Davide Murari

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

davidemurari.com/notesunivr2025

dm2011@cam.ac.uk

m4Di.

~ Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 1/37

https://davidemurari.com/notesunivr2025/

© Classical methods for ODEs
e What is a PINN and how is it trained?
© PINNs for Hamiltonian ODEs: Symplectic Neural Flows

@ Neural ODEs

~ Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 2/37

3/37

@ Solving the initial value problem (IVP)
%(t) = F(x(£)), x(0) = xo notation: x(t) = %(t),

exactly, is in general impossible. We hence have to approximate t — x(t) numerically.

~ Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 4/37

How do we solve ODEs numerically?
@ Solving the initial value problem (IVP)
x(t) = F(x(t)), x(0) = xo notation: x(t) = (t)
exactly, is in general impossible. We hence have to approximate t — x(t) numerically.

@ T>0 NeN,and h=T/N. A one-step numerical method cpg_- ‘RY 5 R s a map

Yoi1 = ©(yn), n=10,..,N—1, (1)
such that yo = xg and y, =~ x(nh), n =1, ..., N, for any (regular enough) vector field F.
N=5, h=0.2

*—1—0—0—0—90

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 4/37

How do we solve ODEs numerically?
@ Solving the initial value problem (IVP)
x(t) = F(x(t)), x(0) = xo notation: x(t) = (t)
exactly, is in general impossible. We hence have to approximate t — x(t) numerically.

@ T>0 NeN,and h=T/N. A one-step numerical method cpg_- ‘RY 5 R s a map

Yoi1 = ©(yn), n=10,..,N—1, (1)
such that yo = xg and y, =~ x(nh), n =1, ..., N, for any (regular enough) vector field F.
N=5, h=0.2

*—1—0—0—0—90

o h ottt
@ Some methods, called implicit, to define the map ¢’ in (1) need to solve a (non-linear)
equation. An example is the implicit Euler method: yp11 = yn + hF(Ynt1).

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 4/37

Structure-preserving methods

@ Some of these methods can be designed to preserve desirable properties of the solution.
The area studying them is called geometric numerical analysis, and those methods are
sometimes called structure-preserving.

@ Examples are methods that preserve an energy function (such as mass or momentum in a
PDE), symmetry properties, or a volume form.

@ These methods are often implicit. An example is provided by the implicit midpoint
method

|.
yn_"_l:yn_i_h‘F‘<ynyrl_%l)7

2

which conserves all the quadratic energy functions.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 5/37

@ Runge—Kutta methods are a type of such schemes. These, and all the other options, are
extremely well studied; they have well-understood stability, convergence, and consistency
properties.

~ Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 6/37

Pros and Cons of these methods

@ Runge—Kutta methods are a type of such schemes. These, and all the other options, are
extremely well studied; they have well-understood stability, convergence, and consistency
properties.

@ Five of their possible limitations are:
@ they are sequential: to approximate the solution at t, = nh, we need to apply them n times,

@ they do not provide the value of the solution outside of the points {to, t1, ..., ty},
© for some ODEs, one must use small time-steps or implicit methods to get a stable solution,
@ to preserve some underlying property, they are generally implicit,

© when changing some parameters, we need to solve the equation again.

@ The question is whether we can do better than they do with the help of neural networks.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 6/37

What are we looking for?

@ There is a very active field in scientific machine learning working on building more
efficient solvers for ordinary and partial differential equations. A setup where this
becomes extremely important is for parametric ODEs/PDEs, such as

i(t) = —ku(t) +~vu(t), Lou(x) = fz(x).

In this case, a numerical method would have to solve it for each set of parameters. Can
we learn how to do it more efficiently? The same applies when the BCs are changed.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 7/37

What are we looking for?

@ There is a very active field in scientific machine learning working on building more
efficient solvers for ordinary and partial differential equations. A setup where this
becomes extremely important is for parametric ODEs/PDEs, such as

i(t) = —ku(t) +~vu(t), Lou(x) = fz(x).

