Davide Murari

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

davidemurari.com/univrnotes2025

dm2011@cam.ac.uk

m4Di.

 Davide Murai (DAMTP) " Neural Networks as Dynamical Systems: Hamiltonian and I-Lipschitz Networks 1/40

https://davidemurari.com/univrnotes2025/

@ ResNets Based on Dynamical Systems
© Hamiltonian Neural Networks

© 1-Lipschitz Neural Networks
@ 1-Lipschitz Networks for Robust Classification
@ 1-Lipschitz Networks for Inverse Problems

 Davide Murai (DAMTP) " Neural Networks as Dynamical Systems: Hamiltonian and I-Lipschitz Networks 2/40

 Davide Murai (DAMTP) " Neural Networks as Dynamical Systems: Hamiltonian and I-Lipschitz Networks 3/40

@ One of the building blocks behind several of the modern architectures, such as
Transformers, is the so-called residual layer or skip-connection.

!Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2016, pp. 770-778.

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 4/40

What are Residual Neural Networks (ResNets)?

@ One of the building blocks behind several of the modern architectures, such as
Transformers, is the so-called residual layer or skip-connection.

e This building block was introduced for the first time in the ResNet architecture®.

'He et al., “Deep Residual Learning for Image Recognition”.
Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 4/40

What are Residual Neural Networks (ResNets)?

@ One of the building blocks behind several of the modern architectures, such as
Transformers, is the so-called residual layer or skip-connection.

e This building block was introduced for the first time in the ResNet architecture®.
@ The skip-connection amounts to layers of the form

Xni1 = Fo,(Xn) = X, + Fp, (Xn), Fo, : R = RY, 6, € ©.

'He et al., “Deep Residual Learning for Image Recognition”.
Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 4/40

What are Residual Neural Networks (ResNets)?

@ One of the building blocks behind several of the modern architectures, such as
Transformers, is the so-called residual layer or skip-connection.

e This building block was introduced for the first time in the ResNet architecture®.
@ The skip-connection amounts to layers of the form

Xni1 = Fo,(Xn) = X, + Fp, (Xn), Fo, : R = RY, 6, € ©.

@ The term residual refers to the map Fy, = Fp, — id; we parametrise Fy, by parametrising
the residual.

@ ResNets have other types of layers, but the residual ones are their core. The other layers
can be used to change the input dimension, which is left unchanged by residual layers.

'He et al., “Deep Residual Learning for Image Recognition”.
Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 4/40

Recall that to minimise the loss function £(6) we have to use some numerical method, such as
gradient descent

Ot = Ok — TVL(%).

If [|[VL(6k)||2 is very large or very small, we will struggle to find a meaningful set of weights.

05 0

£2 nomms of the Jacobians for MLP 2 norms of the Jacobians for ResNet

000 200 30 1000 2000 1600 2000
Training iterations Training iterations Training iterations

5/40

One-Step Numerical Methods for ODEs

o Let us consider a (regular enough) vector field 7 : RY — R?. Fix xo € R?. Solving the
initial value problem (IVP)

{)'((t) — F(x(t)), notation: x(t) = 9(¢)
x(0) = xo

exactly is in general impossible. We hence have to approximate it numerically.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 6 /40

One-Step Numerical Methods for ODEs

o Let us consider a (regular enough) vector field 7 : RY — R?. Fix xo € R?. Solving the
initial value problem (IVP)

{)'((t) — F(x(t)), notation: x(t) = 9(¢)
x(0) = xo
exactly is in general impossible. We hence have to approximate it numerically.
@ Fix T>0, NeN, and h=T/N. A one-step numerical method @} :RY - RY is a map
Yni1 = @5(yn), n=0,...,N -1,
such that yo = xo and y, =~ x(nh), n=1,..., N, for any (regular enough) vector field F.

N=5, h=0.2

*—10o—0—0——o

T T T T T T
to t1 to 23 ty ts
Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 6/40

@ There are several one-step methods. Runge—Kutta methods are a very rich family of
them. In our lectures we will mostly need the simplest of them: the explicit Euler method.

 Davide Murai (DAMTP) " Neural Networks as Dynamical Systems: Hamiltonian and I-Lipschitz Networks 7/40

The Explicit Euler Method

@ There are several one-step methods. Runge—Kutta methods are a very rich family of
them. In our lectures we will mostly need the simplest of them: the explicit Euler method.

@ For this method, the update map is defined as follows:
Vo1 = @F(¥n) := Yo + hF(yn), n =0,.., N — 1,

and it provides a first-order accurate approximation of the exact solution:
Ix(nh) — x,|| < Cyh.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 7/40

The Explicit Euler Method

@ There are several one-step methods. Runge—Kutta methods are a very rich family of
them. In our lectures we will mostly need the simplest of them: the explicit Euler method.

