
Symplectic numerical methods

We have seen that the flow map of a Hamiltonian system is a symplectic map.
We would thus like to preserve this symplectic property also when approximating
it numerically. There are several ways to get symplectic methods, but we will
focus on those obtained via splitting methods and on Runge–Kutta methods
which are symplectic.

Definition 1 (Symplectic one-step method). A one-step method φh : R2d →
R2d is symplectic if and only if when applied to a Hamiltonian system the map
φh is symplectic, i.e., (

∂φh(x)

x

)⊤

J
(
∂φh(x)

x

)
= J

for every x ∈ R2d.

Let us recall the system of differential equations that we are interested in
solving, which is

ẋ(t) = J∇H(x(t)), (1)

for the Hamiltonian energy H : R2d → R and the canonical symplectic matrix

J =

[
0 Id

−Id 0

]
.

A non-linear and continuously differentiable map F : R2d → R2d is symplectic
if, for every x ∈ R2d, one has

F ′(x)⊤JF ′(x) = J.

1 Symplectic splitting methods

In this section we aim to exploit the fact that the flow map of a Hamiltonian
system is symplectic, and approximate the solution of (1) by composing the
exact flows of simpler Hamiltonian systems.

Splitting methods are a class of methods based on writing the target dif-
ferential equation, say ẋ = F(x), as the sum of simpler terms, for example as
F(x) = F1(x) + F2(x), supposing we are able to find the exact solution of the
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two differential equations ẋ = F1(x) and ẋ = F2(x). Unfortunately, in general
we have

ϕt
F ̸= ϕt

F1
◦ ϕt

F2
, ϕt

F ̸= ϕt
F2

◦ ϕt
F1

, ϕt
F1

◦ ϕt
F2

̸= ϕt
F2

◦ ϕt
F1

. (2)

A simple example to show that (2) is true, can be found by considering the
Hamiltonian vector field

F(q, p) =

[
p
0

]
+

[
0
−q

]
=: F1(q, p) + F2(q, p), q, p ∈ R. (3)

In fact, in this case we have

ϕt
F1

(q, p) =

[
q + tp

p

]
, ϕt

F2
(q, p) =

[
q

p− tq,

]
while the equation ẋ = F(x) can be rewritten as the second order differential
equation q̈ = −q, which has a trigonometric solution.

We recall that we are not aiming for an exact representation of ϕt
F but for

us it would be sufficient to approximate it after a time step t = h > 0. This
is by far a more achievable goal. In fact, we can show that as long as h > 0 is
small enough, one has

ϕh
F = ϕh

F1
◦ ϕh

F2
+O(h2), ϕh

F = ϕh
F1

◦ ϕh
F2

+O(h2), (4)

ϕh
F = ϕ

h/2
F1

◦ ϕh
F2

◦ ϕh/2
F1

+O(h3), ϕh
F = ϕ

h/2
F1

◦ ϕh
F2

◦ ϕh/2
F1

+O(h2). (5)

We call (4) the Lie-Trotter splitting method, and (5) the Strang splitting method.

Proposition 1. The Lie-Trotter splitting method is first-order accurate.

Proof. Supposing enough regulairity of F ,F1,F2, we can Taylor expand around
h = 0, and write

ϕh
F (x) = x+ hF(x) +O(h2),

and also

ϕh
F2

(
ϕh
F1

(x)
)
= ϕh

F2

(
x+ hF1(x) +O(h2)

)
= x+ hF1(x) + hF2(x) +O(h2).

This implies the desired result, since the local error is proportional to h2.

Exercise 1. Repeat the reasoning in the proof above and prove that, assuming
enough regulairity of the vector fields, the Strang splitting method is second-order
accurate.

Coming back to Hamiltonian systems, let us consider Hamiltonian functions
of the following type:

H(q,p) = K(p) + U(q), q,p ∈ Rd. (6)
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A Hamiltonian as in (6) is said to be separable. The system of Hamiltonian
equations associated to (1) write{

q̇ = ∂pK(p)

ṗ = −∂qU(q),

and hence we can split the vector field similarly to what we did in (3), i.e., as

XH(q,p) =

[
∂pK(p)
−∂qU(q)

]
=

[
∂pK(p)

0

]
+

[
0

−∂qU(q)

]
=: XK(q,p) +XU (q,p).

The interesting aspect here is that we can solve exactly the Hamiltonian equa-
tions associated to the vector fields XK and XH . In fact, for XK , one has{

q̇ = ∂pK(p)

ṗ = 0

leading to

p(t) = p0, q(t) = q0 +

∫ t

0

∂pK(p(s))ds = q0 + t ∂pK(p)|p=p0
.

Being the exact flow map of a Hamiltonian system symplectic, we can obtain
first and second-order accurate symplectic methods just as in (4) and (5), where
we set F1 = XK and F2 = XU . In the context of symplectic integration, the
first order method is called Symplectic Euler, and the second order one is
called Störmer-Verlet or Leapfrog.

We remark that the separable expression in (6) is not completely artificial,
since the Hamiltonian of mechanical systems written in cartesian coordinates
generally takes the form

H(q,p) =
1

2
p⊤M−1p+ U(q), M ∈ Rd×d, M⊤ = M, M > 0,

which is exactly as in (6).

2 Symplectic Runge–Kutta methods

Some Runge–Kutta methods are symplectic. To understand what kind of con-
dition we need over the tableau defining the method, we need to work with the
variational equation associated to (1). We recall that the variational equation is
a differential equation describing the dynamics of the sensitivity matrix of the
solution, and writes

d

dt
Sx0(t) = J∇2H(x(t))Sx0(t) ∈ R2d×2d, (7)

where x(0) = x0, Sx0
(t) = ∂x0

ϕt
XH

(x0) and hence Sx0
(0) = I2d. We also recall

that to prove that ϕt
XH

is a symplectic map, we studied the solution of (7). More

3



explicitly, the map ϕt
XH

is symplectic because (7) has the quadratic conserved
energies described by

Sx0
(t) ∈

{
A⊤JA = J : A ∈ R2d×2d

}
, t ≥ 0.

