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@ The building blocks of neural networks

© Activation functions

© How do we train neural networks?

@ Vanishing gradients

© |Interpolation, Generalisation, and Extrapolation
@ Universal Approximation Theorems

@ Some of the most popular architectures
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@ Neural networks are typically visualised as something like this
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o Mathematically, a neural network (NN) is a parametric map Aj : RS — R9, usually
defined by composing L functions, called layers, as Ny = Fy, o ... o Fy,, Fp, : RS — R+1,
c = c, ¢g11 = d. Each component of each layer is called neuron.
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What is a neural network mathematically

@ Neural networks are typically visualised as something like this
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e Mathematically, a neural network (NN) is a parametric map Ny : R¢ — RY, usually
defined by composing L functions, called layers, as Ny = Fy, o ... o Fy,, Fp, : RS — RC+1,
c = c, ¢g11 = d. Each component of each layer is called neuron.

@ The parametrisation strategy behind A is defined by the so-called neural network
architecture.
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@ It is common practice to define layers by alternating affine maps with non-linear functions
applied entrywise:

o(x)
Fp,(x) = X 0 Aj(x), X(x) := : ,

O(XCI+1)
A RY 5 R Y R — R, o0 : R — R.

(1)

We will use o both for the scalar function and for the vector function.
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@ It is common practice to define layers by alternating affine maps with non-linear functions
applied entrywise:

o(x)
Fp,(x) = X 0 Aj(x), X(x) := : ,

O(XCI+1)
A RY 5 R Y R — R, o0 : R — R.

(1)

We will use o both for the scalar function and for the vector function.

@ o is called activation function.
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The simplest type of layer

@ It is common practice to define layers by alternating affine maps with non-linear functions
applied entrywise:

o(x1)

Fo,(x) = £ 0 Aj(x), X(x):= :
O-(XC,'+1)

A RY 5 R Y R — R, o0 : R — R.

We will use o both for the scalar function and for the vector function.

@ o is called activation function.

@ Depending on how A; is defined, we can get different types of neural networks, such as
Fully Connected Networks, Convolutional Networks, Graph Neural Networks, and more.

@ We can modify (1) to get architectures such as ResNets, U-Nets, Transformers, and more.
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@ A NN N : R? = R€ is shallow if it has a single hidden layer, so generally this means
that it can be written as

Ny(x) = A1o(Aox 4+ b), Ag € R4 A} e RI*" b e R heN.
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Deep VS Shallow Networks

@ A NN Aj : RY — R€ is shallow if it has a single hidden layer, so generally this means
that it can be written as

Ny(x) = A1o(Aox 4+ b), Ag € R4 A} e RI*" b e R heN.
e N is deep if it is not shallow, so if it has L > 1 layers. If the layers are defined as seen
before, this means that
No(x) =AL0c0A; 10...0A100 0 Ay(x). (2)

o If the affine layers are defined by unconstrained/dense matrices, we call Ny in (2) a
Multi-Layer Perceptron (MLP).
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@ The weights 6 of Ny can be found by solving a suitable optimisation problem. This
optimisation process is called network training.
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@ The weights 6 of Ny can be found by solving a suitable optimisation problem. This
optimisation process is called network training.

@ The loss function to minimise is defined thanks to the data one has available, or thanks
to properties we would like the approximation to satisfy.
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Finding the weights of a NN

@ The weights 6 of Ay can be found by solving a suitable optimisation problem. This
optimisation process is called network training.

@ The loss function to minimise is defined thanks to the data one has available, or thanks
to properties we would like the approximation to satisfy.

@ After minimising the loss function, we hopefully have a good set of parameters 6* and we
can use Ny- to make new predictions, for unseen inputs.
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Finding the weights of a NN

@ The weights 6 of Ay can be found by solving a suitable optimisation problem. This
optimisation process is called network training.

@ The loss function to minimise is defined thanks to the data one has available, or thanks
to properties we would like the approximation to satisfy.

@ After minimising the loss function, we hopefully have a good set of parameters 6* and we
can use Ny- to make new predictions, for unseen inputs.