@ For this method, the update map is defined as follows:
Vo1 = @F(¥n) := Yo + hF(yn), n =0,.., N — 1,

and it provides a first-order accurate approximation of the exact solution:
Ix(nh) — x,|| < Cyh.

o Example: Let F(x) = Ax, for a matrix A € R¥*?. The exact solution with initial
condition x(0) = xq is x(t) = exp(At)xo, whereas the explicit Euler approximation is

Yni1 = Yn + hAY, = (lg + hA)Y, = (Ig + hA) "Ly, n=0,..., N — 1.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 7/40

@ Why introducing the explicit Euler method in a lecture on Neural Networks?

 Davide Murai (DAMTP) " Neural Networks as Dynamical Systems: Hamiltonian and I-Lipschitz Networks 8/40

@ Why introducing the explicit Euler method in a lecture on Neural Networks?
@ Let's put side by side the definition of a ResNet layer, and the explicit Euler update gogr:
ResNet layer : xp411 = x, + Fg(xp), Explicit Euler : y,.1 = <p9_—(y,,) =yn+ hF(yn).

o We see that if F(x) = }Fy(x) for every x € R9, then the two maps coincide.

 Davide Murai (DAMTP) " Neural Networks as Dynamical Systems: Hamiltonian and I-Lipschitz Networks 8/40

ResNet Layers as Explicit Euler Steps

e Why introducing the explicit Euler method in a lecture on Neural Networks?

@ Let's put side by side the definition of a ResNet layer, and the explicit Euler update (p}:
ResNet layer : x,+1 = x, + Fo(xn),

o We see that if F(x) = +Fp(x) for every x € R?, then the two maps coincide.

o Important remark: There is no true dynamics behind a ResNet layer. However, we have
freedom when designing it and we could hence interpret it as a single Euler step of size
one applied to the differential equation x(t) = Fp(x(t)).

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 8/40

ResNet Layers as Explicit Euler Steps

Why introducing the explicit Euler method in a lecture on Neural Networks?

Let's put side by side the definition of a ResNet layer, and the explicit Euler update (p}:

ResNet layer : x,+1 = x, + Fo(xn),

We see that if F(x) = #+Fp(x) for every x € R?, then the two maps coincide.

o Important remark: There is no true dynamics behind a ResNet layer. However, we have
freedom when designing it and we could hence interpret it as a single Euler step of size
one applied to the differential equation x(t) = Fp(x(t)).

What does this analogy buy us?

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 8/40

ResNets as Discrete Dynamical Systems

@ Having drawn this connection between dynamical systems/ODEs and ResNets, we open
up several possibilities:
© We are not tied to the use of the explicit Euler method to design the network layers: we
could design a suitable parametric family of vector fields F = {Fy : R? = RY: 0 € ©} and
define ResNet-like layers as x — gp’}_—g (x) where h is another one-step method (e.g.
geometric integrators davidemurari.com/graduateCourseNotes.pdf).

@ We can look into the theory of numerical analysis, differential equations, and dynamical
systems to design new ResNets that behave well, or understand the behaviour of already

existing ones.

@ In this lecture, we will solely focus on the second point.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 9/40

https://davidemurari.com/graduateCourseNotes.pdf

A Visual Understanding

@ Dataset of two-dimensional points {((P}, p/?)vyi)}izlw"N. We train a NN to classify them.

@ The considered NN is a ResNet based on Euler steps applied to the differential equation
{)’((t) = B(t)T tanh (A(t)x(t) + b(t)), B(t), A(t) € R3*3, b € R3,
x(0) = [p}, p2.0] € F3,
@ We assume the weight functions t — A(t), t — B(t), t — b(t) to be piecewise constant.

Configuration at time=0.0

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 10/40

11/40

Recap on the Vanishing Gradient Problem

y
[0, %l

500 1000 1500 2000 2500 3000

Training iterations

We have seen that the gradient of the loss function with respect to the network weights

xT 0

satisfies

SeFo, (<) | IV al

—J+1

Vo, Lallz < || Jo; Fo,(x')]|2

o If [hFo,(x)]l2 < p <1 (eg. Lip(o) < 1 and [A¢llz < p), then [[Vg, L, S pt~

= vanishing gradients, and we can not meaningfully update the weights.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 12 /40

@ The equations of motion of canonical Hamiltonian systems write

{x = JVH(x) = Xy(x) € R?" I [o,, In

c R2n><2n.
X(O) = X0 _In 0n:|

 Davide Murail (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks ~ 13/40

What is a Canonical Hamiltonian System?

