t )−k2x2

2 (t )−k3x2 (t ) x3 (t ) ,

x ′
3 (t ) = k2x2

2 (t ) ,

x (0) =
[

1 0 0
]⊤

.

(8.6.2)

As ROBER’s solution spikes for short times, the usual approach is to discretize
the time non-uniformly. Therefore we choose the coarse step size to be ∆t =
10−2 for times in [0,1] and ∆t = 3 for times in [1,100]. The fine integrator
timestep is δt = 10−4. We remark that ROBER’s problem is commonly solved
using a variable step-size method, for example, based on an embedded Runge-
Kutta method [16, Section II.4]. Fixing the step size allows us to understand
how the proposed hybrid method performs on stiff equations without extra
complication of step adaptivity. A variable step Parareal method (regardless if
the coarse propagator is learned or classical), would involve adaptivity in both
coarse and fine step and is beyond scope of this work.

Timing breakdown ELM Sequential IE
Average cost coarse step in the zeroth iterate 0.001881s
Average cost to produce the solution 179.8280s 263.2613s

Table 8.6.2: ROBER: Computational time for Hybrid Parareal using five cores versus
sequential application of IE with fine step δt .
We report the obtained approximate solutions in Figure 8.6.2 and the timings in
Table 8.6.2. In these experiments, the fine integrators were executed in parallel
on five cores. Thus, the total average time to compute the solution reflects the
parallel speed up, albeit for a small number of cores. Given this stiff problem
requires an implicit fine integrator, we expect the computational costs of the
update of the coarse integrator, 0.001881s, and one step of the fine integrator,
0.000263s, to be closer than when using an explicit scheme as it is the case
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Figure 8.6.2: ROBER: Components of the Hybrid Parareal solution. To plot all com-
ponents on the same scale, x2 was scaled by a factor of 104.

in the remaining examples. Additionally, to cover one coarse step, the fine
integrator needs to perform at least 100 steps, given our choices for δt and ∆t .
These respective costs help to optimally balance the choice of the number of
sub-intervals versus the number of fine steps in each sub-interval, along with
practical considerations like the number of cores available.

8.6.3 Lorenz

For weather forecasts, real-time predictions are paramount, rendering parallel-
in-time solvers highly relevant in this context. Lorenz’s equations

x ′
1 (t ) =−σx1 (t )+σx2 (t ) ,

x ′
2 (t ) =−x1 (t ) x3 (t )+ r x1 (t )−x2 (t ) ,

x ′
3 (t ) = x1 (t ) x2 (t )−bx3 (t ) ,

x (0) =
[

20 5 −5
]⊤

,

(8.6.3)

describe one simple model for weather prediction. Different parameter values
give rise to considerably different trajectories for this system. We set σ = 10,
r = 28, and b = 8/3 to have chaotic behavior. We compute an approximate
solution up to time T = 10, using ELMs as a coarse propagator with ∆T =
T /250 and RK4 with step δt = T /14500 as a fine integrator.
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Figure 8.6.3: Lorenz: Hybrid Parareal solution with (left) uniform collocation points,
(right) Lobatto collocation points.

To show that the algorithm is not overly sensitive to the choice of the colloca-
tion points, we repeated the simulations using Lobatto collocation points. The
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qualitative behavior of the produced solutions for one choice of trained weights
is reported in Figure 8.6.3 and the corresponding timings in Table 8.6.3. Al-
though the Lorenz system is chaotic, the proposed hybrid solver provides an
accurate approximate solution on the considered interval. Additionally, the
average cost of one evaluation of the coarse ELM-based integrator does not
appear to depend strongly on the system’s complexity but mostly on its dimen-
sion. Indeed, the average cost of one ELM evaluation is comparable with the
one for the SIR problem, see Table 8.6.1.

Timing breakdown Uniform Lobatto
Average cost coarse step in the zeroth iterate 0.0009430s 0.0009371s
Average cost to produce the solution 1.8312s 1.8184s

Table 8.6.3: Lorenz: Computational time for the ELM-based Hybrid Parareal with
uniform and Lobatto nodes on a single core.