@ We now briefly describe the common loss functions used for regression tasks, and
classification tasks.
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Mean-Squared Error Loss Function for regression

Given the dataset {(x;,y; = F(x;))}",, x1,...,xy € Q C RY, to approximate F : RY — R

over Q with a neural network A : R — RS, we can minimise the Mean-Squared Error Loss
function defined as

N
1
L) = 5 D INax) = yill3 llyll2 = /2 4+ 2.
i=1

0.0 0.2 0.4 0.6 0.8 1.0
x
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o Dataset: {(x;,yi)}¥,, x; € QCRY and y; € ¥ :={1,...,K}. y; is the class index
(the label) of x;; e.g. yi = 3 means x; belongs to the third class (e.g. cats).
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o Dataset: {(x;,yi)}¥,, x; € QCRY and y; € ¥ :={1,...,K}. y; is the class index
(the label) of x;; e.g. yi = 3 means x; belongs to the third class (e.g. cats).

e Target function: F : RY — ). For convenience, define its one-hot vector
e(y,-) S {0, l}K with [e(y,-)]k = 5}’i,k' k=1,..,K,i=1,..,N.
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Cross-Entropy Loss Function for classification

o Dataset: {(x;,yi)}M,, x; € QCRY9, and y; € Y :={1,...,K}. y; is the class index
(the label) of x;; e.g. yi = 3 means x; belongs to the third class (e.g. cats).

e Target function: F :RY — ). For convenience, define its one-hot vector
e(yi) € {0, 1} with [e(y)]k = 0yh, k=1,.... K, i=1,..,N.

e Approximation strategy: We approximate F with a neural network Ny : RY — RX
producing logits NVy(x) € RX and class probabilities via the softmax function:

x) = softmax(Npy(x)), X))k = exp([No(x)] >0, =1.
Po(x) tmax(Np(x)), [pa(x)]k o leXp([Ne( )L) Z[P x)]k
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Cross-Entropy Loss Function for classification

o Dataset: {(x;,yi)}M,, x; € QCRY9, and y; € Y :={1,...,K}. y; is the class index
(the label) of x;; e.g. yi = 3 means x; belongs to the third class (e.g. cats).

e Target function: F :RY — ). For convenience, define its one-hot vector
e(yi) € {0, 1} with [e(y)]k = 0yh, k=1,.... K, i=1,..,N.

e Approximation strategy: We approximate F with a neural network Ny : RY — RX
producing logits NVy(x) € RX and class probabilities via the softmax function:

x) = softmax(Npy(x)), X))k = exp([No(x) >0, =1.
Po(x) tmax(Np(x)), [pa(x)]k o leXp([Ne( )L) Z[P P

@ The (multi-class) Cross-Entropy Loss is

1N K
£(0) = =75 D_ > _le(y)lk loglpo(x:)]i

i=1 k=1
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@ In principle, most functions ¢ : R — R can be used as an activation function.

@ Furthermore, one could also change the activation function from neuron to neuron and
layer to layer. This is not so common, though.
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Main properties of the most popular activation functions

@ In principle, most functions ¢ : R — R can be used as an activation function.

@ Furthermore, one could also change the activation function from neuron to neuron and
layer to layer. This is not so common, though.

@ Most (but not all) of the commonly used activation functions satisfy the following
properties:
© Non-linear,

© Not polynomials,
© Non-decreasing,

@ Lipschitz continuous, i.e., |o(s) — o(t)| < Lip(o)|s — t| for s, t € R.
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Activations with bounded range

@ An important class of activation functions, called sigmoidal, have a bounded range, i.e.,
o(R) is bounded. Examples are o(x) = tanh(x) and o(x) = 1/(1 4+ e™*). These
functions are said to saturate, which could be a problem for gradient stability.

tanh Sigmoid
1 - -
O - -
_1 i 1 1 1 7 1 1 1
—10 0 10 —10 0 10
Xz T
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Activations with unbounded range

@ There are many other activation functions with unbounded range, such as the popular
o(x) = ReLU(x) = max{x,0} and o(x) = LeakyReLU(x) = max{x, ax}, a € (0, 1).
ReLU is flat in half of the line, and this could also lead to gradient instabilities.

