
Symplectic Neural Flows and Neural ODEs

Davide Murari

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

davidemurari.com/notesunivr2025

dm2011@cam.ac.uk

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 1 / 37

https://davidemurari.com/notesunivr2025/

Outline

1 Classical methods for ODEs

2 What is a PINN and how is it trained?

3 PINNs for Hamiltonian ODEs: Symplectic Neural Flows

4 Neural ODEs

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 2 / 37

Classical methods for ODEs

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 3 / 37

How do we solve ODEs numerically?

Solving the initial value problem (IVP)

ẋ(t) = F(x(t)), x(0) = x0 notation: ẋ(t) =
dx

dt
(t),

exactly, is in general impossible. We hence have to approximate t 7→ x(t) numerically.

T > 0, N ∈ N, and h = T/N. A one-step numerical method φh
F : Rd → Rd is a map

yn+1 = φh
F (yn), n = 0, ...,N − 1, (1)

such that y0 = x0 and yn ≈ x(nh), n = 1, ...,N, for any (regular enough) vector field F .

t0 t1 t2 t3 t4 t5

N=5, h=0.2

Some methods, called implicit, to define the map φh
F in (1) need to solve a (non-linear)

equation. An example is the implicit Euler method: yn+1 = yn + hF(yn+1).

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 4 / 37

How do we solve ODEs numerically?

Solving the initial value problem (IVP)

ẋ(t) = F(x(t)), x(0) = x0 notation: ẋ(t) =
dx

dt
(t),

exactly, is in general impossible. We hence have to approximate t 7→ x(t) numerically.

T > 0, N ∈ N, and h = T/N. A one-step numerical method φh
F : Rd → Rd is a map

yn+1 = φh
F (yn), n = 0, ...,N − 1, (1)

such that y0 = x0 and yn ≈ x(nh), n = 1, ...,N, for any (regular enough) vector field F .

t0 t1 t2 t3 t4 t5

N=5, h=0.2

Some methods, called implicit, to define the map φh
F in (1) need to solve a (non-linear)

equation. An example is the implicit Euler method: yn+1 = yn + hF(yn+1).

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 4 / 37

How do we solve ODEs numerically?

Solving the initial value problem (IVP)

ẋ(t) = F(x(t)), x(0) = x0 notation: ẋ(t) =
dx

dt
(t),

exactly, is in general impossible. We hence have to approximate t 7→ x(t) numerically.

T > 0, N ∈ N, and h = T/N. A one-step numerical method φh
F : Rd → Rd is a map

yn+1 = φh
F (yn), n = 0, ...,N − 1, (1)

such that y0 = x0 and yn ≈ x(nh), n = 1, ...,N, for any (regular enough) vector field F .

t0 t1 t2 t3 t4 t5

N=5, h=0.2

Some methods, called implicit, to define the map φh
F in (1) need to solve a (non-linear)

equation. An example is the implicit Euler method: yn+1 = yn + hF(yn+1).
Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 4 / 37

Structure-preserving methods

Some of these methods can be designed to preserve desirable properties of the solution.
The area studying them is called geometric numerical analysis, and those methods are
sometimes called structure-preserving.

Examples are methods that preserve an energy function (such as mass or momentum in a
PDE), symmetry properties, or a volume form.

These methods are often implicit. An example is provided by the implicit midpoint
method

yn+1 = yn + hF
(
yn + yn+1

2

)
,

which conserves all the quadratic energy functions.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 5 / 37

Pros and Cons of these methods

Runge–Kutta methods are a type of such schemes. These, and all the other options, are
extremely well studied; they have well-understood stability, convergence, and consistency
properties.

Five of their possible limitations are:
1 they are sequential: to approximate the solution at tn = nh, we need to apply them n times,

2 they do not provide the value of the solution outside of the points {t0, t1, ..., tN},

3 for some ODEs, one must use small time-steps or implicit methods to get a stable solution,

4 to preserve some underlying property, they are generally implicit,

5 when changing some parameters, we need to solve the equation again.

The question is whether we can do better than they do with the help of neural networks.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 6 / 37

Pros and Cons of these methods

Runge–Kutta methods are a type of such schemes. These, and all the other options, are
extremely well studied; they have well-understood stability, convergence, and consistency
properties.

Five of their possible limitations are:
1 they are sequential: to approximate the solution at tn = nh, we need to apply them n times,

2 they do not provide the value of the solution outside of the points {t0, t1, ..., tN},

3 for some ODEs, one must use small time-steps or implicit methods to get a stable solution,

4 to preserve some underlying property, they are generally implicit,

5 when changing some parameters, we need to solve the equation again.

The question is whether we can do better than they do with the help of neural networks.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 6 / 37

What are we looking for?

There is a very active field in scientific machine learning working on building more
efficient solvers for ordinary and partial differential equations. A setup where this
becomes extremely important is for parametric ODEs/PDEs, such as

ü(t) = −ku(t) + γu̇(t), Lαu(x) = fβ(x).