@ The equations of motion of canonical Hamiltonian systems write

{x = IVH(x) = Xu(x) € B [On 'n] e R2m2n

X(O) = Xp _In 0n
o Denoted with ¢y ¢ : R2" — R2" the exact flow, ¢y +(x0) = x(t), we see that

d

< H(0n.6(x0)) = VH(¢H,(x0)) ' IVH(6m,¢(x0)) = 0,

which means that the Hamiltonian is constant along the solutions.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks

13 /40

@ A linear map F(x) = Ax, A € R?"™*2" is symplectic if the matrix A satisfies
ATJA=1T.
Equivalently, it means that the map F preserves the bilinear form

Q(u,v) ==u'Jv <= Q(Au, Av) = Q(u,v), Yu,v € R?".

 Davide Murail (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks ~ 14/40

The Symplecticity Condition

@ A linear map F(x) = Ax, A € R?"™*2" is symplectic if the matrix A satisfies
ATJA=T.
Equivalently, it means that the map F preserves the bilinear form

Q(u,v) ==u'Jv <= Q(Au, Av) = Q(u,v), Yu,v € R?".

@ A (non-linear) continuously differentiable function F : R?" — R2" is symplectic if it
infinitesimally preserves Q, i.e. 9xF(x) € R?"*2" is symplectic for every x:

() ()

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 14 /40

The Symplecticity Condition

@ A linear map F(x) = Ax, A € R?"™*2" is symplectic if the matrix A satisfies
ATJA=T.
Equivalently, it means that the map F preserves the bilinear form

Q(u,v) ==u'Jv <= Q(Au, Av) = Q(u,v), Yu,v € R?".

@ A (non-linear) continuously differentiable function F : R?" — R2" is symplectic if it
infinitesimally preserves Q, i.e. 9xF(x) € R?"*2" is symplectic for every x:

OF0\" | (9FY _
Ox ox) 7
o Exercise: Show that the composition of continuously differentiable symplectic maps is

symplectic.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 14 /40

Why do we care about symplectic maps?

Let F : R2" — R2" be a continuously differentiable symplectic map, i.e.,

()" (25) =

Then we have

= (752) (052 < o) | el 5
e [52 = |75,

Thus F would not contribute to vanishing gradients!

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks

2

15 /40

@ A Hamiltonian or Symplectic NN is a network which is symplectic. This typically means
that all its layers are symplectic maps.

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 16 / 40

Hamiltonian NNs (HNNs) / Symplectic NN

@ A Hamiltonian or Symplectic NN is a network which is symplectic. This typically means
that all its layers are symplectic maps.

@ A common way to define them is by composing exact flows of Hamiltonian systems with
Hamiltonian functions

Hj(a,p) = Ko(p), Hj(a,p) = Us(a).
The ODEs they define are

m=V?q’m=&&J’

_ [a+ tVKe(p)] _ q
Opp.e(a,p) = [p | PHpeldP)= [p_ tVUe(q)] '

Exercise: Show that gi),_,;,t and ¢H§,t are symplectic maps.

and they have solutions

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 16 /40

@ A common strategy is to set
Ko(p) = u'v(Ap +a), Up(q) =v'7(Bq+b),
so that

VKy(p) = AT diag(u)o(Ap + a), VUs(q) = B'diag(v)o(Bq+b), o =~

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 17 /40

Example of a Hamiltonian/Symplectic NN

@ A common strategy is to set
Ko(p) = u'v(Ap+a), Up(q) =v'7(Bq+b),
so that

VKy(p) = A" diag(u)o(Ap +a), VU(q) = B' diag(v)o(Bq +b), o =+

@ The Symplectic/Hamiltonian NN that we obtain then has layers of the form

q -+ hyAl diag(u;)o(Aip + a))

Fo,/(a,p) = [q

} , hai, hoiv1 € R,

_ q .

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 17 /40

Gradient Stability in HNNs

Davide Murari

100

Haxkerz

10-2

107

(DAMTP)

12-layer HNN

-
)

R 10!
100

107!

[0y, %l

1077

cound ool ool vved o d 5o

s
T T T T 10
0 1000 2000 3000

Training iterations

12-layer ResNet

cound ool ool vved o d 5o

T T T T
0 1000 2000 3000

Training iterations

Haxkerg

100

1072

107*

2-layer MLP

cound ool ool vved o d 5o

T T T T
4] 1000 2000 3000

Training iterations

Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks

18 /40

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 19 /40

Adversarial robustness

Constraining the Lipschitz constant leads to a reduced sensitivity to input perturbations.

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 20/ 40

Adversarial robustness

Constraining the Lipschitz constant leads to a reduced sensitivity to input perturbations.

Wasserstein Generative Adversarial Networks (Kantorovich-Rubinstein duality)

Wil v) = sup Exeul[f(X)] = Ever [f(Y)]

X —
f 1—Lipschitz

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 20/ 40

Why 1-Lipschitz neural networks? ||[F(y) — F(x)|l2 < ||y — x]|2

Adversarial robustness

Constraining the Lipschitz constant leads to a reduced sensitivity to input perturbations.