In this case, a numerical method would have to solve it for each set of parameters. Can
we learn how to do it more efficiently? The same applies when the BCs are changed.

@ We can distinguish two main approaches:

@ Data-driven approaches, such as Neural Operators,

@ Equation-driven methods, such as Physics Informed Neural Networks.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 7/37

What are we looking for?

@ There is a very active field in scientific machine learning working on building more
efficient solvers for ordinary and partial differential equations. A setup where this
becomes extremely important is for parametric ODEs/PDEs, such as

i(t) = —ku(t) +~vu(t), Lou(x) = fz(x).

In this case, a numerical method would have to solve it for each set of parameters. Can
we learn how to do it more efficiently? The same applies when the BCs are changed.

@ We can distinguish two main approaches:
@ Data-driven approaches, such as Neural Operators,
@ Equation-driven methods, such as Physics Informed Neural Networks.

@ There is a thin line between the two approaches, and a lot of hybrid strategies, together
with a lot of different nomenclature, often referring to similar ideas.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 7/37

8/37

The main idea behind Physics Informed Neural Networks (PINNs)

@ Neural networks are flexible parametric functions which allow for approximating large
classes of functions. They should thus be able to approximate the solution of a
differential equation as well.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 9/37

The main idea behind Physics Informed Neural Networks (PINNs)

@ Neural networks are flexible parametric functions which allow for approximating large
classes of functions. They should thus be able to approximate the solution of a
differential equation as well.

@ The idea is then to consider an expressive-enough network Ny, and train it so that it
approximately solves the differential equation at enough points in the domain.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 9/37

The main idea behind Physics Informed Neural Networks (PINNs)

@ Neural networks are flexible parametric functions which allow for approximating large
classes of functions. They should thus be able to approximate the solution of a
differential equation as well.

@ The idea is then to consider an expressive-enough network Ny, and train it so that it
approximately solves the differential equation at enough points in the domain.

e For example, if we want to solve d;u = Lu over (t,x) € [0, T] x Q, Q C RY, we can
define Vp : R x R? — R and train it so it almost satisfies the initial/boundary conditions

and
6tN9(t,-,x,-) ~ ﬁ(]\/g)(t;,xf), i=1,...N, t; € [0, T]7 x; € Q.

The derivatives in £(Np) and 9:Np can be computed with automatic differentiation.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 9/37

The main idea behind Physics Informed Neural Networks (PINNs)

@ Neural networks are flexible parametric functions which allow for approximating large
classes of functions. They should thus be able to approximate the solution of a
differential equation as well.

@ The idea is then to consider an expressive-enough network Ny, and train it so that it
approximately solves the differential equation at enough points in the domain.

e For example, if we want to solve d;u = Lu over (t,x) € [0, T] x Q, Q C RY, we can
define Vp : R x R? — R and train it so it almost satisfies the initial/boundary conditions

and
6tN9(t,-,x,-) ~ ﬁ(]\/g)(t;,xf), i=1,...N, t; € [0, T]7 x; € Q.

The derivatives in £(Np) and 9:Np can be computed with automatic differentiation.

@ Remark: If we can do so, we do not need to discretise the differential operator, and we
can, in principle, also learn how the solution depends on the PDE parameters.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 9/37

A remark on terminology: Physics-Based/Inspired/Constrained NNs

@ Physics enters the model class / computational graph: hard constraints, symmetries,
conservation laws, or coupling to a solver.

e Examples: HNN/LNN, symplectic & volume-preserving NODEs; equivariant CNNs/GNNs;
PDE-Net; differentiable solvers with learned closures; hard-constrained layers.