In this case, a numerical method would have to solve it for each set of parameters. Can
we learn how to do it more efficiently? The same applies when the BCs are changed.

We can distinguish two main approaches:

1 Data-driven approaches, such as Neural Operators,

2 Equation-driven methods, such as Physics Informed Neural Networks.

There is a thin line between the two approaches, and a lot of hybrid strategies, together
with a lot of different nomenclature, often referring to similar ideas.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 7 / 37

What are we looking for?

There is a very active field in scientific machine learning working on building more
efficient solvers for ordinary and partial differential equations. A setup where this
becomes extremely important is for parametric ODEs/PDEs, such as

ü(t) = −ku(t) + γu̇(t), Lαu(x) = fβ(x).

In this case, a numerical method would have to solve it for each set of parameters. Can
we learn how to do it more efficiently? The same applies when the BCs are changed.

We can distinguish two main approaches:

1 Data-driven approaches, such as Neural Operators,

2 Equation-driven methods, such as Physics Informed Neural Networks.

There is a thin line between the two approaches, and a lot of hybrid strategies, together
with a lot of different nomenclature, often referring to similar ideas.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 7 / 37

What are we looking for?

There is a very active field in scientific machine learning working on building more
efficient solvers for ordinary and partial differential equations. A setup where this
becomes extremely important is for parametric ODEs/PDEs, such as

ü(t) = −ku(t) + γu̇(t), Lαu(x) = fβ(x).

In this case, a numerical method would have to solve it for each set of parameters. Can
we learn how to do it more efficiently? The same applies when the BCs are changed.

We can distinguish two main approaches:

1 Data-driven approaches, such as Neural Operators,

2 Equation-driven methods, such as Physics Informed Neural Networks.

There is a thin line between the two approaches, and a lot of hybrid strategies, together
with a lot of different nomenclature, often referring to similar ideas.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 7 / 37

What is a PINN and how is it trained?

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 8 / 37

The main idea behind Physics Informed Neural Networks (PINNs)

Neural networks are flexible parametric functions which allow for approximating large
classes of functions. They should thus be able to approximate the solution of a
differential equation as well.

The idea is then to consider an expressive-enough network Nθ, and train it so that it
approximately solves the differential equation at enough points in the domain.

For example, if we want to solve ∂tu = Lu over (t, x) ∈ [0,T]× Ω, Ω ⊂ Rd , we can
define Nθ : R× Rd → R and train it so it almost satisfies the initial/boundary conditions
and

∂tNθ(ti , xi) ≈ L(Nθ)(ti , xi), i = 1, ...,N, ti ∈ [0,T], xi ∈ Ω.

The derivatives in L(Nθ) and ∂tNθ can be computed with automatic differentiation.

Remark: If we can do so, we do not need to discretise the differential operator, and we
can, in principle, also learn how the solution depends on the PDE parameters.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 9 / 37

The main idea behind Physics Informed Neural Networks (PINNs)

Neural networks are flexible parametric functions which allow for approximating large
classes of functions. They should thus be able to approximate the solution of a
differential equation as well.

The idea is then to consider an expressive-enough network Nθ, and train it so that it
approximately solves the differential equation at enough points in the domain.

For example, if we want to solve ∂tu = Lu over (t, x) ∈ [0,T]× Ω, Ω ⊂ Rd , we can
define Nθ : R× Rd → R and train it so it almost satisfies the initial/boundary conditions
and

∂tNθ(ti , xi) ≈ L(Nθ)(ti , xi), i = 1, ...,N, ti ∈ [0,T], xi ∈ Ω.

The derivatives in L(Nθ) and ∂tNθ can be computed with automatic differentiation.

Remark: If we can do so, we do not need to discretise the differential operator, and we
can, in principle, also learn how the solution depends on the PDE parameters.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 9 / 37

The main idea behind Physics Informed Neural Networks (PINNs)

Neural networks are flexible parametric functions which allow for approximating large
classes of functions. They should thus be able to approximate the solution of a
differential equation as well.

The idea is then to consider an expressive-enough network Nθ, and train it so that it
approximately solves the differential equation at enough points in the domain.

For example, if we want to solve ∂tu = Lu over (t, x) ∈ [0,T]× Ω, Ω ⊂ Rd , we can
define Nθ : R× Rd → R and train it so it almost satisfies the initial/boundary conditions
and

∂tNθ(ti , xi) ≈ L(Nθ)(ti , xi), i = 1, ...,N, ti ∈ [0,T], xi ∈ Ω.

The derivatives in L(Nθ) and ∂tNθ can be computed with automatic differentiation.

Remark: If we can do so, we do not need to discretise the differential operator, and we
can, in principle, also learn how the solution depends on the PDE parameters.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 9 / 37

The main idea behind Physics Informed Neural Networks (PINNs)

Neural networks are flexible parametric functions which allow for approximating large
classes of functions. They should thus be able to approximate the solution of a
differential equation as well.