8.6.4 Arenstorf orbit

The three-body problem is a well-known problem in physics that pertains to the
time evolution of three bodies interacting because of their gravitational forces.
Changing the ratios between the masses, their initial conditions, and velocities
can starkly alter the system’s time evolution, and many configurations have
been thoroughly studied. One of them is the stable Arenstorf orbit, which
arises when one of the masses is negligible, and the other two masses orbit in
a plane. The equations of motion for this specific instance of the three-body
problem are

x
′′
1 (t ) = x1 (t )+2x ′

2 (t )−b x1+a
D1

−a
x ′

1(t )−b
D2

,

x
′′
2 (t ) = x2 (t )−2x ′

1 (t )−b x2(t )
D1

−a x2(t )
D2

,[
x1 (0) x ′

1 (0) x2 (0) x ′
2 (0)

]⊤ =
[

0.994 0 0 v0
2

]⊤
,

(8.6.4)

D1 =
((

x1 (t )+a
)2 +x2 (t )2

)3/2
, D2 =

((
x1 (t )−b

)2 +x2 (t )2
)3/2

,

v0
2 = −2.00158510637908252240537862224, a = 0.12277471, and b = 1− a.

This configuration leads to a periodic orbit of period 17.06521656015796 [16].
In practice, we transform (8.6.4) into a first order system via the velocity vari-
ables v1(t ) := x ′

1(t ) and v2(t ) := x ′
2(t ). We include the plot of the obtained

solution for time up to T = 17 and timesteps ∆t = T /125, and δt = T /80000,
in Figure 8.6.4 and the timings in Table 8.6.4.

This experiment serves to illustrate the benefits of using a Parareal-like cor-
rection of the neural network-based solution. Indeed, the approximate solution
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Figure 8.6.4: Arenstorf: Components of the Hybrid Parareal solution (left), and the
orbit of the initial condition (right).

for short times does not accurately follow the correct trajectory. One possible
remedy would be to restrict the step size ∆t as was done for the ROBER’s
problem. However, even for this larger time step choice, after just one step ∆t ,
the Parareal correction resets the initial condition for the next interval, bringing
the solution back onto the stable orbit. Thus, not relying solely on a network-
based solution allows us to compute an accurate solution for later times, even
though initially, the solution departs the orbit.

Timing breakdown ELM
Average cost coarse step in the zeroth iterate 0.001912s
Average cost to produce the solution 9.7957s

Table 8.6.4: Arenstorf: Computational time for Hybrid Parareal using a single core.

8.6.5 Viscous Burgers’ equation

Most of the systems considered up to now are low-dimensional. A natural way
to test the method’s performance on higher-dimensional systems is to work
with spatial semi-discretizations of PDEs, where the mesh over which the spa-
tial discretization is defined determines the system’s dimension. We consider
the one-dimensional Burgers’ equation

∂t u
(
x, t

)+u
(
x, t

)
∂x u

(
x, t

)= ν∂xx u
(
x, t

)
, x ∈Ω= [

0,1
]

,

u
(
x,0

)= sin(2πx), x ∈Ω,

u
(
0, t

)= u
(
1, t

)= 0, t ≥ 0.

(8.6.5)

In this section, we only report the results for the initial condition in Equation
(8.6.5), but we include results for two more choices of initial conditions in
Appendix 8.F. All the experiments were run on five cores. In all tests, we
work with viscosity parameter ν= 1/50, a uniform spatial grid of 51 points in
Ω= [0,1] and coarse and fine step sizes ∆t = 1/50 and δt = 1/500, respectively.
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8.7 Conclusions and future extensions

The spatial semi-discretization with centered finite differences writesu′ (t ) =−u (t )⊙ (
D1u (t )

)+νD2u (t ) ,

u (0) = sin(2πx) ∈R51,

where x =
[

x0 x1 . . . x50

]⊤
, xi = i∆x, ∆x = 1/50, i = 0, . . . ,50, ⊙ is the

component-wise product, and D1,D2 ∈R51×51 are the centered finite difference
matrices of first and second order, respectively, suitably corrected to impose the
homogeneous Dirichlet boundary conditions on t 7→ u(t ).
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Figure 8.6.5: Burgers: Snapshots of the solution obtained with Hybrid Parareal (left),
comparison of the solution surfaces between Hybrid Parareal and the fine integrator
applied serially (right). Solution corresponding to u0(x) = sin(2πx).

We report the qualitative behavior of the solutions in Figure 8.6.5. Subfig-
ure (a) tracks the solution at ten equally spaced time instants in the interval
[0,T = 1]. Subfigure (b) shows the solution surfaces obtained with the IE
method on the left and the hybrid Parareal for one set of trained parameters
on the right. We include the timings in Table 8.6.5. We observe that the cost
of the presented hybrid Parareal method grows with the dimensionality d of
the problem. However, we remark that for each of the 51 components of the
solution, the displayed results were obtained with only H = 5 coefficients.

Timing breakdown ELM
Average cost coarse step in the zeroth iterate 0.2098s
Average cost to produce the solution 29.4740s

Table 8.6.5: Burgers: Computational time for Hybrid Parareal using five cores, and
initial condition u0(x) = sin(2πx).