Wi(v) = sup Exeplf(X)] =By, [f(Y)]
fl—'Lip—s>chitz

J

\.

Convergent fixed point iterations

If | F(y) — f(x)]l2 < |ly — x||2 for every x,y € RY, then x),1 = f(xx) admits a unique
and attractive fixed point. If T,(x) = (1 — a)x+ ag(x), @ € (0,1) and g 1-Lipschitz,
then whenever x, 1 = T,(xk) has a fixed point, the sequence converges.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 20 /40

1-Lipschitz MLPs

@ Given two Lipschitz-continuous functions F : R — R¢, G : R — R", with Lipschitz
constants Lip(F) and Lip(G), respectively, the composition H = Fo G : RY — R€ is
Lipschitz continuous as well, with Lip(H) < Lip(F)Lip(G):

[H(y) — H(x)[l2 = [|F(G(y)) — F(G(x))[2 < Lip(F)[|G(y) — G(x)]]2
< Lip(F)Lip(G)|ly — x|l2, ¥x,y € R?.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 21 /40

1-Lipschitz MLPs

@ Given two Lipschitz-continuous functions F : R” — R¢, G : R? — R”, with Lipschitz
constants Lip(F) and Lip(G), respectively, the composition H = Fo G : RY — R€ is
Lipschitz continuous as well, with Lip(H) < Lip(F)Lip(G):

[H(y) — H(x)[l2 = [|F(G(y)) — F(G(x))[2 < Lip(F)[|G(y) — G(x)]]2
< Lip(F)Lip(G)|ly — x|l2, ¥x,y € R?.

@ We can get a 1-Lipschitz feedforward network (MLP) composing 1-Lipschitz layers:
Ng=A 0c0A_10..000A;:RY = R,
where we need |o(s) — o(t)] < |s—t|, and ||Aj]]2 <1 for j =1,...,L. Most activation

functions, such as tanh, ReLLU, LeakyReLU, sigmoid, sin are 1-Lipschitz.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 21 /40

1-Lipschitz ResNets are more challenging to obtain

For ResNets, it is more challenging, since the basic layers are of the form
RY 3 x 5 x + 7Fp.(x) = ©p.(x) € RY, 7> 0,
and, for a generic Fy, : RY — R it is hard to get better bounds than

5.(¥y) — 5, (x)]l2 < (1 + 7Lip(F,)) ly — xl2, x,y € R9.

We hence need to modify them slightly, or properly choose the residual map Fy,.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 22 /40

Let V : RY — R be a continuously differentiable convex function. We consider vector
fields of the form
F(x) = -V V(x).

Given two solution curves, x(t) = F(x(t)) and y(t) = F(y(t)), we see that

%IIX(t) —y(0)I3 = = (VV(x(t) = VV(y(t)" (x(2) - y(t)) < 0.

Thus, the flow map ¢t : RY — RY defined by ¢t-(x(0)) = x(t) is 1-Lipschitz.
F F

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 23/40

Gradient flows on R

Consider the scalar function? Vy(x) = 1TReLU?(Wx + b)/2. Define

Fo(x) = =V Vj(x) = —WTReLU(Wx + b).

If x = Fp(x) and y = Fy(y), we have |ly(t) — x(t)[|2 < ||y(0) — x(0)]|2 for every t > 0.

W eR™ beR" heN, 6§ =(W,b), and 1 € R" a vector of ones.

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 24 /40

Non-expansive gradient flows

Gradient flows on R

Consider the scalar function? Vy(x) = 1TReLU?(Wx + b)/2. Define
Fo(x) = =V Vp(x) = —W T ReLU(Wx + b).

If x = Fp(x) and y = Fp(y), we have |ly(t) —x(t)||2 < |ly(0) — x(0)||2 for every t > 0.

WeR™ beR" heN, 0= (W,b), and 1 € R" a vector of ones.

\.

Euler step (1-Lipschitz)

If 7 € [0,2/||W|3], the explicit Euler map ¢} (x) = x + 7.Fy(x) is 1-Lipschitz, i.e.,

log(y) = 95(x)ll2 < lly = x|l2, x,y € RY.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 24 /40

Neural networks based on gradient flows
We consider neural networks of the form
Ny :Wogo@Lo...ocp@loQ:Rd%Rc, vo, € En,
Eni={# R" > R" (x) = x = 7W ReLU(Wx + b), W € R¥*" b € R",
W eN.7 e [0.2/|WI3l}.

where Q : R — RN and 7 : R" — R€ are affine maps.