ReLLU LeakyReLU, a = 0.1
4 4 _
9 - _
0 - _
5 0 5 -5 0 5
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e x = ReLU(x) — ReLU(—x), xP = ReLUP(x) + (—1)PReLUP(—x), p € N,

!Exercise: Show that this can be written as a single hidden layer neural network with ReLU as activation.
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e x = ReLU(x) — ReLU(—x), xP = ReLUP(x) + (—1)PReLUP(—x), p € N,
e |x| = ReLU(x) + ReLU(—x),

!Exercise: Show that this can be written as a single hidden layer neural network with ReLU as activation.
14/40



e x = ReLU(x) — ReLU(—x), xP = ReLUP(x) + (—1)PReLUP(—x), p € N,
e |x| = ReLU(x) + ReLU(—x),
e max{x,y} = x + ReLU(y — x) = y + ReLU(x — y)},

e min{x,y} = x — ReLU(x — y) = y — ReLU(y — x),

!Exercise: Show that this can be written as a single hidden layer neural network with ReLU as activation.
14/40



Some functions representable with ReLLU
e x = ReLU(x) — ReLU(—x), xP = ReLUP(x) + (—1)PReLUP(—x), p € N,

e |x| = ReLU(x) + ReLU(—x),

max{x,y} = x + ReLU(y — x) = y + ReLU(x — y)%,

min{x,y} = x — ReLU(x — y) = y — ReLU(y — x),

Hat functions such as f(x) = max{0, |1 — |x||} can also be represented:
f(x) = ReLU(x — 1) — 2ReLU(x) + ReLU(x + 1).

1.0 4

— f
=== ReLU-based
0.5 1

0.0 1

-2.0 -15 -10 -0.5 0.0 0.5 1.0 15 2.0
x

!Exercise: Show that this can be written as a single hidden layer neural network with ReLU as activation.
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@ To find the network weights 6, we need to minimise a loss function £(¢). This cannot
generally be done analytically, and we therefore need a numerical method to approximate
such a solution.
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The need for first-order optimisation methods

@ To find the network weights 6, we need to minimise a loss function £(¢). This cannot

generally be done analytically, and we therefore need a numerical method to approximate
such a solution.

@ Most of these methods are iterative, in the sense that they start from a hopefully good

initial guess 6p, and define an iteration that aims to improve on it until a stopping
criterion is met:

0o ~ D, Oxy1 = T(0k, VL(Ok),...), k=1, ...,epochs.
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The need for first-order optimisation methods

@ To find the network weights 6, we need to minimise a loss function £(¢). This cannot
generally be done analytically, and we therefore need a numerical method to approximate
such a solution.

@ Most of these methods are iterative, in the sense that they start from a hopefully good
initial guess 6p, and define an iteration that aims to improve on it until a stopping
criterion is met:

0o ~ D, Oxy1 = T(0k, VL(Ok),...), k=1, ...,epochs.

@ When dealing with neural network training, we generally need to solve very
high-dimensional problems, since § € RP with p usually large. For example, GPT-1 has
117 million parameters.
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The need for first-order optimisation methods

To find the network weights 6, we need to minimise a loss function £(#). This cannot
generally be done analytically, and we therefore need a numerical method to approximate
such a solution.

Most of these methods are iterative, in the sense that they start from a hopefully good
initial guess 6p, and define an iteration that aims to improve on it until a stopping
criterion is met:

0o ~ D, Oxy1 = T(0k, VL(Ok),...), k=1, ...,epochs.

When dealing with neural network training, we generally need to solve very
high-dimensional problems, since § € RP with p usually large. For example, GPT-1 has
117 million parameters.

This implies that we need to use first-order algorithms, i.e., methods where T only
depends on the gradient of £, and not on its higher-order derivatives.
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Let F: RY — R be a continuously differentiable function.
e Lipschitz continuity: F is L-Lipschitz continuous if and only if for any x,y € R¥,

[F(y) = F(x)| < Llly — x|2,
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Some properties of functions fundamental in optimisation

Let F:RY — R be a continuously differentiable function.

e Lipschitz continuity: F is L-Lipschitz continuous if and only if for any x,y € RY,
[F(y) = F(x)| < Llly — x]|2,

e [-smoothness: F is L-smooth if and only if VF is L-Lipschitz, i.e. for any x,y € RY,
IVE(y) = VE(x)[l2 < Llly = x|]2,
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Some properties of functions fundamental in optimisation