The idea is then to consider an expressive-enough network Nθ, and train it so that it
approximately solves the differential equation at enough points in the domain.

For example, if we want to solve ∂tu = Lu over (t, x) ∈ [0,T]× Ω, Ω ⊂ Rd , we can
define Nθ : R× Rd → R and train it so it almost satisfies the initial/boundary conditions
and

∂tNθ(ti , xi) ≈ L(Nθ)(ti , xi), i = 1, ...,N, ti ∈ [0,T], xi ∈ Ω.

The derivatives in L(Nθ) and ∂tNθ can be computed with automatic differentiation.

Remark: If we can do so, we do not need to discretise the differential operator, and we
can, in principle, also learn how the solution depends on the PDE parameters.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 9 / 37

A remark on terminology: Physics-Based/Inspired/Constrained NNs

Physics enters the model class / computational graph: hard constraints, symmetries,
conservation laws, or coupling to a solver.

Examples: HNN/LNN, symplectic & volume-preserving NODEs; equivariant CNNs/GNNs;
PDE-Net; differentiable solvers with learned closures; hard-constrained layers.

Training may be purely data-driven and/or include weak physics regularisers.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 10 / 37

Physics-informed neural networks (PINNs)

Let us start from PINNs trained to solve ODEs, and in particular, the initial value problem{
ẋ(t) = F(x(t)) ∈ Rd ,

x(0) = x0.

We introduce a parametric map Nθ (·; x0) : [0,T] → Rd , and choose its weights so that

L(θ) := 1

C

C∑
c=1

∥∥N ′
θ (tc ; x0)−F (Nθ (tc ; x0))

∥∥2
2
+ γ ∥Nθ (0; x0)− x0∥22 → min

for some collocation points t1, . . . , tC ∈ [0,T].

Then, t 7→ Nθ (t; x0) will solve a different IVP{
ẏ (t) = F (y (t)) + (N ′

θ (t; x0)−F (y (t))) ∈ Rd ,

y (0) = Nθ (0; x0) ∈ Rd ,

where hopefully the residual N ′
θ (t; x0)−F (y (t)) is small in some sense.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 11 / 37

Physics-informed neural networks (PINNs)

Let us start from PINNs trained to solve ODEs, and in particular, the initial value problem{
ẋ(t) = F(x(t)) ∈ Rd ,

x(0) = x0.

We introduce a parametric map Nθ (·; x0) : [0,T] → Rd , and choose its weights so that

L(θ) := 1

C

C∑
c=1

∥∥N ′
θ (tc ; x0)−F (Nθ (tc ; x0))

∥∥2
2
+ γ ∥Nθ (0; x0)− x0∥22 → min

for some collocation points t1, . . . , tC ∈ [0,T].

Then, t 7→ Nθ (t; x0) will solve a different IVP{
ẏ (t) = F (y (t)) + (N ′

θ (t; x0)−F (y (t))) ∈ Rd ,

y (0) = Nθ (0; x0) ∈ Rd ,

where hopefully the residual N ′
θ (t; x0)−F (y (t)) is small in some sense.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 11 / 37

Connection with classical numerical methods: Collocation methods

Goal: Solve ẋ(t) = F(x(t)) ∈ Rd with x(0) = x0 ∈ Rd , for t ∈ [0,∆t].

Polynomial collocation methods

Pick a set of s ∈ N collocation points
c1, ..., cs ∈ [0, 1] and define the degree s
polynomial p(·; x0) : R → Rd ,

p(t; x0) =
s∑

i=0

piφi (t),

such that

p(0; x0) = x0,

p′(ci∆t; x0) = F(p(ci∆t; x0)), i = 1, ..., s.

PINN

Pick t1, ..., ts ∈ [0,∆t] and look for
Nθ∗(·; x0) : R → Rd

Nθ∗(t; x0) =
h∑

i=1

a∗i σ(b
∗
i t + c∗i),

such that θ∗ minimises

γ∥Nθ(0; x0)− x0∥22+
s∑

i=1

ωi

∥∥N ′
θ(ti ; x0)−F(Nθ(ti , x0))

∥∥2
2
.

Takeaway

Classical collocation: local polynomial ansatz ⇒ explicit order & stability theory.
PINNs: global, over-parameterised ansatz (NN) ⇒ optimisation-based collocation;
quadrature/collocation choices link them directly to RK methods.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 12 / 37

A-posteriori error estimate

Theorem: Quadrature-based a-posteriori error estimate

Let x(t) be the solution of the IVP{
ẋ (t) = F (x (t)) ∈ Rd , F ∈ Cp+1(Rd ,Rd),

x (0) = x0.