~FinisB B

,ﬁg‘:Q i(t) = —A(t) ReLU(A(t)x(t) + b(t)) =
- —

g

£ 9

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 25 /40

1-Lipschitz Networks for Robust Classification

Classification problem

Let Q C RY be a set whose points are known to belong to C classes. Given part of their
labels, we want to label the remaining points using Ny : R — RS where we set

predicted class of x = arg max <N9 (x)T ec> .
c=1,...,C

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 26 /40

Classification problem

Let Q C RY be a set whose points are known to belong to C classes. Given part of their
labels, we want to label the remaining points using Ny : R — RS where we set

predicted class of x = arg max <N9 (x)T ec> .
c=1,...,C

Adversarial examples

X X+6,6].=0.3
Label : Horse Label : Dog

Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 26 /40

@ Not all correct predictions are equivalent.

@ Let /(x) = 2 be the correct label for the point x € Q.

o Ny (x)=1[0.49 0.51 0] is not so certain as a prediction.
o Ny, (x)=1[0.05 0.9 0.05] there is a higher gap here.

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 27/ 40

@ Not all correct predictions are equivalent.

@ Let /(x) = 2 be the correct label for the point x € Q.

o Ny (x)=1[0.49 0.51 0] is not so certain as a prediction.
o Ny, (x)=1[0.05 0.9 0.05] there is a higher gap here.

Margin: My, (x) := Ng(x)TeZ(x) - QZEEX)NG(X)TGJ-
JAL(x

M, (x) >0 = N correctly classifies x.
M, (x) > V2Lip(Np)e = My, (x + 1) > 0V]lnf2 < <.

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 27 /40

How to have guaranteed robustness

@ Not all correct predictions are equivalent.
@ Let /(x) = 2 be the correct label for the point x € Q.
o Np, (x) =[0.49 0.51 0] is not so certain as a prediction.
o Ny, (x)=1[0.05 0.9 0.05] there is a higher gap here.
Margin: My, (x) := Ng(x)TeE(x) — max NVy(x)e;.
J#4(x)
My, (x) >0 = Nj correctly classifies x.

My, (x) > V2Lip(Np)e = My, (x+ 1) > 0V|n|2 <e.

@ We constrain the Lipschitz constant of A (and train the network so it maximises the
margin).

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 27 /40

Adapting Gradient Flows to Convolutional Neural Networks

Code Snippet 1: Fully-connected

A = nn.Parameter(torch.randn(h,h))

b = nn.Parameter (torch.randn(h))

tau = nn.Parameter(torch.tensor([2.]))
X =x - tau * act(x @ A.T + b) @ A

Code Snippet 2: Convolutional

A = nn.Conv2d(in_channels=h,out_channels=h,kernel_size=3,padding=1)

tau = nn.Parameter (torch.tensor([2.]))

K = A.weight

V = nn.functional.conv_transpose2d(input=act(A(x)), weight=K, padding=1)
X - tau * V

i
]

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 28 /40

Robustness to adversarial attacks

e=0 =01 ¢
Sncaku Sandal ~ San

S5 ooe=1 e =2 e =20
al Sandal ~ Sandal Sandal

—@— ResNet
—@— Non-Expansive

Robust Accuracy (%)

0

0.0 0.2 0.4 0.6 0.8 1.0

@

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 29 /40

1-Lipschitz Networks for Inverse Problems

n€1[|de (f(x) +vg(x)), f:RY 5 R, g : RY - RU {00}, (1)

where f is a data-fidelity term, g is a regularisation term, and v > 0.

 Davide Murail (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 3040

nglgwd(f(x) +7g(x)), f:RY 5 R, g:RY = RU {£o0}, (1)

where f is a data-fidelity term, g is a regularisation term, and v > 0.
Example:

1 1 . .
F(x) = 5lIKx — yIB, g(x) = IxI3 (Ridge Regression).

 Davide Murail (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 3040

The Proximal Gradient Descent Method

rg}iRIL(f(x)—i—'yg(x)), f:RI SR, g:RY - RU{+o0}, (1)

where f is a data-fidelity term, g is a regularisation term, and v > 0.
Example:

1 1 . .
F(x) = 5 IKx— yI3, g(x) = 5[} (Ridge Regression)

Assume f :RY = R and g : RY = R U {£00} convex, f continuously differentiable, g
continuous and proper. A method to solve (1) is the Proximal Gradient Descent Method:

Xk41 = ProX,z - (xk — 7VF(xk)), 7 >0,

i 1

pro%, () = argmin (-~ 23+ 7¢(2))

8, 2
z€RY T

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 30/40

Q c R? non-empty, closed, convex set. f : R? — R convex and continuously differentiable.

0, x € Q,

+o00, x ¢ Q.

,TEiS f(x) < ;21;@ £(x) + ia(x), iQ(X):{

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 31/40

Example: Projected Gradient Descent

Q c R? non-empty, closed, convex set. f : R? — R convex and continuously differentiable.

