
ODEs with a structure worth preserving

While it is important to produce quantitatively accurate approximate solu-
tions for ODEs, sometimes the differential equations we want to simulate have
some underlined geometric or dynamic structure worth preserving.

• The dynamic properties relate to the behaviour at infinity, the peri-
odicity of the solutions, the presence of chaos, or the presence of fixed
points.

• The geometric properties instead relate to features which are invariant
in time, for example the level sets of a conserved energy, the non linear
manifold where the solution belongs, or some symmetry properties of the
solutions.

In principle, there is no reason why a numerical method should preserve au-
tomatically these properties also in the discrete time setting, and this is why
one needs to build specific discretisation strategies adapted to the structure of
interest.

Before moving to the details behind some of these methods, we want to
further motivate the need for geometric integrators by showing some examples
of differential equations having some geometric structure worth preserving.

1 ODEs with a first integral

Definition 1 (First integral). A system of differential equations ẋ(t) = F(x(t)),
F ∈ X(Rd), admits a first integral I : Rd → R if and only if the function I is
constant along the solutions of the differential equation, i.e.,

d

dt
I(x(t)) = ∇I(x(t)) · ẋ(t) = ∇I(x(t)) · F(x(t)) = 0

for every t ≥ 0.

There are several systems admitting a first integral and they can be written
in the form

ẋ(t) = (A(x(t))−A(x(t))⊤)∇I(x(t)), (1)

since

F(x(t)) =
F(x(t))∇I(x(t))⊤ −∇I(x(t))F(x(t))⊤

∥∇I(x(t))∥22
∇I(x(t)).
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For these systems, the level sets Ic = {x ∈ Rd : I(x) = c} are invariant with
respect to the flow map ϕt

F , and it is sometimes desirable to have the same
property also at a discrete level. A reason why this could be interesting is for
stability/boundedness purposes, since if the level sets of I are compact and they
are numerically preserved, the discrete solution will also remain bounded.

2 Hamiltonian systems

Even though Hamiltonian systems can be formulated in a much more general
and abstract way, we will focus only on systems on R2d, with the canonical
symplectic structure.

By Hamiltonian system we refer to systems of differential equations of the
form

ẋ(t) = J∇H(x(t)) := XH(x(t)) ∈ R2d, (2)

where H : R2d → R is a smooth function of its inputs called Hamiltonian energy,
and

J =

[
0d Id
−Id 0d

]
∈ R2d×2d

is the so-called canonical symplectic matrix. We will see that a convenient
setup for the numerical discretisation of the solutions of (2) is provided by the
separable case, where H is of the form

H(q,p) = K(p) + U(q)

for a kinetic energy K : Rd → R and a potential energy U : Rd → R, where
x = (q,p) is a partitioning of the phase space variable.

Hamiltonian systems have several interesting geometric and dynamic proper-
ties. First of all they are in the skew-gradient form (1), hence they conserve the
energy function H. But even more importantly, they preserve a skew-symmetric
bilinear form called the canonical symplectic form Ω : R2d × R2d → R defined
as

Ω(v,w) := v⊤Jw.

A map preserving Ω is said to be symplectic. A matrix A ∈ R2d×2d is symplectic
if and only if it satisfies A⊤JA = J and similarly we say the linear map L(x) =
Ax symplectic. Instead, we say a non-linear differentiable map F : R2d → R2d

to be symplectic if for every x ∈ R2d it holds

F ′(x)⊤JF ′(x) = J, (3)

where F ′(x) ∈ R2d×2d is the Jacobian matrix of F evaluated at x. Equivalently,
F is symplectic if it infinitesimally preserves Ω since (3) is equivalent to say

Ω(F ′(x)v, F ′(x)w) = Ω(v,w), ∀x,v,w ∈ R2d.

Proposition 1. The flow of a Hamiltonian system is symplectic.
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We could prove this quickly using the more abstract formulation based on
differential forms and the Cartan’s magic formula, but we now see the typical
proof provided in numerical analysis books.