Let F:RY — R be a continuously differentiable function.
e Lipschitz continuity: F is L-Lipschitz continuous if and only if for any x,y € RY,
[F(y) = F(x)| < Llly — x]|2,

e [-smoothness: F is L-smooth if and only if VF is L-Lipschitz, i.e. for any x,y € RY,
IVE(y) = VE(x)[l2 < Llly = x|]2,

e Convexity: F is convex if and only if for any x,y € R, (VF(y) — VF(x))"(y — x) >0,

e Strong Convexity: Let > 0. F is pu-strongly convex if and only if for any x,y € RY,
(VF(y) = VF(x))"(y = x) > plly = x[3 = uly = %) T(y = x).

Convex Not convex Strongly convex
1 -
) / N \/_\/_\/\ ] s
Ol | M MV Vg0
—1 0 1 —1 0 1 —1 0 1
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Ok+1 = T(Ok, VL(Ok)) :== 0k — TV L(Ok)
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9k—|—1 == T(Gk, VE(Gk)) = 9k - TVﬁ(ek)

Assume that £ : RP — R is p-strongly convex, continuously differentiable, and L-smooth.
Let 0* = arg mingcpy £(0). Assume 0 < 7 < 2/(p+ L). Then

L
Ok — 0.]2 < 4¥160 — 6.2, :(1—2 s )e 0,1).
[0k 12 < 7[00 12, v Tt L (0,1)

The contraction factor v is minimised at 7* = 2/(L + p), where

L—pu 2 k—1\? L
Y=—L) = , & = — (condition number of the problem).
L+p K+ 1 1

For a proof, see Nesterov, Introductory Lectures on Convex Optimization: A Basic Course.
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The loss of neural networks is generally not convex. Consider Ny : R — R defined as
Ny(x) = tanh(ax), § = a € R.

It is easy to see that the loss function below is not convex in this case

£(a) = %(Ng(l) 0P = %tanh(a)z.

tanh(a)?/2

0.4 1

0.2

0.0
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Convergence properties for non-convex objectives

@ The lack of convexity generally leads to several equivalent local minima.
() = (@~ 1)?

71.5 71.0 7(‘].5 UTU UTS ljU 115
@ This complicates the convergence analysis of the optimisers. These lectures will not cover
these aspects, but here are a couple of relevant references:

e Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. “A Convergence Theory for Deep Learning
via Over-Parameterization”. In: International Conference on Machine Learning. Vol. 451.
2018,

e Simon Du et al. “Gradient Descent Finds Global Minima of Deep Neural Networks”. In:
International conference on machine learning. PMLR. 2019, pp. 1675-1685.
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prediction = model(input) #Forward propagation
loss = criterion(prediction,target) #Compute the mean squared error
loss.backward() #Backpropagation
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prediction = model(input) #Forward propagation

loss = criterion(prediction,target) #Compute the mean squared error
loss.backward() #Backpropagation

Let us focus on a data point (x,,y,) € R? x R¢, and consider the network Ny = Fg, 0 --- 0 Fy,. Define

1_ i+l _ N S Ll
X' = Xp, X =Fy(¥), j=1,...,L, Yo =X
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Backpropagation: how do we compute the gradients?

prediction = model(input) #Forward propagation

loss = criterion(prediction,target) #Compute the mean squared error
loss.backward() #Backpropagation

Let us focus on a data point (x,,y,) € RY x R, and consider the network Ny = Fp, o --- o Fy,. Define
x! = x,, Xt =Fy (X)), j=1,...,L, ¥, = xtL
Define £, := ||y, — yn||3/2. Assume for simplicity that all the weights 61, ..., 0, are vectors. Set
gt = VLo =x oy, g = Vele = (o, (¥) g =1L 1

where J denotes a Jacobian.
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Backpropagation: how do we compute the gradients?

prediction = model(input) #Forward propagation
loss = criterion(prediction,target) #Compute the mean squared error
loss.backward() #Backpropagation

Let us focus on a data point (x,,y,) € RY x R, and consider the network Ny = Fp, o --- o Fy,. Define
x! = x,, Xt =Fy (X)), j=1,...,L, ¥, o= xttt
Define £, := ||y, — yn||3/2. Assume for simplicity that all the weights 61, ..., 0, are vectors. Set
gttt =vual, =xtt —y,, g =VL,= (JX/ng(xj))ngH, j=1L,...,1,
where J denotes a Jacobian.