0, x e Q,

min f(x) <= min f(x) + ia(x), ia(x) = {—I—oo x ¢ €.

xeQ x€Rd

Here, we have that if i =: g, the proximal operator is an orthogonal projection operator:

(1 . : :
prox, . (x) = argmin <2||x —z|3 + 7/9(2)) = argmin ||x — 2||3 = projo(x).
zeRd T 2eQ

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 31/40

Example: Projected Gradient Descent

Q c R? non-empty, closed, convex set. f : R? — R convex and continuously differentiable.

0, x e Q,

Xmeig f(x) < xrgf'RrL f(x) + ia(x), ia(x) = {+oo, x4 Q.

Here, we have that if i =: g, the proximal operator is an orthogonal projection operator:

(1 . : :
prox, . (x) = argmin <2||x —z|3 + 7/9(2)) = argmin ||x — 2||3 = projo(x).
zeRd T 2eQ

The proximal gradient method then becomes the projected gradient descent method:

Xk+1 = projo(xx — 7V (xk)).

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 31/40

Let f(x) = 2|Kx —y[3, g(x) = |[x[l1 = 3%, |xi|, and 7 > O the regularisation parameter.

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 32/40

Example: ISTA (cfr. SINDy)

Let f(x) = 3|Kx — y[3, g(x) = [Ix[1 = X, x

, and v > 0 the regularisation parameter.

The Proximal Gradient Descent then writes

Xk41 = PIOXyg - (Xk - TKT(KX - y)) = Sy (xk — TKT(KX — y)) ,
Xi — /\7 Xj >)\,
(Sa(x))i =<0, x| <A A>0,i=1,..,d.
Xj + /\, X < —)\,

Soft-thresholding, A = 0.4 Hard-thresholding, A =0.4
1 /
0 /—/ S
L / S
-1.0 -0.5 0.0 0.5 1.0 -1.0 =05 0.0 0.5 1.0
X X

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 32/40

There are two problems with what we saw in the two previous slides:
@ It is extremely hard to define a good regulariser for any given task,
@ The proximal operator of a generic regulariser g is not easy to compute.

 Davide Murail (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 33,40

The Plug-and-Play Method

There are two problems with what we saw in the two previous slides:
@ It is extremely hard to define a good regulariser for any given task,
@ The proximal operator of a generic regulariser g is not easy to compute.

Solution: The Plug-and-Play method is defined by replacing prox., , with a Neural Network:

Plug-and-Play: xx41 = Na(xx — TV F(x)), Ny : R? — R€. (2)

The network A is typically trained offline to denoise images:

N
1
min §. 1: INo(xi +67) = xi|5, 61, ..., 65 ~ D.
1=

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 33 /40

There are two problems with what we saw in the two previous slides:
@ It is extremely hard to define a good regulariser for any given task,
@ The proximal operator of a generic regulariser g is not easy to compute.

Solution: The Plug-and-Play method is defined by replacing prox. . , with a Neural Network:
Plug-and-Play: xx41 = Na(xx — TV F(x)), Ny : R? — R€. (2)

The network N is typically trained offline to denoise images:

N
1
ma.nN;HNe(x,-M,)—x,-ug, 81,0 0N ~ D.

Convergence guarantees

Assume f is p-strongly convex, L-smooth, and 7 € (0,2/L). Then if Ny is 1-Lipschitz,
the iterates in (2) converge to a unique fixed point.

_ Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 33 /40

Averaged maps

«a-averaged map

The map T : RY — R? is averaged if there exists a € (0,1) and a 1-Lipschitz map
F : R?Y - RY such that T = (1 — a)id + aF. The composition of averaged maps
is again averaged. Patrick L Combettes and Isao Yamada. “Compositions and Convex
Combinations of Averaged Nonexpansive Operators”. In: Journal of Mathematical Anal-
ysis and Applications 425.1 (2015), pp. 55-70, Proposition 2.4

Let f : RY — R be convex, continuously-differentiable, and L-smooth. Then if 7 €
(0,2/L) the map T(x) = x — 7Vf(x) is averaged with a = 7L/2.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 34 /40

Convergence Theorem

Let f : RY — R be continuously differentiable, convex, and L-smooth. Assume 7 €
(0,2/L). Then G = id — 7V is 7L/2 averaged. Further assume that Aj : RY — R
is averaged. Let T = Nyo G. Assuming that Fix(T) # (), the Plug-and-Play iterates
Xk+1 = T (xk) will converge to a fixed point.

 Davide Murail (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 35,40

Convergence Theorem

Let f : RY — R be continuously differentiable, convex, and L-smooth. Assume 7 €
(0,2/L). Then G = id — 7V is 7L/2 averaged. Further assume that Aj : RY — R
is averaged. Let T = Ny o G. Assuming that Fix(T) #), the Plug-and-Play iterates
Xk+1 = T (xk) will converge to a fixed point.