Suppose that Nθ (·; x0) : [0,∆t] → Rd is smooth and satisfies∥∥N ′
θ (tc ; x0)−F (Nθ (tc ; x0))

∥∥
2
≤ ε, c = 1, . . . ,C

for C collocation points 0 ≤ t1 < · · · < tC ≤ ∆t defining a quadrature rule of order p.
Then, there exist α, β > 0 such that

∥x (t)−Nθ (t; x0)∥2 ≤ α(∆t)p+1 + βε, t ∈ [0,∆t].

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 13 / 37

Imposing the initial condition

We will see later that there are situations where we want to enforce the condition
Nθ (0; x0) = x0 exactly for every x0.

This can be done in several ways. Two common strategies are:

Nθ (t; x0) = x0 + f (t)Ñθ(t; x0), f (0) = 0, e.g. f (t) = t,

Nθ (t; x0) = x0 +
(
Ñθ(t; x0)− Ñθ(0; x0)

)
= Ñθ(t; x0) +

(
x0 − Ñθ(0; x0)

)
.

The second approach is a particular example of a much more general theory, called the
Theory of Functional Connections, see Daniele Mortari. “The Theory of Connections:
Connecting Points”. In: Mathematics 5.4 (2017), p. 57.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 14 / 37

Imposing the initial condition

We will see later that there are situations where we want to enforce the condition
Nθ (0; x0) = x0 exactly for every x0.

This can be done in several ways. Two common strategies are:

Nθ (t; x0) = x0 + f (t)Ñθ(t; x0), f (0) = 0, e.g. f (t) = t,

Nθ (t; x0) = x0 +
(
Ñθ(t; x0)− Ñθ(0; x0)

)
= Ñθ(t; x0) +

(
x0 − Ñθ(0; x0)

)
.

The second approach is a particular example of a much more general theory, called the
Theory of Functional Connections, see Mortari, “The Theory of Connections: Connecting
Points”.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 14 / 37

Is solving a single IVP efficient?

Solving a single IVP on [0,T] with a neural network can take long training time.

The obtained solution can not be used to solve the same ordinary differential equation
with a different initial condition.

0 2 4 6 8 10
t

−1.0

−0.5

0.0

0.5

1.0

S
ol

u
ti

on

q ref.

p ref.

q pred.

p pred.

Figure 1: Solution comparison after reaching a loss value of 10−5. The training time is 87 seconds
(7500 epochs with 1000 new collocation points randomly sampled at each of them).

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 15 / 37

Integration over long time intervals

It is hard to solve initial value problems over long time intervals.

0 20 40 60 80 100
t

−1.0

−0.5

0.0

0.5

1.0

S
ol

u
ti

on

q ref.

p ref.

q pred.

p pred.

Figure 2: Solution comparison after 10000 epochs.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 16 / 37

Forward invariant subset of the phase space

Consider the vector field F : Rd → Rd , and introduce notation ϕt
F : Rd → Rd for the

time-t flow map of F , which for every x0 ∈ Rd satisfies{
d
dtϕ

t
F (x0) = F(ϕt

F (x0)),

ϕ0
F (x0) = x0.

Assume that there exists a set Ω ⊂ Rd such that for every x0 ∈ Ω, ϕt
F (x0) ∈ Ω for every

t ≥ 0. This set is then said to be forward invariant.

ϕn∆t+δt
F = ϕδt

F ◦ ϕ∆t
F ◦ ... ◦ ϕ∆t

F , n ∈ N, δt ∈ (0,∆t).

Thus, to approximate ϕt
F : Ω → Ω for any t ≥ 0, we only approximate it for t ∈ [0,∆t].

0 20 40 60 80 100
t

−1.0

−0.5

0.0

0.5

1.0

S
ol

u
ti

on

q ref.

p ref.

q pred.

p pred.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 17 / 37

Forward invariant subset of the phase space

Consider the vector field F : Rd → Rd , and introduce notation ϕt
F : Rd → Rd for the

time-t flow map of F , which for every x0 ∈ Rd satisfies{
d
dtϕ

t
F (x0) = F(ϕt

F (x0)),

ϕ0
F (x0) = x0.

Assume that there exists a set Ω ⊂ Rd such that for every x0 ∈ Ω, ϕt
F (x0) ∈ Ω for every

t ≥ 0. This set is then said to be forward invariant.

ϕn∆t+δt
F = ϕδt

F ◦ ϕ∆t
F ◦ ... ◦ ϕ∆t

F , n ∈ N, δt ∈ (0,∆t).

Thus, to approximate ϕt
F : Ω → Ω for any t ≥ 0, we only approximate it for t ∈ [0,∆t].

0 20 40 60 80 100
t

−1.0

−0.5

0.0

0.5

1.0

S
ol

u
ti

on

q ref.

p ref.

q pred.

p pred.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 17 / 37

Forward invariant subset of the phase space

Consider the vector field F : Rd → Rd , and introduce notation ϕt
F : Rd → Rd for the

time-t flow map of F , which for every x0 ∈ Rd satisfies{
d
dtϕ

t
F (x0) = F(ϕt

F (x0)),

ϕ0
F (x0) = x0.