Gradients (per sample)

Vo, Ln = (J9j F@j(xj))Tfoﬁn = (Jaj FOJ(XJ))TgJ+1a Ji= Ll

)

Thus, the Backpropagation algorithm is just the chain rule organised to reuse Jacobian—vector products.
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x

o 500 1000 1500 2000 2500 3000
Training iterations

By repeated application of the chain rule, we can see that

Wotal < I Esl | 1 |
__I +1

xlFaz Z)H

(| Vyes1Lnl]
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20
1o T T T T T T T
x o 500 1000 1500 2000 2500 3000

Training iterations

By repeated application of the chain rule, we can see that

SeFo () ) 19 al

Wotal < I Esl | 1 |
__I +1

If || xFo,(x)]l2 < p < 1 (e.g. Lip(c) <1 and || A2 < p), then [[Vo,Lyll2 < "~
=- vanishing gradients, and we can not meaningfully update the weights.
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A visual understanding (the Runge function)

Interpolation can overfit and generalise poorly

—3 -

target f(z) = m

interpolant deg 12
RMSE=9.89¢-01

LS fit deg 5
RMSE=1.35¢e-01
train points

Extrapolation: behaviour outside [-1, 1] is unreliable

-1.00 -0.75 -0.50 -0.25 0.00 0.25  0.50
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= interpolant deg 12
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100000 4
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Generalisation = Performance on i.i.d. test data from the same distribution of the training set.
Extrapolation = Performance outside the training regime/support.
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Improving generalisation and extrapolation in neural networks

Generalisation = Performance on i.i.d. test data from the same distribution of the training set.
Extrapolation = Performance outside the training regime/support.

Improving generalisation (in-distribution)
@ Data: augmentation or synthetic data.
o Explicit regularisation: weight decay (¢»), dropout, early stopping.

@ Smoothness & stability: Jacobian/Lipschitz penalties, spectral/weight norm constraints,
batch /weight norm.

@ Architecture: residual connections, or normalisation layers.
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Improving generalisation and extrapolation in neural networks

Generalisation = Performance on i.i.d. test data from the same distribution of the training set.

Extrapolation = Performance outside the training regime/support.

Improving generalisation (in-distribution)
@ Data: augmentation or synthetic data.

o Explicit regularisation: weight decay (¢»), dropout, early stopping.

@ Smoothness & stability: Jacobian/Lipschitz penalties, spectral/weight norm constraints,

batch /weight norm.

@ Architecture: residual connections, or normalisation layers.

Improving extrapolation (out-of-distribution)
@ Inductive biases: symmetry/equivariance, invariances.

@ Physical/structural constraints: physics-informed losses or hard constraints,
Symplectic/Hamiltonian Networks, Monotone/Convex layers, stability/Lipschitz control.
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@ One of the reasons behind the popularity of neural networks is their great flexibility and
ability to approximate complicated and interesting functions.
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What is a universal approximation theorem?

@ One of the reasons behind the popularity of neural networks is their great flexibility and
ability to approximate complicated and interesting functions.

@ The Weierstrass approximation theorem states that every continuous function defined on
a closed interval [a, b] can be uniformly approximated as closely as desired by a
polynomial function. Can we do something similar for neural networks?
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What is a universal approximation theorem?

@ One of the reasons behind the popularity of neural networks is their great flexibility and
ability to approximate complicated and interesting functions.

@ The Weierstrass approximation theorem states that every continuous function defined on
a closed interval [a, b] can be uniformly approximated as closely as desired by a
polynomial function. Can we do something similar for neural networks?

@ Analogous results for neural networks are called universal approximation theorems, and we
now see two of them.
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Let o : R — R be an activation function, and consider the set of neural networks

]-'U,d:{RdaxHA/};(x):aTa(Ax—i-b)eR: AcR™ abeRh heN}.
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Let o : R — R be an activation function, and consider the set of neural networks

fg,dz{RdaxHNa(x)zaTa(AHb)eR: Ac R abeRh heN}.