Our networks are explicit Euler steps for the gradient of f(x) = 1T ReLU?(Ax + b)/2, which is
convex and its gradient is
Vf(x) = ATReLU(Ax + b),

which is ||A|3-Lipschitz. This means that the layers of our 1-Lipschitz network are averaged if
0 < 7; < 2/||Ai||3, and hence so is the full network Nj.

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 35,40

The Network Ay Trained as Denoiser

PSNR (Peak Signal-to-Noise Ratio)

max; ; x |x*: |2
PSNR(%,x*) = 10log;, (ikl .

1 ~
3321481 Zi,j,k |X7fj,k — Rijk[?

Figure 1: Image from BSDS500 dataset, composed of 500 natural colour images of size 321 x 481.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 36 /40

What do we mean with Deblurring?

@ Let us consider the inverse problem of deblurring: we assume that we are given
measurements y = Kx + ¢, where Kx = k % x is a convolution operation representing a

motion blur.

@ The ill-posedness of this problem is manifested in the instability of the inverse of the
convolution; as a consequence of this, a naive inversion of the measurements will blow up
the noise in the measurements.

@ The data-fidelity term is
1
() = 5 1Kx— yI

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 37/40

Visualisation of the ill-posedness

Original, x Blur + noise, y=Kx + ¢ Naive inverse K~ly =x

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 38/40

Use in a Deblurring Task

Cg)onvergence of the PnP iterations
10°

10!
107" 4

10-3 4

llox — 21

1075
10—7 E

10~9 4

10° 10! 10?
Iteration number &

Figure 2: Using the learned Euler denoiser to solve an ill-posed inverse problem (deblurring) in a PnP
fashion, with convergence guarantee.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 39 /40

APPENDIX

 Davide Murai (DAMTP) " Neural Networks as Dynamical Systems: Hamiltonian and I-Lipschitz Networks 1/12

What do we mean with structure preservation?

@ Sometimes when approximating a target function we are not just looking for an accurate
approximation, but we care about interpretability, reliability, and qualitative compatibility
with the true function.

Figure 3: Misclassification of an image that could harm self-driving cars.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 2/12

What do we mean with structure preservation?

@ Sometimes when approximating a target function we are not just looking for an accurate
approximation, but we care about interpretability, reliability, and qualitative compatibility
with the true function.

Figure 3: Misclassification of an image that could harm self-driving cars.

@ Such properties are achievable only by constraining the neural networks we construct so
that they behave as desired. We call the area of Deep Learning interested in constraining
neural networks structure-preserving deep learning.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 2/12

Some learning problems with a structure worth preserving

 ref

y ref

2 ref

4yl

(a) Learning the mass preserving flow map of the
SIR model.

Predicted
ial Condition

=2 =1 [T 3

(c) Learning the Hamiltonian of unconstrained
systems.

Davide Murari (DAMTP)

o Prediction, Frame 0

6(1‘\10 dynamics, Frame 0

(b) Learning the norm-preserving flow map of the
linear advection PDE.

First pendulum Second pendulum

(d) Learning the Hamiltonian of constrained
systems.

Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 3/12

@ To build networks satisfying a desired property, we can either restrict the parametrisation
Ny or modify the loss function.

 Davide Murai (DAMTP) " Neural Networks as Dynamical Systems: Hamiltonian and I-Lipschitz Networks /12

Imposing structure over a neural network

@ To build networks satisfying a desired property, we can either restrict the parametrisation
Ny or modify the loss function.

@ Restrict the architecture:

e Modify the loss function:

N 1 N
Z o (xi) = yillz + 5 D (IIxilla = Vo (x)12)*
i=1 i=1

TV
regulariser

= \

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 4/12

Imposing structure over a neural network

@ To build networks satisfying a desired property, we can either restrict the parametrisation
Ny or modify the loss function.

@ Restrict the architecture:
No(x)
No(X) = =" 1]l -
[~

2
e Modify the loss function:

. 1 1
L) =5 > INa(xi) = yill + m > (UIxill, = INa(x7)1l,)? -
i=1 i=1

-~

regulariser

o Not all restrictions are equally effective, e.g. Nr(x) = Rx, RT R = I, is norm-preserving
but probably not expressive enough.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 4/12

@ Choose a property (closed under composition) P that the network has to satisfy, e.g.
volume preservation.

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 5/12

Structured networks based on dynamical systems

@ Choose a property (closed under composition) P that the network has to satisfy, e.g.
volume preservation.

@ Choose a family of parametric vector fields Sg whose solutions satisfy P, e.g.