Assume that there exists a set Ω ⊂ Rd such that for every x0 ∈ Ω, ϕt
F (x0) ∈ Ω for every

t ≥ 0. This set is then said to be forward invariant.

ϕn∆t+δt
F = ϕδt

F ◦ ϕ∆t
F ◦ ... ◦ ϕ∆t

F , n ∈ N, δt ∈ (0,∆t).

Thus, to approximate ϕt
F : Ω → Ω for any t ≥ 0, we only approximate it for t ∈ [0,∆t].

0 20 40 60 80 100
t

−1.0

−0.5

0.0

0.5

1.0

S
ol

u
ti

on

q ref.

p ref.

q pred.

p pred.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 17 / 37

PINNs for Hamiltonian ODEs: Symplectic Neural Flows

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 18 / 37

Canonical Hamiltonian System (recap)

The equations of motion of canonical Hamiltonian systems write{
d
dtϕH,t(x0) = J∇H(ϕH,t(x0)) ∈ R2n

ϕH,0(x0) = x0
, J =

[
0n In
−In 0n

]
∈ R2n×2n.

The flow ϕH,t : R2n → R2n conserves the energy:

d

dt
H(ϕH,t(x0)) = ∇H(ϕH,t(x0))

⊤J∇H(ϕH,t(x0)) = 0,

and it is symplectic: (
∂ϕH,t(x)

∂x

)⊤
J
(
∂ϕH,t(x)

∂x

)
= J.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 19 / 37

Canonical Hamiltonian System (recap)

The equations of motion of canonical Hamiltonian systems write{
d
dtϕH,t(x0) = J∇H(ϕH,t(x0)) ∈ R2n

ϕH,0(x0) = x0
, J =

[
0n In
−In 0n

]
∈ R2n×2n.

The flow ϕH,t : R2n → R2n conserves the energy:

d

dt
H(ϕH,t(x0)) = ∇H(ϕH,t(x0))

⊤J∇H(ϕH,t(x0)) = 0,

and it is symplectic: (
∂ϕH,t(x)

∂x

)⊤
J
(
∂ϕH,t(x)

∂x

)
= J.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 19 / 37

The SympFlow architecture1

We now build a neural network that approximates ϕH,t : Ω → Ω for a forward invariant
set Ω ⊂ R2n, and t ∈ [0,∆t], while reproducing the qualitative properties of ϕH,t .

We rely on two building blocks, which applied to (q,p) ∈ R2n write:

ϕp,t((q,p)) =

[
q

p− (∇qV (t,q)−∇qV (0,q))

]
, ϕq,t((q, p)) =

[
q+ (∇pK (t,p)−∇pK (0,p))

p

]
.

The SympFlow architecture is defined as

Nθ (t, (q0,p0)) = ϕL
p,t ◦ ϕL

q,t ◦ · · · ◦ ϕ1
p,t ◦ ϕ1

q,t((q0,p0)),

with

V i (t,q) = ℓθi
3
◦ σ ◦ ℓθi

2
◦ σ ◦ ℓθi

1

([
q
t

])
, K i (t,p) = ℓρi

3
◦ σ ◦ ℓρi

2
◦ σ ◦ ℓρi

1

([
p
t

])
ℓθi

k
(x) = Ai

kx + aik , ℓρi
k
(x) = B i

kx+ bik , k = 1, 2, 3, i = 1, ..., L.

1Priscilla Canizares et al. “Symplectic neural flows for modeling and discovery”. In: arXiv preprint
arXiv:2412.16787 (2024).

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 20 / 37

The SympFlow architecture1

We now build a neural network that approximates ϕH,t : Ω → Ω for a forward invariant
set Ω ⊂ R2n, and t ∈ [0,∆t], while reproducing the qualitative properties of ϕH,t .

We rely on two building blocks, which applied to (q,p) ∈ R2n write:

ϕp,t((q,p)) =

[
q

p− (∇qV (t,q)−∇qV (0,q))

]
, ϕq,t((q, p)) =

[
q+ (∇pK (t,p)−∇pK (0,p))

p

]
.

The SympFlow architecture is defined as

Nθ (t, (q0,p0)) = ϕL
p,t ◦ ϕL

q,t ◦ · · · ◦ ϕ1
p,t ◦ ϕ1

q,t((q0,p0)),

with

V i (t,q) = ℓθi
3
◦ σ ◦ ℓθi

2
◦ σ ◦ ℓθi

1

([
q
t

])
, K i (t,p) = ℓρi

3
◦ σ ◦ ℓρi

2
◦ σ ◦ ℓρi

1

([
p
t

])
ℓθi

k
(x) = Ai

kx + aik , ℓρi
k
(x) = B i

kx+ bik , k = 1, 2, 3, i = 1, ..., L.