@ Training may be purely data-driven and/or include weak physics regularisers.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 10/37

Physics-informed neural networks (PINNs)

@ Let us start from PINNs trained to solve ODEs, and in particular, the initial value problem

{)'((t) = F(x(t)) € R,
x(0) = xo.

o We introduce a parametric map Ap (-;xg) : [0, T] — RY, and choose its weights so that
C
1 2 .
£(0) =2 > [N (teix0) = F (N (tei %0)) |5 + 7 [N (0 %0) — o3 — min
c=1

for some collocation points ty,...,tc € [0, T].

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 11/37

Physics-informed neural networks (PINNs)

@ Let us start from PINNs trained to solve ODEs, and in particular, the initial value problem

{)'((t) = F(x(t)) € R,
x(0) = xo.

o We introduce a parametric map Ap (-;xg) : [0, T] — RY, and choose its weights so that
C
1 2 .
£(0) =2 > [N (teix0) = F (N (tei %0)) |5 + 7 [N (0 %0) — o3 — min
c=1

for some collocation points ty,...,tc € [0, T].

@ Then, t — Ny (t; xo) will solve a different IVP
y (t) = F(y (1)) + (Vg (tixo) — F (y (1)) € RY,
y (0) = Ny (0;x0) € RY,

where the residual Ay (t;x0) — F (y (t)) is small in some sense.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 11/37

Connection with classical numerical methods: Collocation methods

Goal: Solve x(t)

= F(x(t)) € R with x(0) = xo € RY, for t € [0, At].

Polynomial collocation methods PINN

C1,...,Cs €
polynomial p(-;xg) : R — RY,

S}

ZPISDi(t)a

i=0

p(t;xo) =

such that

p(0; xo) = xo,
p'(ciAt;xo) = F(p(ciAt; o)),

i=1,..

Pick a set of s € N collocation points
[0,1] and define the degree s

,S.

J

Davide Murari (DAMTP)

Symplectic Neural Flows, and Neural ODEs

Pick t1,...,ts € [0,At] and look for
Np=(+;x0) : R — R9

Za o(bit+c)

such that 8* minimises

Ng* t; XO

|| Ng(0; x0) — Xol|3+

Zwi M5 (i %0) —]:(Ne(tiv’(O))H;‘
i=1

12/37

Theorem: Quadrature-based a-posteriori error estimate

Let x(t) be the solution of the IVP

{*m — Fix(1) € RY, F e COHIRY, R),
x(0) = xo.

Suppose that N (+;xo) : [0, At] — R? is smooth and satisfies
H/\/'e' (te;xo) — F (Mg (tc;xo))”2 <e c=1,...,.C

for C collocation points 0 < t; < --- < t¢c < At defining a quadrature rule of order p.
Then, there exist o, > 0 such that

Ix () = N (t: x0)ll, < a(Ar)P* + Be, t € [0, At].

~ Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 13/37

@ We will see later that there are situations where we want to enforce the condition
Ny (0; xg) = xg exactly for every xo.

~ Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 14 /37

Imposing the initial condition

o We will see later that there are situations where we want to enforce the condition
Ny (0;x0) = xo exactly for every xg.

@ This can be done in several ways. Two common strategies are:
N (t;%0) = xo + F(£)Na(t; o), £(0) =0, e.g. f(t) =t,
Ny (t;x0) = xo + (./\79(1“; X0) — ./\79(0; x0)> = /\79(1“; xo) + (xo - /\79(0; xo)).

@ The second approach is a particular example of a much more general theory, called the
Theory of Functional Connections, see Mortari, “The Theory of Connections: Connecting
Points”.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 14 /37

Is solving a single IVP efficient?
@ Solving a single IVP on [0, T] with a neural network can take long training time.

@ The obtained solution can not be used to solve the same ordinary differential equation
with a different initial condition.
1.0

0.0

Solution

— gref
— pref.
q pred

—== ppred.

0 2 4 6 8 10

Figure 1: Solution comparison after reaching a loss value of 107°. The training time is 87 seconds
(7500 epochs with 1000 new collocation points randomly sampled at each of them).