This connection between quadratic energy functions and symplectic maps leads
to the following theorem.

Theorem 1 (Symplectic Runge–Kutta methods). A Runge–Kutta method with
tableau (A,b, c) is symplectic if it preserves quadratic first integrals.

We recall that Runge–Kutta methods preserve quadratic first integrals if
B = diag(b) and M = BA+A⊤B − bb⊤ are positive semi-definite.

Proposition 2. For Runge-Kutta methods the following diagram commutes:

ẋ = F(x)

x(0) = x0

ẋ = F(x), x(0) = x0,

Ṡ = F ′(x)S, S(0) = I2d

x1 = φh
F (x0) x1 = φh

F (x0)

S1 = φh
F ′(S0)

differentiation w.r.t. x0

φh
φh

differentiation w.r.t. x0

where φh denotes the Runge–Kutta method.

Proof of Proposition 2. Let us first write down one step of the Runge–Kutta
method of tableau (A,b, c) applied to F :

ki = x0 + h

s∑
j=1

aijF(kj), x1 = x0 + h

s∑
i=1

biF(ki).

Let us now differentiate both terms with respect to x0:

∂ki

∂x0
= I2d + h

s∑
j=1

aij
∂F(kj)

∂x0
= I2d + h

s∑
j=1

aijF ′(kj)
∂kj

∂x0

∂x1

∂x0
= I2d + h

s∑
i=1

bi
∂F(ki)

∂x0
= I2d + h

s∑
i=1

biF ′(ki)
∂ki

∂x0
.

Combining the two equations, we get

∂ki

∂x0
= I2d + h

s∑
j=1

aijF ′(kj)
∂kj

∂x0

∂x1

∂x0
= I2d + h

s∑
i=1

biF ′(ki)

I2d + h

s∑
j=1

aijF ′(kj)
∂kj

∂x0

 .

(8)
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This is result we get following the blue path. We now need to check if we get the
same one following the red one. To verify this, we apply the same Runge–Kutta
method to the variational equation coupled with the original ODE{

ẋ = F(x)

Ṡ = F ′(x)S,

and get

Ki = S0 + h

s∑
j=1

aijF ′ (kj)Kj

S1 = S0 + h

s∑
i=1

biF ′ (ki)Ki.

Recalling that S0 = I2d, we see that

Ki = I2d + h

s∑
j=1

aijF ′ (kj)Kj

S1 = I2d + h

s∑
i=1

biF ′(ki)

I2d + h

s∑
j=1

aijF ′(kj)Kj

 .

(9)

We notice that (8) and (9) coincide, and hence we conclude that the diagram
commutes.

Proof of Theorem 1. The proof is an immediate consequence of Proposition 2.
Indeed, applying a Runge–Kutta method that preserves quadratic invariants,
by the commutativity of the diagram, we immediately have that

S⊤
1 JS1 = J

and, equivalently, that (
∂x1

∂x0

)⊤

J
(
∂x1

∂x0

)
= J.

3 Energy preservation and long-term simulations

Theorem 2. Let ẋ = J∇H(x) be a Hamiltonian system with Hamiltonian H
and with no other conserved quantities than H. Let φh be a symplectic and
energy-preserving method for the Hamiltonian system, then φh reproduces the
exact solution up to a time re-parametrisation.
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An interpretation of this result is that it is very hard to build a numerical
method which is both symplectic and preserves the Hamiltonian energy H. A
proof of this Theorem can be found in [2].

Even though exact energy conservation is unlikely to be obtained, preserv-
ing the symplectic form might be enough to do quite well in terms of energy
conservation. In fact, symplectic methods exactly conserve a modified Hamilto-
nian energy, and almost conserve the correct one for exponentially long times.
We now state two results in this direction, but we do not consider their proofs.
To better understand these theorems and explore their consequences, see [1,
Chapter IX.3] and [1, Chapter IX.8].

Theorem 3 (Theorem 3.1 in Chapter IX.3 [1]). If φh is a symplectic method of
order p applied to the Hamiltonian system ẋ = J∇H(x) for a smooth Hamilto-
nian H : R2d → R. Then there is a modified Hamiltonian initial value problem{

ẏ = J∇H̃(y) = J∇
(
H(y) + hpHp+1(y) + hp+1Hp+2(y) + ...

)
y(0) = x0,

with smooth Hamiltonian H̃ : R2d → R, for which

y(nh) := φh ◦ ... ◦ φh︸ ︷︷ ︸
n times

(x0).

The series expansion for the modified Hamiltonian H̃ can also be divergent.
It is thus meaningful to consider a truncated version

H̃N (y) = H(y) + hpHp+1(y) + ...+ hN−1HN (y). (10)

The following theorem tells us how truncated modified Hamiltonians as the one
in (10) behave along the numerical solution.

Theorem 4 (Theorem 8.1 in Chapter IX.8 [1]). Consider a Hamiltonian system
with analytic H : D → R, D ⊂ R2d, and apply a symplectic method φh with
step size h > 0. If the numerical solution stays in the compact set K ⊂ D, then
there exist h0 > 0 and N = N(h) such that

H̃N (yn) = H̃N (x0) +O
(
e−h0/2h

)
H(yn) = H(x0) +O(hp)

over exponentially long time intervals nh ≤ eh0/2h.

In the theorem above, N is the largest integer satisfying hN ≤ h0.
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