1Canizares et al., “Symplectic neural flows for modeling and discovery”.
Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 20 / 37

The SympFlow architecture1

We now build a neural network that approximates ϕH,t : Ω → Ω for a forward invariant
set Ω ⊂ R2n, and t ∈ [0,∆t], while reproducing the qualitative properties of ϕH,t .

We rely on two building blocks, which applied to (q,p) ∈ R2n write:

ϕp,t((q,p)) =

[
q

p− (∇qV (t,q)−∇qV (0,q))

]
, ϕq,t((q, p)) =

[
q+ (∇pK (t,p)−∇pK (0,p))

p

]
.

The SympFlow architecture is defined as

Nθ (t, (q0,p0)) = ϕL
p,t ◦ ϕL

q,t ◦ · · · ◦ ϕ1
p,t ◦ ϕ1

q,t((q0,p0)),

with

V i (t,q) = ℓθi
3
◦ σ ◦ ℓθi

2
◦ σ ◦ ℓθi

1

([
q
t

])
, K i (t,p) = ℓρi

3
◦ σ ◦ ℓρi

2
◦ σ ◦ ℓρi

1

([
p
t

])
ℓθi

k
(x) = Ai

kx + aik , ℓρi
k
(x) = B i

kx+ bik , k = 1, 2, 3, i = 1, ..., L.

1Canizares et al., “Symplectic neural flows for modeling and discovery”.
Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 20 / 37

Properties of the SympFlow

The SympFlow is symplectic for every time t ∈ R. The building blocks we compose are
exact flows of time-dependent Hamiltonian systems:

ϕi
p,t((q,p)) =

[
q

p−
(
∇qV

i (t,q)−∇qV
i (0,q)

)]
=

[
q

p−∇q

(∫ t
0 ∂sV

i (s,q)ds
)] = ϕ

Ṽ i ,t
((q,p)),

with Ṽ i (t, (q,p)) = ∂tV
i (t,q).

The SympFlow is the exact solution of a time-dependent Hamiltonian system.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 21 / 37

Properties of the SympFlow

The SympFlow is symplectic for every time t ∈ R. The building blocks we compose are
exact flows of time-dependent Hamiltonian systems:

ϕi
p,t((q,p)) =

[
q

p−
(
∇qV

i (t,q)−∇qV
i (0,q)

)]
=

[
q

p−∇q

(∫ t
0 ∂sV

i (s,q)ds
)] = ϕ

Ṽ i ,t
((q,p)),

with Ṽ i (t, (q,p)) = ∂tV
i (t,q).

The SympFlow is the exact solution of a time-dependent Hamiltonian system.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 21 / 37

Training the SympFlow to solve ẋ = J∇H(x)

The SympFlow is based on modelling the scalar-valued potentials Ṽ i , K̃ i : R× Rn → R
with feed-forward neural networks.

To train the overall model Nθ we minimise the loss function

L(θ) = 1

N

N∑
i=1

∥∥∥∥∥ d

dt
Nθ

(
t, xi0

)∣∣∣∣
t=ti

− J∇H
(
Nθ

(
ti , x

i
0

))∥∥∥∥∥
2

2

where we sample ti ∈ [0,∆t], and xi0 ∈ Ω ⊂ R2n.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 22 / 37

Simple Harmonic Oscillator (unsupervised)

Equations of motion

ẋ = p, ṗ = −x .

0 20 40 60 80 100

t

−1

0

1

q ODE45 q SympFlow

0 20 40 60 80 100

t

−1

0

1

p ODE45 p SympFlow

Solution predicted using SympFlow with Hamiltonian Matching

100 102

t

10−9

10−6

10−3

|H
(ψ
t(
x

0
))
−
H

(x
0
)| Long-time energy behaviour

ODE45

MLP

100 102

t

10−9

10−6

10−3

|H
(ψ
t(
x

0
))
−
H

(x
0
)| Long-time energy behaviour

ODE45

SympFlow

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 23 / 37

Hénon–Heiles (unsupervised)

Equations of motion

ẋ = px , ẏ = py , ṗx = −x − 2xy , ṗy = −y − (x2 − y2).

−0.25 0.00 0.25
qy

−0.4

−0.2

0.0

0.2

0.4

p
y

MLP

10−1 100 101 102 103

t

10−7

10−5

10−3

10−1

|H
(ψ
t
(z

0
))
−
H

(z
0
)|

MLP

Energy ODE45

Energy Network

0.0 0.5
qy

−0.50

−0.25

0.00

0.25

0.50

p
y

SympFlow just residual

10−1 100 101 102 103

t

10−7

10−5

10−3

|H
(ψ
t
(z

0
))
−
H

(z
0
)|

SympFlow just residual

Energy ODE45

Energy Network

Figure 3: Unsupervised experiment — Hénon–Heiles: Comparison of the Poincaré sections and the
energy behaviour up to time T = 1000.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 24 / 37

Neural ODEs

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 25 / 37

Neural ODEs: The Continuous-Depth Limit

ResNet layers can be interpreted as discretisations of parametric ODEs.