Universal approximation theorem for shallow networks

Let d € N, and o be a continuous function which is not a polynomial®. Then for every
Q c RY compact, for every € > 0, and for every continuous function f : Q — R, there
is a network Ny € F, 4 such that

max |f(x) — No(x)] < e.

*Why?

This and several more such results can be found in Pinkus, “Approximation theory of the MLP
model in neural networks” .
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There are several such results also for deep networks, see for example Moshe Leshno et al.
“Multilayer feedforward networks with a nonpolynomial activation function can approximate
any function”. In: Neural networks 6.6 (1993), pp. 861-867.
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There are several such results also for deep networks, see for example Leshno et al., "Multilayer
feedforward networks with a nonpolynomial activation function can approximate any function”.
Let us consider the set of networks

J-'g,d:{ALoao...oAloovo:Rd—ﬂ[&:LEN, A affine,ﬁzl,...,L}.
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There are several such results also for deep networks, see for example Leshno et al., "Multilayer
feedforward networks with a nonpolynomial activation function can approximate any function”.
Let us consider the set of networks

J-'J,d:{ALoao...oAloovo:Rd—HR:LEN, A affine,Ezl,...,L}.

A simple and constructive result that we can prove for Deep ReLLU networks is the following:

Representation of continuous piecewise affine functions

Let 0 = ReLU. Any continuous piecewise affine (CPA) function f : RY — R belongs to
Fo.d- Moreover, any function in F; 4 is CPA.

For further results on ReLLU networks see DeVore, Hanin, and Petrova, “Neural network
approximation”, Section 3, and Petersen and Zech, “Mathematical theory of deep learning”,
Sections b, 6, 7.
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Polytope partition

A polytope partition of R is a finite collection P = {P;} of convex closed d-dimensional
polytopes such that

UPi =R PinPc=0,j#k

J

The convex polytopes are the intersection of a finite number of closed half spaces {x €
RY | a,Tx > bi}.

Continuous piecewise affine (CPA) functions

The function F : R? — R€ is continuous piecewise affine if it is globally continuous, and

there is a polytope partition P = {P;} such that F|p,(x) = Ajx + bj for A; € R“*? and

b; € R¢ for every j.
\SEE——————EEEERREAA
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Composition of CPA is CPA

Let f: RY — R€ and g : R® — R€ be CPA functions with partitions Pr = {P;}; and
Py ={P,}k. Then h=gof: RY — R® is CPA with partition obtained from

P ={(flp,) " (Pk) N Pi}jk

by discarding empty/lower-dimensional cells.

@ The composition of continuous functions is continuous
e For x € f1(P,) N Pj, f(x) = f|p,(x) € Pj. Hence, g(f(x)) = glp (fp;(x)) is affine.

o Exercise: Prove that P, can be refined to a polytope partition by discarding
empty/lower-dimensional cells.
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o If g:R? — R is convex and CPA, then g(x) = max {a} x+ by} for some

m=1,...
{(@m,bm) ERIxR:m=1,... M}2

’

2Lauren A Hannah and David B Dunson. “Multivariate convex regression with adaptive partitioning”. In:
The Journal of Machine Learning Research 14.1 (2013), pp. 3261-3294.
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Part | of the proof: Any CPA is a ReLLU network

@ The function (u, v) — max(u,v) = f(u, v) belongs to F;:

f(u,v) = ReLU(u — v) + v = ReLU(u — v) + ReLU(v) — ReLU(—v)

1 -1
—[1 1 —1]'ReLU | |0 1 H
o —1f v

This extends to the function RM > u+— max{uy, ..., up} since
max{a, b, c} = max{max{a, b}, c} for a,b,c € R.