Proof. We recall that the flow map ϕt
XH

: R2d → R2d satisfies

d

dt
ϕt
XH

(x0) = XH

(
ϕt
XH

(x0)
)

for every t ≥ 0. Differentiating both sides with respect to x0, we get

∂x0

d

dt
ϕt
XH

(x0) = J∇2H(ϕt
XH

(x0)) ∂x0
ϕt
XH

(x0),

where ∇2H is the Hessian matrix of H. Changing the differentiation order on
the left, and calling Sx0

(t) = ∂x0
ϕt
XH

(x0), we see that

d

dt
Sx0(t) = J∇2H(ϕt

XH
(x0))Sx0

(t), (4)

which is the variational equation for the Hamiltonian system of ODEs. We can
then compute

d

dt

(
Sx0

(t)⊤JSx0
(t)

)
=

(
d

dt
Sx0

(t)

)⊤

JSx0
(t) + Sx0

(t)⊤J
(

d

dt
Sx0

(t)

)
(4)
=

(
Sx0

(t)⊤∇2H(ϕt
XH

(x0))J⊤
)
JSx0

(t) + Sx0
(t)⊤J

(
J∇2H(ϕt

XH
(x0))Sx0

(t)
)
.

Since J⊤J = I2d and J2 = −I2d we conclude that the quantity above is 0 and
hence Sx0

(t)⊤JSx0
(t) = Sx0

(0)⊤JSx0
(0). At time 0, we recall that

Sx0(0) = ∂x0ϕ
0
XH

(x0) = ∂x0x0 = I2d

which allows to conclude Sx0
(t)⊤JSx0

(t) = J for every t ≥ 0 as desired.

3 Differential equations with a contractive be-
haviour

Another interesting class of differential equations is the one showing a contrac-
tive behaviour. The study of contractive systems is of high interest in several
fields, like in control theory, and the interested reader can see [1]. The notion of
contractivity inherently depends on the choice of a metric over Rd. We focus on
the ℓ2 metric, but similar arguments could be done for inner product-generated
metrics.

A vector field F ∈ X(Rd) is non-expansive in the ℓ2 sense if for every time
t ≥ 0 and pair of initial conditions x0,y0 ∈ Rd one has∥∥ϕt

F (y0)− ϕt
F (x0)

∥∥
2
≤ ∥y0 − x0∥2 . (5)
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Contractivity corresponds to the strict inequality in (5). We can see that there
is a much more practical condition one can check for contractivity, and this is
found by Taylor expanding the solutions as

ϕt+h
F (x0) = ϕt

F (x0)+hF(ϕt
F (x0))+O(h2), ϕt+h

F (y0) = ϕt
F (y0)+hF(ϕt

F (y0))+O(h2),

under sufficient smoothness assumptions, and for h ≪ 1. Thus, one gets∥∥ϕt+h
F (y0)− ϕt+h

F (x0)
∥∥2
2
−

∥∥ϕt
F (y0)− ϕt

F (x0)
∥∥2
2

= 2h⟨F(ϕt
F (y0))−F(ϕt

F (x0)), ϕ
t
F (y0)− ϕt

F (x0)⟩+O(h2).

For small enough h, we hence conclude that the flow of F does not expand
distances if ⟨F(y) − F(x),y − x⟩ ≤ 0 for every x,y ∈ Rd, and again contracts
them in case of strict inequality.

Definition 2 (One-sided Lipschitz continuity). A vector field F ∈ X(Rd) is
one-sided Lipschitz continuous with respect to the ℓ2 metric if there is a constant
ν ∈ R such that

⟨F(y)−F(x),y − x⟩ ≤ ν∥y − x∥22
for every x,y ∈ Rd.

Definition 3 (Non-expansive and contractive vector field). A vector field F ∈
X(Rd) is non-expansive (resp. contractive) if it is one-sided Lipschitz continuous
with constant ν ≤ 0 (resp. ν < 0).

Contractivity and non-expansivity are relatively common properties in dy-
namical systems. For example the family of negative gradient flows of convex
potentials, that characterise gradient descent methods for optimisation prob-
lems, belong to this class since if V : Rd → R is convex

⟨∇V (y)−∇V (x),y − x⟩ ≥ 0

for every x,y ∈ Rd, and hence F(x) = −∇V (x) is a non-expansive system.
Contractivity could be obtained working with µ−strongly convex potentials for
which one also has

⟨∇V (y)−∇V (x),y − x⟩ ≥ µ∥y − x∥22.

We will see how to get contractivity also with numerical methods both without
having to restrict the step size of the method, and also with methods that need
a restriction.
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