8.7 Conclusions and future extensions

In this manuscript, we proposed a hybrid parallel-in-time algorithm to solve
initial value problems using a neural network as a coarse propagator within
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the Parareal framework. We derived an a-posteriori error estimate for generic
neural network-based approximants. Based on these theoretical results, we de-
fined a hybrid Parareal algorithm involving ELMs as coarse propagators which
inherits the theoretical guarantees of the Parareal algorithm.

We compared our hybrid Parareal solver based on ELMs with one based on the
flow map approach on the SIR problem. We demonstrated that our approach
led to lower computational costs and no offline training phase. We reserve
the judgment of flow map performance. However, we also tested it for other
examples, including the Brusselator, where we noticed that the offline training
phase can be very intricate. This is due to the fact that the flow map approach
relies on the existence of a forward invariant subset Ω of Rd , or equivalently
for every x0 ∈Ω, also x(t ) ∈Ω for all t ∈ [0,∆t ] where x(0) = x0.

The most promising extension of this work is to include a mechanism allow-
ing for time-adaptivity in the algorithm, i.e., for coarsening or refinement of
the temporal grid based on the local behavior of the solution. It would also
be interesting to test our approach on higher-dimensional systems with high-
performance computing hardware.
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Appendix

8.A A-posteriori error estimate based on the defect

We now derive an alternative a-posteriori estimate for network-based approxi-
mate solutions based on defect control.

Lemma 8.1. Consider the initial value problem (8.1.1), given byx′ (t ) =F (
x (t )

)
,

x (0) = x0,

where F :Rd →Rd is continuously differentiable and admits a unique solution.
Let y :R→Rd satisfyy′ (t ) =F (

y (t )
)+d (t ) , d :R→Rd ,

y (0) = x0.

Then z(t ) := y(t )−x(t ) satisfies the linear differential equationz′ (t ) = A (t )z (t )+d (t ) ,

z (0) = 0,
(8.A.1)

where

A(t ) =
∫ 1

0
DF (x(t )+ sz(t ))ds

and DF is the Jacobian matrix of F .

Proof. To prove the lemma, it suffices to highlight that

F (
y (t )

)−F (
x (t )

)= ∫ 1

0

d

d s
F (

x (t )+ sz (t )
)

ds = A (t )z (t ) .
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The solution to the linear problem (8.A.1) satisfies the following bound:

Lemma 8.2 (Theorem 1 in [38]). Let z(t ) solve the initial value problem in
(8.A.1). Suppose that ∥d(t )∥2 ≤ ε for t ≥ 0. Then,

∥z(t )∥2 ≤ ε
∫ t

0
exp

(∫ t

s
µ2

(
A (τ)

)
dτ

)
ds,

where

µ2(A) =λmax

(
A+ A⊤

2

)
is the logarithmic 2−norm of A.

For the proof of this lemma, see [17, Theorem 10.6].

As we are interested in solving (8.1.1), we set y(t ) :=Nθ

(
t ;x0

)
and introduce

the defect function

d (t ) :=N ′
θ

(
t ;x0

)−F
(
Nθ

(
t ;x0

))
.

We remark that the definition of d is of the same form as the loss (8.3.1). If
it was known that ∥d(t )∥2 ≤ ε for a tolerance ε > 0 and all t ∈ [0,∆t ], then by
Lemma 8.2 we could conclude that∥∥∥x (t )−Nθ

(
t ;x0

)∥∥∥
2
≤ ε

∫ t

0
exp

(∫ t

s
µ2

(
A (τ)

)
dτ

)
ds, t ∈ [

0,∆t
]

.

Given that the solution x(t ) is unknown, A(τ) and its logarithmic norm cannot
be computed exactly. Thus, for a more practical error estimate, we introduce an
assumption on the existence of a compact subsetΩ⊂Rd such that x(t )+sz(t ) ∈
Ω for (s, t ) ∈ [0,1]× [0,∆t ]. Then, we can proceed with the inequality chain as∥∥∥x (t )−Nθ

(
t ;x0

)∥∥∥
2
≤ ε

∫ t

0
eM(t−s)ds = εeM t −1

M
, (8.A.2)

where M := maxz∈Ωµ2(DF (z)) ∈R. Note that the right-hand side of (8.A.2) is
nonnegative for all t ≥ 0. In particular, (8.A.2) implies that a neural network
Nθ can be employed to approximate the solution of (8.1.1) which is as accurate
as a classical coarse solver ϕ∆t

C provided the norm of the defect ∥d(t )∥2 is
sufficiently small.