2Hannah and Dunson, “Multivariate convex regression with adaptive partitioning’ .
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@ We see that g € F,; 4 by defining
a] x+ b
u=Ax+b= :
a—',\;,x + by

3Anita Kripfganz and R Schulze. “Piecewise affine functions as a difference of two convex functions”. In:
Optimization 18.1 (1987), pp. 23-29.
“Exercise: Prove that this is true.
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o We see that g € F,; 4 by defining

ajx+ b
u=Ax+b=
ayx+ by

@ Every CPA f : RY — R can be written as f = g — h, g, h: RY — R convex CPA 3

3Kripfganz and Schulze, “Piecewise affine functions as a difference of two convex functions” .
“Exercise: Prove that this is true.
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Part Il of the proof: Any CPA is a ReLLU network

@ We see that g € F, 4 by defining
alTx —+ b1
u=Ax+b=
a,\T/,x + by

@ Assume without loss of generality that g and h can be represented with the same number
of layers*. We can then conclude that since g, h € Fod also f € F, 4. This is because

F(x) = g(x) — h(x) = [1 —ﬂﬁi&?}:[l —1]Tﬁ)§ X’g]oao"'wo[i\‘ggﬂ’

and running in parallel two ReLLU networks in F; 4 maintains us inside F, 4.

3Kripfganz and Schulze, “Piecewise affine functions as a difference of two convex functions” .
“Exercise: Prove that this is true.
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Figure 1: Source:

Bias=1

https://pylessons.com/CNN-tutorial-introduction.

They allow to represent finite differences discretisations, see Zichao Long et al. “PDE-
Net: Learning PDEs from Data”. In: International Conference on Machine Learning.
PMLR. 2018, pp. 3208-3216.
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Input <o Ideally they are identical. -~~~ -
x~x

Figure 2: Source: https://lilianweng.github.io/posts/2018-08-12-vae/.

They can be seen as a non-linear version of the truncated Singular Value Decomposition
A~ UZVT € R4 UV € R Y € R r « d. Used for Reduced Order
Modelling, and data-driven modelling, see, e.g., Kathleen Champion et al. “Data-driven
discovery of coordinates and governing equations”. In: Proceedings of the National
Academy of Sciences 116.45 (2019), pp. 22445-22451.
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Graph Neural Networks

Velocity field at t=0.2 Velocity field at t=0.6
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(a) Source: https:
//pytorch-geometric.
readthedocs.io/. N 0
e B (c) Battaglia et al.,
(b) Rowbt.)t.tom et .al.., “Interaction networks for
“G-Adaptivity: optimised learning about objects,

grap.h—_based mesh relocation  q|5tions and physics” .
for finite element methods”.
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Sentiment?
Next word?

Part-of-speech tags?

Figure 4: Source: https://thegradient.pub/transformers-are-graph-neural-networks/.

Transformers are still hard to describe mathematically, but a promising interpretation
relates them with dynamical systems (as we will do with ResNets, and as it can be done
for RNNs as well), and interprets them as interacting particle systems, see, e.g., Borjan
Geshkovski et al. “A mathematical perspective on transformers”. In: Bulletin of the
American Mathematical Society 62.3 (2025), pp. 427-479.
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@ The research in this area began with Frank Rosenblatt, who developed the Perceptron,
attempting to replicate the functioning of biological neurons (1957).



Some historical background on Neural Networks

@ The research in this area began with Frank Rosenblatt, who developed the Perceptron,
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@ Apart from a few exciting developments like Hopfield Neural Networks, this research
direction seemed less promising in the 1970s and 1980s, especially after the publication of
the book “Perceptrons” (M. Minsky and S. Papert, 1969).
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Some historical background on Neural Networks

@ The research in this area began with Frank Rosenblatt, who developed the Perceptron,
attempting to replicate the functioning of biological neurons (1957).

@ Apart from a few exciting developments like Hopfield Neural Networks, this research
direction seemed less promising in the 1970s and 1980s, especially after the publication of
the book “Perceptrons” (M. Minsky and S. Papert, 1969).

@ Rumelhart, Hinton, and Williams in 1986 published an experimental analysis of the
backpropagation algorithm, still used nowadays to train neural networks.

@ Neural networks found their real traction when computing resources, like graphics cards,
improved their efficiency.

@ Our mathematical understanding of why neural networks are so effective in many areas
is still lacking. A lot of mathematicians are now working on the Mathematics of Deep
Learning to try to understand these models better.

Davide Murari (DAMTP) Introduction to the Mathematics of Deep Learning 1/1



	The building blocks of neural networks
	Activation functions
	How do we train neural networks?
	Vanishing gradients
	Interpolation, Generalisation, and Extrapolation
	Universal Approximation Theorems
	Some of the most popular architectures
	Appendix
	Motivation and brief historical background


	anm0: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