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 15/37

Integration over long time intervals

@ It is hard to solve initial value problems over long time intervals.

0O
500 \J A "II_IlqumlJ
T = =

o

20 40 60 80 100
t

Figure 2: Solution comparison after 10000 epochs.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 16 /37

o Consider the vector field F : R? — R, and introduce notation oL RY — RY for the
time-t flow map of F, which for every xo € R satisfies

{%¢5r(xo) = F(¢%(x0)),

¢%(x0) = xo.

~ Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 17/37

Forward invariant subset of the phase space

o Consider the vector field F : R? — R, and introduce notation Y RY — R for the
time-t flow map of F, which for every xq € R satisfies

{i¢>§r(Xo) = F(¢%(x0)),
$%(x0) = xXo.

o Assume that there exists a set Q C R9 such that for every xo € Q, ¢%(xo) € Q for every
t > 0. This set is then said to be forward invariant.

¢nAt+6t ¢6t o ¢ (ZS , n S N, 61-. S (07 At)

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 17/37

Forward invariant subset of the phase space

o Consider the vector field F : R? — R, and introduce notation Y RY — R for the
time-t flow map of F, which for every xq € R satisfies

{;,’tqs;(xo) = F(¢%(x0)),
$%(x0) = xXo.

o Assume that there exists a set Q C R9 such that for every xo € Q, ¢%(xo) € Q for every
t > 0. This set is then said to be forward invariant.

¢nAt+(5t ¢6t o ¢ qS]_— , n€N, ét € (0,At).

@ Thus, to approximate ¢ : Q — Q for any t > 0, we only approximate it for t € [0, At].

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 17/37

~ Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 18/37

@ The equations of motion of canonical Hamiltonian systems write

Ge0ne(x0) = IVH(dm.(x0)) € R>" J:{on /n]eRMn
¢H,0(X0) = Xo ’ —1ln On '

~ Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 19/37

Canonical Hamiltonian System (recap)
@ The equations of motion of canonical Hamiltonian systems write

_In 0n

{mH,t(xo):wH(qﬁH,t(xo))eRz” , J:[O" '”]eszn.

®H,0(X0) = Xo

@ The flow ¢y ; : R?" — R2" conserves the energy:

B i Gre(x0)) = VH(Sr.x(x0)) IV H(11.(x0)) = 0.

dt

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs

@ and it is symplectic:

19/37

@ We now build a neural network that approximates ¢y ¢ : 2 — Q for a forward invariant
set Q C R?", and t € [0, At], while reproducing the qualitative properties of ¢y ¢.

!Priscilla Canizares et al. “Symplectic neural flows for modeling and discovery”. In: arXiv preprint
arXiv:2412.16787 (2024).
~ Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 20/37

The SympFlow architecture!

@ We now build a neural network that approximates ¢ ; : — € for a forward invariant
set Q C R?", and t € [0, At], while reproducing the qualitative properties of OH.t-
o We rely on two building blocks, which applied to (q,p) € R?" write:

Pp,t((a,p)) = P—(VqV(t,q()]—VqV(qu)) . bq.0((q,p)) = Q+(VpK(t7PF))—VpK(O, p)) '

Canizares et al., “Symplectic neural flows for modeling and discovery’.
Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 20/37

The SympFlow architecture!

@ We now build a neural network that approximates ¢ ; : — € for a forward invariant
set Q C R?", and t € [0, At], while reproducing the qualitative properties of OH.t-

o We rely on two building blocks, which applied to (q,p) € R?" write:

dpel(ap)) = | _ (qu(nq? VLV, q))} L dae(@p)=|97T (VpK(t, pr)) - VpK(0, p))} '

@ The SympFlow architecture is defined as

N@ (t, (q07 Po)) = ¢l;;,t o ¢l&7t ©---0 ¢;1)7t © ¢(1]7t((q07 pO))a
with

i q i P
Vi(t,q) =Ly 00 0ly 000y (L}), K'(t,p) =Ly 000l 0000, (L})
Co (x) = Ajx +aj, £, (x) = Bix+bj, k=1,2,3, i=1,..,L

