
While it is important to produce quantitatively accurate approximate solu-
tions for ODEs, sometimes the differential equations we want to simulate have
some underlined geometric or dynamic structure worth preserving.

• The dynamic properties relate to the behaviour at infinity, the peri-
odicity of the solutions, the presence of chaos, or the presence of fixed
points.

• The geometric properties instead relate to features which are invariant
in time, for example the level sets of a conserved energy, the non linear
manifold where the solution belong, or some symmetry properties of the
solutions.

In principle, there is no reason why a numerical method should preserve au-
tomatically these properties also in the discrete time setting, and this is why
one needs to build specific discretisation strategies adapted to the structure of
interest.

Before moving to the details behind some of these methods, we want to
further motivate the need for geometric integrators by showing some examples
of differential equations having some geometric structure worth preserving.

1 ODEs with a first integral

Definition 1 (First integral). A system of differential equations ẋ(t) = F(x(t)),
F ∈ X(Rd), admits a first integral I : Rd → R if and only if the function I is
constant along the solutions of the differential equation, i.e.

d

dt
I(x(t)) = ∇I(x(t)) · ẋ(t) = ∇I(x(t)) · F(x(t)) = 0

for every t ≥ 0.

There are several systems of this form and, at least for Morse functions, they
can be written in the form

ẋ(t) = (A(x(t))−A(x(t))T )∇I(x(t)), (1)

since

F(x(t)) =
F(x(t))∇I(x(t))T −∇I(x(t))F(x(t))T

∥∇I(x(t))∥22
∇I(x(t)).

For these systems, the level sets Ic = {x ∈ Rd : I(x) = c} are invariant with
respect to the flow of the solution, and it is sometimes desirable to have the
same property also at a discrete level. A reason why this could be interesting is
for stability/boundedness purposes, since if the level sets of I are compact and
they are numerically preserved, the discrete solution will also remain bounded.

1



2 Hamiltonian systems

Even though Hamiltonian systems could be formulated in a much more general
and abstract way, we will focus only on systems on R2d, with canonical sym-
plectic structure. The description of Hamiltonian systems and their associated
numerical discretization on manifolds can be found in [?].

By Hamiltonian system we refer to a system of differential equations of the
form

ẋ(t) = J∇H(x(t)) := XH(x(t)),

where H : R2d → R is a smooth function of its inputs called Hamiltonian energy,
and

J =

[
0d Id
−Id 0d

]
∈ R2d×2d.

We will see that a convenient setup for numerical discretization is provided in
the separable case, where H is of the form

H(q,p) = K(p) + U(q)

for a kinetic energy K : Rd → R and a potential energy U : Rd → R, where
x = (q,p) is a partitioning of the phase space variable.

Hamiltonian systems have several interesting geometric and dynamic proper-
ties. First of all they are in the skew-gradient form (1), hence they conserve the
energy function H. But even more importantly, they preserve a skew-symmetric
bilinear form called the canonical symplectic form Ω : Rd × Rd → R defined as

Ω(v,w) := vT Jw.

A map preserving Ω is said to be symplectic. A matrix A ∈ R2d×2d is symplectic
if and only if it satisfies AT JA = J and similarly we say the linear map L(x) =
Ax symplectic. Instead, we say a non-linear differentiable map F : R2d → R2d

to be symplectic if
F ′(x)T JF ′(x) = J, (2)

where F ′(x) ∈ R2d×2d is the Jacobian matrix of F evaluated at x. Equivalently,
F is symplectic if it infinitesimally preserves Ω since (2) is equivalent to say

Ω(F ′(x)v, F ′(x)w) = Ω(v,w), ∀x,v,w ∈ R2d.

Proposition 1. The flow of a Hamiltonian system is symplectic.

We could prove this quickly using the more abstract formulation based on
differential forms and the Cartan’s magic formula, but we now see the typical
proof provided in numerical analysis books.

Proof. We recall that the flow map ϕt
XH

: R2d → R2d satisfies

d

dt
ϕt
XH

(x0) = XH

(
ϕt
XH

(x0)
)
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for every t ≥ 0. Differentiating both sides with respect to x0, we get

∂x0

d

dt
ϕt
XH

(x0) = J∇2H(ϕt(x0))
(
∂x0

ϕt
XH

(x0)
)
.

Thus, changing the differentiation order on the left, and calling Sx0(t) = ∂x0ϕ
t
XH

(x0),
we see that

d

dt
Sx0

(t) = J∇2H(ϕt
XH

(x0))Sx0
(t), (3)

which is the variational equation for the Hamiltonian system of ODEs. We then
can compute

d

dt

(
Sx0

(t)T JSx0
(t)

)
=

(
d

dt
Sx0

(t)

)T

J
d

dt
Sx0

(t)

(3)
=

(
Sx0

(t)T∇2H(ϕt
XH

(x0))JT
)
JSx0

(t) + Sx0
(t)T J

(
J∇2H(ϕt

XH
(x0))Sx0

(t)
)
.