R = [l rtee) 0[],

with x e R, x; € R%, x5 € R®%, and d = dy + db.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 5/12

Structured networks based on dynamical systems

@ Choose a property (closed under composition) P that the network has to satisfy, e.g.
volume preservation.

@ Choose a family of parametric vector fields Sg whose solutions satisfy P, e.g.

) =[G T = [P) <)

with x e R, x; € R%, x5 € R®%, and d = dy + db.
@ Choose a numerical method \Uhf(9 that preserves the property P at a discrete level, e.g.

\Uh (X) _ X1 + ho (A1X2 —l— bl) =: ’)21
To X2 + ho (A2X1 + bg)

@ The resulting network Ny = \U%)L 0---0 \U%l will preserve P.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 5/12

Remark on Properties not Closed Under Composition

Not all the properties a function might satisfy are closed under composition. This makes their
imposition over NNs more challenging. An example is given by the set of gradient vector fields

g:{]-":]Rd—HRd | existsV:]Rd—HR,]-":VV}.

@ A way to model neural networks which are gradients is: Vj(x) = MLPy(x), Fo = VVj
(hard to train in high dimensions)

@ Or rely on modified architectures, such as
Fo(x) = Ny(x) — (8:Np(x)) "x.

We will not go into further details on this property.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 6/12

 Davide Murai (DAMTP) " Neural Networks as Dynamical Systems: Hamiltonian and I-Lipschitz Networks /12

A one-step numerical method ¢/ : R?" — R2" is symplectic if and only if when applied
to a Hamiltonian system the map " is symplectic, i.e.,

()15

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 8/12

Symplectic numerical methods

7

A one-step numerical method ¢/ : R?" — R2" is symplectic if and only if when applied
to a Hamiltonian system the map " is symplectic, i.e.,

(255 (25) -

Symplectic and energy preserving methods

Let x = JVH(x) be a Hamiltonian system with Hamiltonian H and no conserved quanti-
ties other than H. Let ¢" be a symplectic and energy-preserving method for the Hamil-
tonian system. Then ¢ reproduces the exact solution up to a time re-parametrisation.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 8/12

Symplectic numerical methods

7

J

A one-step numerical method ¢/ : R?" — R2" is symplectic if and only if when applied
to a Hamiltonian system the map " is symplectic, i.e.,

()1 (5)-

Symplectic and energy preserving methods

Let x = JVH(x) be a Hamiltonian system with Hamiltonian H and no conserved quanti-
ties other than H. Let ¢" be a symplectic and energy-preserving method for the Hamil-
tonian system. Then ¢ reproduces the exact solution up to a time re-parametrisation.

\

Informal theorem

A symplectic method almost conserves the Hamiltonian for an exponentially long time.

\.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 8/12

Example: simple harmonic oscillator
Results with Explicit Euler
2 2
| N
mr\e
[
—14 W \l\ 14
—92 —2 1

0 10 20 30 40 -2 0 2 0 10 20 30 40

100.

1071 4

1077 5

[H(q(t),p(t)) = H(qo, o)

Results with Implicit Midpoint

10 10
0.5 m 0.5
0.0 1 1 s 00

10—15 4

p(t)) — H(qo, po)

i P
—0.5 1 W \} —0.51
~1.04 —1.0 1 i
0 10 20 30 40 -1 0 1 0 10 20 30 40
t q t

[H (q(t),

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks

9/12

~ Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 10/12

x(t) = —WTReLU(Wx(t)), W = % [\‘g _\/‘Q , ReLU(s) = max{s, 0}.

[[%i(t) = %;(®)ll [[%i(t) = %;(®)[l [[%i(t) = %;(®)[l
[[%:(0) = x;(0)[2 [[:(0) = x;(0)[2 [[:(0) = x;(0)[2

11/12

Denoising Performance

MEuler := PoNpo L,
[,(Xl,XQ,X3) = (X1,X3,X3,07 ,0) S R64, P(X]_, ...,X54) = (X1,X2,X3) S R3.

DnCNN?

50 ; 200 ¢
. rEul(‘r(!/) FElillcr <y)

Figure 5: Repeated application of the unconstrained denoiser DnCNN? and the constrained denoiser
[Euler to a given input image.

2Kai Zhang et al. “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising” . In:
IEEE transactions on image processing 26.7 (2017), pp. 3142-3155.

Davide Murari (DAMTP) Neural Networks as Dynamical Systems: Hamiltonian and 1-Lipschitz Networks 12/12

	ResNets Based on Dynamical Systems
	Hamiltonian Neural Networks
	1-Lipschitz Neural Networks
	1-Lipschitz Networks for Robust Classification
	1-Lipschitz Networks for Inverse Problems

	Appendix
	Overview of Structure-Preserving Deep Learning
	Symplectic Numerical Methods
	Additional material for 1-Lipschitz networks

	anm2:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