Canizares et al., “Symplectic neural flows for modeling and discovery’.
Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 20/37

Properties of the SympFlow

@ The SympFlow is symplectic for every time t € R. The building blocks we compose are
exact flows of time-dependent Hamiltonian systems:

; _ q
Qsp,t((q, p)) = [p — (Vq V’(t,q) - Vyq Vi(ov q)):|

q
Pp—Vyq <f0t s Vi(s,q)ds)] = ¢\7;’t((q, P)),

with Vi(t, (a,p)) = 8:V/(t,q).

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 21/37

Properties of the SympFlow

@ The SympFlow is symplectic for every time t € R. The building blocks we compose are
exact flows of time-dependent Hamiltonian systems:

; _ q
Qsp,t((q, p)) = [p — (Vq V’(t,q) - Vyq Vi(ov q)):|

q
Pp—Vyq <f0t s Vi(s,q)ds)] = ¢\7;’t((q, P)),

with Vi(t, (a,p)) = 8:V/(t,q).

@ The SympFlow is the exact solution of a time-dependent Hamiltonian system.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 21/37

Training the SympFlow to solve x = JV H(x)

@ The SympFlow is based on modelling the scalar-valued potentials \7i, K:RxR" >R
with feed-forward neural networks.

@ To train the overall model Ay we minimise the loss function

where we sample t; € [0, At], and x{ € Q C R?".

2

— IVH (N (ti,x5))

t=t;

tXO

== \

2

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 22 /37

Equations of motion

).(:p,[.):—X.

Solution predicted using SympFlow with Hamiltonian Matching

=}

o

—— ¢ODE45 == g SympFlow
20 40 60 80 100
t
— pODE45 —— pSympFlow
20 40 60 80 100

|H(¥e(x0)) — H(zo)|

[H(¥1(x0)) — H(wo)|

Long-time energy behaviour

T

100 10
t

Long-time energy behaviour

10-3 4
|- y Al
1076 1 —— ODE45
=== SympFlow
107° T T
10° 10%

23/37

Equations of motion

X =Py, Y =Py Px=—X—2xy, py = —y — (x2 — y?).

SympFlow just residual SympFlow just residual
0.44 0.50
4 E 1073 4
024 0.25 5 el A
|
Sy 4 < 0.00 A =107 A
0.0 Y = 10 :
024 —— Energy ODE45 —0.25 1 Z 0-7 b — BEneray ODE5
——- Energy Network > = ——- Energy Network
—0.4 +— T T d T T T T —0.50 T T T T T T T
—0.25 0.00 0.25 10t 10° 10* 10% 103 0.0 0.5 10t 100 10t 102 103
ay t ay t

Figure 3: Unsupervised experiment — Hénon—Heiles: Comparison of the Poincaré sections and the
energy behaviour up to time T = 1000.

24 /37

~ Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 25 /37

Neural ODEs: The Continuous-Depth Limit
@ ResNet layers can be interpreted as discretisations of parametric ODEs.

o If we go to the limit as the time step goes to zero, we can recover a dynamical system
x(t) = Fo(t,x(t)), 0 € ©,
where Fp : R x RY — RY is parametrised by a neural network.

Residual Network ODE Network

5 5
4 4
=3 =3
° a
@ @
b 22
1 1\ /
0= 0 5 0= 0 5
Input/Hidden/Output Input/Hidden/Output

Figure 4: Source: chen2018neural.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 26 /37

More explicitly, a Neural ODE is a parametric map Apy : R? — R€ of the form
y(t) = Fo(t,y(t)), Fo: R x R" = R",
y(0) = Ax(0) +a € R,

for an h € N. Here, Ac R"*? acR" BecR*" and b € RC.