Since JT J = I2d and J2 = −I2d we conclude that the quantity above is 0 and
hence Sx0(t)

T JSx0(t) = Sx0(0)
T JSx0(0). At time 0, we recall that

Sx0
(0) = ∂x0

ϕ0
XH

(x0) = ∂x0
x0 = I2d

which allows to conclude Sx0
(t)T JSx0

(t) = J for every t ≥ 0 as desired.

As a consequence we would like to preserve the symplectic form Ω also at a
discrete level.

3 Differential equations with a contractive be-
haviour

Another interesting class of differential equations is the one showing a contrac-
tive behaviour. The study of contractive systems is of high interest in several
fields, like in control theory, and the interested reader can see [1]. The notion of
contractivity inherently depends on the choice of a metric over Rd. We focus on
the ℓ2 metric, but similar arguments could be done for inner-product generated
metrics.

A vector field F ∈ X(Rd) is non-expansive in the ℓ2 sense if for every time
t ≥ 0 and pair of initial conditions x0,y0 ∈ Rd one has∥∥ϕt

F (y0)− ϕt
F (x0)

∥∥
2
≤ ∥y0 − x0∥2 . (4)

Contractivity corresponds to the strict inequality in (4). We can see that there
is a much more practical condition one can check for contractivity, and this is
found by Taylor expanding the solutions as

ϕt
F (x0) = x0 + tF(x0) +O(t2), ϕt

F (y0) = y0 + tF(y0) +O(t2),
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under sufficient smoothness assumptions, and for t ≪ 1. Thus, one gets∥∥ϕt
F (y0)− ϕt

F (x0)
∥∥2
2
− ∥y0 − x0∥22 = 2t⟨F(y0)−F(x0),y0 − x0⟩+O(t2).

For small enough t, we hence conclude that the flow of F does not expand
distances if and only if ⟨F(y0)−F(x0),y0 −x0⟩ ≤ 0 for every x0,y0 ∈ Rd, and
again contracts them in case of strict inequality.

Definition 2 (One-sided Lipschitz continuity). A vector field F ∈ X(Rd) is
one-sided Lipschitz continuous with respect to the ℓ2 metric if there is a constant
ν ∈ R such that

⟨F(y0)−F(x0),y0 − x0⟩ ≤ ν∥y0 − x0∥22.

Definition 3 (Non-expansive and contractive vector field). A vector field F ∈
X(Rd) is non-expansive (resp. contractive) if it is one-sided Lipschitz continuous
with constant ν ≤ 0 (resp. ν < 0).

Contractivity and non-expansivity are relatively common properties in dy-
namical systems. For example the family of negative gradient flows of convex
potentials, that characterise gradient descent methods for optimisation prob-
lems, belong to this class since if V : Rd → R is convex

⟨∇V (y)−∇V (x),y − x⟩ ≥ 0

for every x,y ∈ Rd, and hence F(x) = −∇V (x) is a non-expansive system.
Contractivity could be obtained working with µ−strongly convex potentials for
which one also has

⟨∇V (y)−∇V (x),y − x⟩ ≥ µ∥y − x∥22.

We will see how to get contractivity also with numerical methods both without
having to restrict the step size h of the method, and also with methods that
need this restriction.

4 Differential equations for rotation matrices

The classes of systems seen up to now are those we are going to cover in the
course. However, we also mention another big class of important dynamical
systems with a geometric structure. These are differential equations on (matrix)
Lie groups. These equations are ubiquitous in geometric mechanics, where one
models multi-body systems using rotation matrices, for example, see [?].

We limit the presentation to equations on the Lie group of 3 × 3 rotation
matrices, i.e., SO(3). An element of SO(3) is matrix R ∈ R3×3 such that
det(R) = 1 and RTR = RRT = I3. One of the simplest examples of ODEs on
SO(3) are those of the form

Ṙ(t) = (A−AT )R(t), A ∈ R3×3, R(0) ∈ SO(3).
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These equations follow from the right-trivialization of Ṙ(t) as Ṙ(t)R−1(t), which
is a tangent vector at the identity matrix to SO(3), which corresponds to a skew-
symmetric matrix. One could easily verify that

Ṙ(t)TR(t) +R(t)T Ṙ(t) = R(t)T (A−AT )TR(t) +R(t)T (A−AT )R(t) = 0

and hence d
dt (R(t)TR(t)) = 0 leading to R(t)TR(t) = I3 given that R(0)TR(0) =

Id. We can also see, using the formula

d

dt
det (R(t)) = det (R(t)) trace

(
R(t)−1Ṙ(t)

)
,

that d
dt det (R(t)) = 0 and hence [0,+∞) ∋ t 7→ R(t) ∈ SO(3). When simulating

the solutions of equations like these, where the solution is known to belong to
a non-linear manifold like the Lie group SO(3), it is desirable to preserve the
structure also at a discrete level. We will not go deeper into these methods, but
we refer to some works where related material can be found [?].
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