8.B Bound on the norm of the sensitivity matrix

In this appendix, we provide a practical bound for the norm of the Jacobian
of the flow map of a vector field F , assumed to be continuously differentiable
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8.C The Jacobian matrix of the loss function

with respect to the initial condition. For this, we differentiate the initial value
problem (8.1.1), given by d

d tφ
s,t
F

(
x0

)=F
(
φs,t
F

(
x0

)) ∈Rd ,

φs,s
F

(
x0

)= x0,
(8.B.1)

with respect to x0 and obtain
d

d t

(
∂φs,t

F (x0)
∂x0

)
= DF

(
φs,t
F

(
x0

)) ∂φs,t
F (x0)
∂x0

∈Rd×d ,

∂φs,s
F (x0)
∂x0

= Id ,
(8.B.2)

where Id ∈ Rd×d is the identity matrix. Equation (8.B.2) is generally known
as the variational equation of (8.B.1). This ODE is a non-autonomous linear
differential equation in the unknown matrix ∂x0φ

s,t
F (x0). In practice, (8.B.2)

should be solved jointly with (8.B.1). However, for the purpose of bounding
the Euclidean norm ∥∂x0φ

s,t
F (x0)∥2, it is not necessary to solve them. Following

[6, Chapter 2], we assume that φs,t
F (x0) ∈Ω for Ω⊂Rd compact and all 0 ≤ s ≤

t ≤∆t . This is not a restrictive assumption on compact time intervals given the
assumed regularity for F . Then, one can get∥∥∥∂x0φ

s,t
F

(
x0

)∥∥∥
2
≤

∥∥∥∂x0φ
s,s
F

(
x0

)∥∥∥
2

exp

(∫ t

s
µ2

(
DF

(
φs,s′
F

(
x0

)))
ds′

)

= exp

(∫ t

s
µ2

(
DF

(
φs,s′
F

(
x0

)))
ds′

)
≤ exp

(
M∆t

)
,

where M = maxz∈Ωµ2(DF (z)). We conclude that the constant δ in the proof of
Theorem 8.2 can be set to exp(M∆t ), with M positive or negative depending
on F .

8.C The Jacobian matrix of the loss function

In this subsection, we consider the loss function (8.5.1) and its gradient. Note
that (8.5.1) can be expressed as (8.3.1), which in turn can be related to the
solution of the nonlinear matrix equation

X̃′
θ

(
x,∆t

)= F
(
X̃θ

(
x,∆t

))
.

More explicitly, we have

X̃θ
(
x,∆t

)= 1C x⊤+
(
H−H

)
θ, 1C =

[
1 . . . 1

]⊤ ∈RC ,

X̃′
θ

(
x,∆t

)= H′θ.
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To minimize the loss function (8.3.1), we need the Jacobian of the matrix-
valued function Gθ(x,∆t ) = X̃′

θ
(x,∆t )−F(X̃θ(x,∆t )). As Gθ is a matrix-valued

function with matrix inputs, we rely on the vectorization operator, denoted by
vec, using the machinery of matrix-calculus introduced, for example, in [28].
We hence compute ∂vec

(
Gθ(x,∆t)

)
∂vec(θ) ∈RC d×Hd , given by

∂vec
(
Gθ

(
x,∆t

))
∂vec

(
θ
) = Id ⊗H′−

∂vec

(
F

(
X̃θ

(
x,∆t

)))
∂vec

(
θ
)

= Id ⊗H′− ∂vec
(
F (X)

)
∂vec(X)

∣∣∣
X=X̃θ(x,∆t)

∂vec
(
X̃θ

(
x,∆t

))
∂vec

(
θ
)

= Id ⊗H′− ∂vec
(
F (X)

)
∂vec(X)

∣∣∣
X=X̃θ(x,∆t)

(
Id ⊗

(
H−H

))
,

where Id ∈ Rd×d is the identity matrix, ⊗ is the Kronecker product, and vec
stacks the columns of the input matrix into a column vector. The Jacobian of
F in the last line depends on the vector field F , while the other terms do not.

Most of the dynamical systems we consider in the numerical experiments in
Section 8.6 are of low dimension. For this reason, for all the cases but Burgers’
equation, we assemble the Jacobian case by case, following this construction.
For Burgers’ equation, we instead implement it as a linear operator, specifying
its action and the action of its transpose onto input vectors. For the Burgers’
equation, we have

F (u) =−u⊙ (
D1u

)+νD2u ∈Rd ,

and hence F(X) =−X⊙ (XD⊤
1 )+νXD⊤

2 ∈RC×d . This expression implies that

∂vec
(
F (X)

)
∂vec(X)

=−diag

(
vec

(
XD⊤

1

))
−diag

(
vec(X)

)(
D1 ⊗ IC

)+νD2 ⊗ IC .