If we go to the limit as the time step goes to zero, we can recover a dynamical system

ẋ(t) = Fθ(t, x(t)), θ ∈ Θ,

where Fθ : R× Rd → Rd is parametrised by a neural network.

Figure 4: Source: chen2018neural.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 26 / 37

Neural ODEs

More explicitly, a Neural ODE is a parametric map Nθ : Rd → Rc of the form

Nθ(x0) = By(T) + b ∈ Rc ,

{
ẏ(t) = Fθ(t, y(t)), Fθ : R× Rh → Rh,

y(0) = Ax(0) + a ∈ Rh,

for an h ∈ N. Here, A ∈ Rh×d , a ∈ Rh, B ∈ Rc×h, and b ∈ Rc .

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 27 / 37

How to train them: discrete backpropagation vs. adjoint method

There are two main strategies to train Neural ODEs:

1 Discretise backpropagation, and

2 Adjoint method.

The first, corresponds to the conventional backpropagation algorithm, where the forward
pass is defined through a numerical method:

y0 = Ax0 + a

yk+1 = φhk
Fθ
(tk , yk), tk+1 = tk + hk+1, k = 0, ...,K − 1,

Nθ(x0) = ByK + b.

As long as the numerical method φ is differentiable, we can backpropagate through it and
minimise the loss function to find a good set of weights.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 28 / 37

The adjoint sensitivity method

For simplicity, fix d = c, and consider Neural ODEs of the form

Nθ(x0) = x(T) = x0 +

∫ t

0
Fθ(t, x(t))dt, A = B = Id , a = b = 0.

Let us introduce a loss function L : Rd × Rd → R+, and study the gradient
∇θL(Nθ(x0), y).

First, we introduce the so-called adjoint variable

a(t) =
∂L(x(T), y)

∂x(t)
∈ Rd .

Assuming to know x(T), we see that a(T) is known as well. What about a generic a(t)
for t ∈ [0,T)?.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 29 / 37

The adjoint sensitivity method

For any t ∈ R and ε > 0, we see that

x(t + ε) = x(t) +

∫ t+ε

t
Fθ(s, x(s))ds.

Furthermore, by the chain rule we get

dL(x(T), y)

dx(t)
=

(
dx(t + ε)

dx(t)

)⊤ dL(x(T), y)

dx(t + ε)
, i.e., a(t) =

(
dx(t + ε)

dx(t)

)⊤
a(t + ε).

This allows us to obtain that

d

dt
a(t) = lim

ε→0

a(t + ε)− a(t)

ε
= ... = −

(
∂Fθ(t, x(t))

∂x(t)

)⊤
a(t).

It follows that, for t ∈ [0,T):

a(t) = a(T)−
∫ t

T

(
∂Fθ(s, x(s))

∂x(s)

)⊤
a(s)ds.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 30 / 37

The adjoint sensitivity method

Let θ ∈ Rp. Call Jθ(t) =
∂x(t)
∂θ ∈ Rd×p, a matrix which satisfies the ODE

d

dt
Jθ(t) =

∂Fθ(t, x(t))

∂θ
+

∂Fθ(t, x(t))

∂x(t)
Jθ(t), Jθ(0) =

∂x0
∂θ

= 0d×p.

We see that

Rp ∋ ∇θL(x(T), y) = (Jθ(T))⊤a(T) = (Jθ(0))
⊤a(0) +

∫ T

0

d

dt

(
(Jθ(t))

⊤a(t)
)
dt.

The desired expression follows from the derivation below

d

dt
((Jθ(t))

⊤a(t)) = −(Jθ(t))
⊤ (

∂x(t)Fθ(t, x(t))
)⊤

a(t)

+
(
∂θFθ(t, x(t))+∂x(t)Fθ(t, x(t))Jθ(t)

)⊤
a(t) = (∂θFθ(t, x(t)))

⊤ a(t).

=⇒ ∇θL(x(T), y) =

∫ T

0
(∂θFθ(t, x(t)))

⊤a(t)dt.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 31 / 37

Variations of the conventional Neural ODE

There are a lot of research papers considering alternative design strategies for Neural ODEs.
We include here a couple:

In choromanski2020ode, the authors augment the Neural ODE with an ODE for the
network weights, which hence become time-dependent:

ẋ(t) = σ(W (t)x(t)) ∈ Rd , (e.g. σ(x) = |x |)
Ẇ (t) = W (t)Ω(t,W (t)) ∈ Rd×d , Ω(t,W) ∈ Skew(d)

x(0) = x0,W (0) = W0 ∈ O(d).

In norcliffe2020second, the authors consider second order Neural ODEs

ẍ(t) = Fθ(x(t), ẋ(t), t, θ) ∈ Rd ⇐⇒
{
ẋ(t) = v(t)

v̇(t) = Fθ(x(t), v(t), t, θ).