No(x0) = By(T) + b € R, {

X0 A-ta B - +b [NIED)

27/37

How to train them: discrete backpropagation vs. adjoint method

@ There are two main strategies to train Neural ODEs:

@ Discretise backpropagation, and

@ Adjoint method.

@ The first, corresponds to the conventional backpropagation algorithm, where the forward
pass is defined through a numerical method:

yo = Axp + a
Yik+1 = So_i;ﬁ(e(tkayk)v tk+1 =tk + hk+17 k = 07 vy K — 17
Ny(xo) = Byk +b.

As long as the numerical method ¢ is differentiable, we can backpropagate through it and
minimise the loss function to find a good set of weights.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 28 /37

The adjoint sensitivity method

@ For simplicity, fix d = ¢, and consider Neural ODEs of the form
t
Ng(Xo) = X(T) = Xp —I—/ fg(t,x(t))dt, A=B=1Il;,a=b=0.
0
e Let us introduce a loss function L : RY x R — R*, and study the gradient
VoL(Np(x0),y)-

o First, we introduce the so-called adjoint variable

_ OL(x(T).y)

a(t) = ax(D) € RY.

Assuming to know x(T), we see that a(T) is known as well. What about a generic a(t)
for t €0, T)?.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 29 /37

The adjoint sensitivity method
@ Forany t € R and € > 0, we see that
x(t+¢) / Fo(s,x(s

Furthermore, by the chain rule we get

dL(x(T)y) _ (a/x(t+s)>T dL(x(T)’Y)7 e a(t) = <dx(t+5))Ta(t+s).

dx(t) dx(t) dx(t +¢) dx(t)
@ This allows us to obtain that
d _a(t+e)—a(t) OFs(t,x(£))\ |
A =lim S S == <(i9x(t)> a(t).

e It follows that, for t € [0, T):

a(t) = a(T) — /Tt <W> " a(e)ds.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 30/37

The adjoint sensitivity method

o Let 0 € RP. Call Jy(t) = 28 ¢ R9*P, 3 matrix which satisfies the ODE

d OFy(t,x(t)) OFp(t,x(t))
gt = =g 98x(t)

@ We see that

Ox
Jo(1), Jo(0) = 57 = Oap-

Td
RP 5 VolL(x(T),y) = (Jo(T)) "a(T) = (Js(0)) "a(0) +/O p ((Ja(t))Ta(t)) dt.

The desired expression follows from the derivation below

L) a0) =~ (Dugo Falex(1)) a(2)

+ (99 Fo(t, x(t))+0x(e) Folt, x(t))J()(t))T a(t) = (3pFo(t, (1)) " a(t).

—

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 31/37

Variations of the conventional Neural ODE

There are a lot of research papers considering alternative design strategies for Neural ODEs.
We include here a couple:

@ In choromanski2020ode, the authors augment the Neural ODE with an ODE for the
network weights, which hence become time-dependent:

x(t) = o(W(t)x(t)) € RY, (e.g. o(x) = |x])
W(t) W(t)Q(t, W(t)) € R¥*9 Q(t, W) e Skew(d)
x(0) = xg, W(0) = W, € O(d).

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 32/37

Variations of the conventional Neural ODE

There are a lot of research papers considering alternative design strategies for Neural ODEs.
We include here a couple:

@ In choromanski2020ode, the authors augment the Neural ODE with an ODE for the
network weights, which hence become time-dependent:

x(t) = o(W(t)x(t)) € RY, (e.g. o(x) = |x])
W(t) W(t)Q(t, W(t)) € R¥*9 Q(t, W) e Skew(d)
x(0) = xg, W(0) = W, € O(d).

@ In norcliffe2020second, the authors consider second order Neural ODEs

x(t) = v(t)

X(t) = Fo(x(t),x(t), t,0) € RY = {o(t) = Fo(x(t),v(t), t,0).