8.D Details on the network for the flow map approach

In this section, we provide details on the network for the flow map approach
required for the comparison of the training costs presented in Table 8.6.1. The
network used for the coarse propagator is based on the parametrization

z :=
[

x⊤0 , t
]⊤ 7→ tanh

(
A0z+a0

)=: h1 ∈R10,

hℓ 7→ tanh
(
Aℓhℓ+aℓ

)=: hℓ+1 ∈R10, ℓ= 1, · · · ,4,

h5 7→ x0 +
(
1−e−t

)
Ph5 =:Nθ

(
t ;x0

) ∈R3,
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8.E Experiment for Brusselator’s equation

where θ = {Aℓ,aℓ,P}4
ℓ=0. To train the network, implemented with PyTorch,

we use the Adam optimizer for 105 epochs, with each epoch consisting of
minimizing the ODE residual over 500 different randomly sampled collocation
points (t i ,xi

0) ∈ [0,1]× [0,1]3.

8.E Experiment for Brusselator’s equation

This section collects numerical experiments for the Brusselator, which is a sys-
tem of two scalar differential equations modeling a chain of chemical reactions
[1]. The equations write

x ′
1 (t ) = A+x2

1 (t ) x2 (t )− (
B +1

)
x1 (t ) ,

x ′
2 (t ) = B x1 (t )−x2

1 (t ) x2 (t ) ,

x (0) =
[

0 1
]⊤

,

(8.E.1)

where we choose the parameters A = 1, B = 3. In this setting, one can prove
to have a limit cycle in the dynamics. We simulate this system on the time
interval [0,T = 12], with a fine timestep δt = T /640 and a coarse one of size
∆T = T /32. We repeat the simulation 100 times, reporting the average cost
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Average computational time: 0.15s

Figure 8.E.1: Brusselator: Components of the Hybrid Parareal solution (left), and the
orbit of the initial condition (right).
of one coarse timestep in Table 8.E.1, together with the average total cost of
the hybrid Parareal solver. Figure 8.E.1 shows the approximate solution and a
reference solution. We also remark that, as desired, the hybrid method recovers
the limit cycle.

Timing breakdown ELM
Average cost coarse step in the zeroth iterate 0.001012s
Average cost to produce the solution 0.1469s

Table 8.E.1: Brusselator: Computational time for Hybrid Parareal using a single core.
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8.F Additional experiments for Burgers’ equation
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Figure 8.F.1: Burgers: Snapshots of the solution obtained with Hybrid Parareal (left),
comparison of the solution surfaces between Hybrid Parareal and the fine integrator
applied serially (right). Solution corresponding to u0(x) = x(1−x).

Timing breakdown ELM
Average cost coarse step in the zeroth iterate 0.1695s
Average cost to produce the solution 17.7069s

Table 8.F.1: Burgers: Computational time for Hybrid Parareal using five cores, and
initial condition u0(x) = x(1−x).
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Figure 8.F.2: Burgers: Snapshots of the solution obtained with Hybrid Parareal (left),
comparison of the solution surfaces between Hybrid Parareal and the fine integra-
tor applied serially (right). Solution corresponding to u0(x) = sin(2πx)+cos(4πx)−
cos(8πx).

Timing breakdown ELM
Average cost coarse step in the zeroth iterate 0.3356s
Average cost to produce the solution 45.2056s

Table 8.F.2: Burgers: Computational time for Hybrid Parareal using five cores, and
initial condition u0(x) = sin(2πx)+cos(4πx)−cos(8πx).
In this section, we report the simulation results for the Burgers’ equation with
two more initial conditions. The setup of the network and the partition of the
time domain are the same as for the initial condition included in Section 8.6.5.
In Figure 8.F.1, we work with the initial condition u0(x) = x(1− x), while in
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8.F Additional experiments for Burgers’ equation

Figure 8.F.2 with u0(x) = sin(2πx)+cos(4πx)−cos(8πx). The timings are in-
cluded in Tables 8.F.1 and 8.F.2, respectively. As expected, the time to obtain
the full solution grows with the complexity of the initial condition. Indeed,
there are about 10 seconds of difference between the fastest, corresponding to
the quadratic initial condition in Figure 8.F.2, to the second fastest, the one
with u0(x) = sin(2πx), and the slowest in Figure 8.F.2. The reason behind this
observed behavior is that, for more complicated solutions, the coarse predic-
tions need to be corrected with the Parareal correction step more often, and the
optimization problems to solve to get the coarse propagator get more expen-
sive.
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