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 32 / 37

Variations of the conventional Neural ODE

There are a lot of research papers considering alternative design strategies for Neural ODEs.
We include here a couple:

In choromanski2020ode, the authors augment the Neural ODE with an ODE for the
network weights, which hence become time-dependent:

ẋ(t) = σ(W (t)x(t)) ∈ Rd , (e.g. σ(x) = |x |)
Ẇ (t) = W (t)Ω(t,W (t)) ∈ Rd×d , Ω(t,W) ∈ Skew(d)

x(0) = x0,W (0) = W0 ∈ O(d).

In norcliffe2020second, the authors consider second order Neural ODEs

ẍ(t) = Fθ(x(t), ẋ(t), t, θ) ∈ Rd ⇐⇒
{
ẋ(t) = v(t)

v̇(t) = Fθ(x(t), v(t), t, θ).

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 32 / 37

Implementation with PyTorch

There are several libraries that allow for the quick implementation of these models.

An example is https://github.com/rtqichen/torchdiffeq:

import numpy as np; from scipy.integrate import odeint as sp_odeint
import torch, torch.nn as nn, torch.optim as optim; from torchdiffeq import odeint_adjoint as odeint

simpleHO = lambda y, t: [y[1], -y[0]]

T = np.linspace(0., 2*np.pi, 50); Y0_np = np.random.randn(1000, 2)
Y_star_np = np.stack([sp_odeint(simpleHO, y0, T) for y0 in Y0_np], axis=1)

T_t = torch.from_numpy(T).float(); Y0 = torch.from_numpy(Y0_np).float(); Y_star = torch.from_numpy(Y_star_np).float()

class ODEFunc(nn.Module):
def __init__(self):

super().__init__()
self.net = nn.Sequential(nn.Linear(2, 32), nn.Tanh(), nn.Linear(32, 2))

def forward(self, t, y):
return self.net(y)

f = ODEFunc(); opt = optim.Adam(f.parameters(), lr=1e-2)

for _ in range(1000):
Y = odeint(f, Y0, T_t)
loss = (Y - Y_star).pow(2).mean()
opt.zero_grad(); loss.backward(); opt.step()

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 33 / 37

https://github.com/rtqichen/torchdiffeq

Simulation with irregular time-sampling

0 1 2 3 4 5 6

t

−1.0

−0.5

0.0

0.5

1.0

x
(t

)

0 1 2 3 4 5 6

t

−1.0

−0.5

0.0

0.5

1.0

v
(t

)

−1 0 1

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

v

HO (true)

Neural ODE

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 34 / 37

What do we mean by generative modelling?

A generative model is a machine learning model designed to create new data that is
similar to its training data. Generative models learn the distribution of the training data,
then apply those understandings to generate new content in response to new input data.

Figure 6: Source: https://www.youtube.com/watch?v=DDq_pIfHqLs&ab_channel=Jia-BinHuang.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 35 / 37

https://www.youtube.com/watch?v=DDq_pIfHqLs&ab_channel=Jia-BinHuang

Second application of Neural ODEs: Generative Modelling

Figure 7: Source: https://www.youtube.com/watch?v=DDq_pIfHqLs&ab_channel=Jia-BinHuang.

A way to get pθ as close as possible to the correct distribution pdata is to maximise the
log-likelihood:

argmax
θ

Ex∼pdata [log(pθ(x))] = argmin
θ

DKL(pdata||pθ), DKL(P||Q) = Ex∼P

[
log

P(x)

Q(x)

]
.

Empirically: argmin
θ

− 1

N

N∑
i=1

log(pθ(xi)), x1, ..., xN ∼ pdata, iid.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 36 / 37

https://www.youtube.com/watch?v=DDq_pIfHqLs&ab_channel=Jia-BinHuang

Generative modelling with continuous normalising flows

Consider a neural ODE{
d
dtϕt,θ(z) = Fθ

t (ϕt,θ(z)), Fθ : [0, 1]× Rd → Rd ,

ϕ0(z) = z ,

and an easy-to-sample probability measure with density pinit. We then set x = ϕ1(z).

Continuous normalising flows define pθt = (ϕt,θ)∗pinit, t ∈ [0, 1], as

pθt (x) = (ϕt,θ)∗pinit(x) = pinit(ϕ
−1
t,θ (x))

∣∣∣det ∂x (ϕ−1
t,θ (x)

)∣∣∣ .
This leads to log pθ1(x) = log(pinit(ϕ

−1
1,θ(x)))−

∫ 1
0 div(Fθ

s)(ϕ
−1
s,θ(x))ds.

Davide Murari (DAMTP) Symplectic Neural Flows, and Neural ODEs 37 / 37

	Classical methods for ODEs
	What is a PINN and how is it trained?
	PINNs for Hamiltonian ODEs: Symplectic Neural Flows
	Neural ODEs