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 32/37

Implementation with PyTorch

@ There are several libraries that allow for the quick implementation of these models.

@ An example is https://github.com/rtqichen/torchdiffeq:

import numpy as np; from scipy.integrate import odeint as sp_odeint
import torch, torch.nn as nn, torch.optim as optim; from torchdiffeq import odeint_adjoint as odeint

simpleHO = lambda y, t: [y[1], -y[0]]

T = np.linspace(0., 2*np.pi, 50); YO_np = np.random.randn(1000, 2)
Y_star_np = np.stack([sp_odeint(simpleHO, yO, T) for yO in YO_npl, axis=1)

T_t = torch.from_numpy(T).float(); YO = torch.from_numpy(YO_np).float(); Y_star = torch.from_numpy(Y_star_np).float()

class ODEFunc(nn.Module) :
def __init__(self):
super (). __init__()
self.net = nn.Sequential(nn.Linear(2, 32), nn.Tanh(), nn.Linear(32, 2))
def forward(self, t, y):
return self.net(y)

f = ODEFunc(); opt = optim.Adam(f.parameters(), lr=1e-2)

for _ in range(1000):
Y = odeint(f, YO, T_t)
loss = (Y - Y_star).pow(2).mean()
opt.zero_grad(); loss.backward(); opt.step()

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 33/37

https://github.com/rtqichen/torchdiffeq

Simulation with irregular time-sampling

ol —~ 15
== —— HO(true)
0.5 4
_ 1.0q === Neural ODE
\:/ 0.0 4 X
1 < 0.5
—104 X)
0 1 2 3 1 5 6 = 0.0 1
t
1.0 4 P -~ b — N —0.5 1
0.5 ::':/:‘ NG
S 0] L/ SO ~1.0 1
05 -\\, - <
~1.0 R "‘=_ - p -1.5 T T T
- — —1 0 1
0 1 2 3 1 5 6

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 34 /37

A generative model is a machine learning model designed to create new data that is
similar to its training data. Generative models learn the distribution of the training data,
then apply those understandings to generate new content in response to new input data.

‘
2 A i
X1

Go !/’ A
Pbase(Z 1o(X) {X , X5 .0 X }

Distributdien Distributdien

Figure 6: Source: https://www.youtube.com/watch?v=DDq_pIfHgLs&ab_channel=Jia-BinHuang

35,37

https://www.youtube.com/watch?v=DDq_pIfHqLs&ab_channel=Jia-BinHuang

. Generator 2
Ge

Phase (Z) pe x) pdata x)
Basse Disribution t Distribution

Figure 7: Source: https://www.youtube.com/watch?v=DDq_pIfHgLs&ab_channel=Jia-BinHuang.

~

A way to get py as close as possible to the correct distribution pg,ta is to maximise the

log-likelihood:
: P(x)
arg(;naxIEXdiata [log(pa(x))] = arg min DL (pdatal|pa), DxL(P||Q) = Ex~p |log =7 a0
N
Empirically: arg min —— Z log(po(Xi)); X1, .-y XN ~ Pdatas iid.
i=1

~ Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 3637

https://www.youtube.com/watch?v=DDq_pIfHqLs&ab_channel=Jia-BinHuang

Consider a neural ODE

L b 0(2) = Fo(dr,0(2)), F¥:10,1] x RY — RY,
¢o(2) = z,

and an easy-to-sample probability measure with density pinit. We then set x = ¢1(2).

Continuous normalising flows define p? = (ht,0)Pinit, t € [0,1], as
P(x) = (610)-Pinie(x) = Pine(673 () |det O (673(x)) |

This leads to log pf(x) = Iog(p;n;t(d);é(x))) - fol div(ff)(gb;;(x))ds.

~ Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 37/37

	Classical methods for ODEs
	What is a PINN and how is it trained?
	PINNs for Hamiltonian ODEs: Symplectic Neural Flows
	Neural ODEs

