
Neural networks and their connections with differential

equations

Neural Networks (NNs)

Neural networks are typically visualised as something like this

Mathematically, a neural network is just a parametric map Nθ : Rc → Rd , which is
usually defined by composing L functions, called layers, as Nθ = FθL ◦ ... ◦ Fθ1 ,
Fθi : Rci → Rci+1 , c1 = c, cL+1 = d .

The parametrisation strategy behind Nθ is defined by the so-called neural network
architecture.

NNs and Dynamical Systems 2 / 13

Neural Networks (NNs)

Neural networks are typically visualised as something like this

Mathematically, a neural network is just a parametric map Nθ : Rc → Rd , which is
usually defined by composing L functions, called layers, as Nθ = FθL ◦ ... ◦ Fθ1 ,
Fθi : Rci → Rci+1 , c1 = c, cL+1 = d .

The parametrisation strategy behind Nθ is defined by the so-called neural network
architecture.

NNs and Dynamical Systems 2 / 13

Neural Networks (NNs)

Neural networks are typically visualised as something like this

Mathematically, a neural network is just a parametric map Nθ : Rc → Rd , which is
usually defined by composing L functions, called layers, as Nθ = FθL ◦ ... ◦ Fθ1 ,
Fθi : Rci → Rci+1 , c1 = c, cL+1 = d .

The parametrisation strategy behind Nθ is defined by the so-called neural network
architecture.

NNs and Dynamical Systems 2 / 13

Examples of layers

It is common practice to define layers by alternating linear maps with non-linear functions
applied entrywise:

Fθi (x) = Σ ◦ Li (x), Σ(x) :=

σ(x1)

...
σ(xci)

 .

With a slight abuse of notation, from now on we will use σ both for the scalar function
and for the vector function.

σ is called activation function. Common examples are σ(x) = ReLU(x) = max{0, x},
σ(x) = tanh(x), σ(x) = 1

1+e−x .

Choosing Li (x) = Aix+ bi , we recover the layer Fθi (x) = σ(Aix+ bi), typical of the
so-called fully-connected neural networks.

We can also choose Li (x) = ki ∗ x+ bi , so realise the linear layer by convolution, and get
a map that shows up in convolutional neural networks

NNs and Dynamical Systems 3 / 13

Examples of layers

It is common practice to define layers by alternating linear maps with non-linear functions
applied entrywise:

Fθi (x) = Σ ◦ Li (x), Σ(x) :=

σ(x1)

...
σ(xci)

 .

With a slight abuse of notation, from now on we will use σ both for the scalar function
and for the vector function.

σ is called activation function. Common examples are σ(x) = ReLU(x) = max{0, x},
σ(x) = tanh(x), σ(x) = 1

1+e−x .

Choosing Li (x) = Aix+ bi , we recover the layer Fθi (x) = σ(Aix+ bi), typical of the
so-called fully-connected neural networks.

We can also choose Li (x) = ki ∗ x+ bi , so realise the linear layer by convolution, and get
a map that shows up in convolutional neural networks

NNs and Dynamical Systems 3 / 13

Examples of layers

It is common practice to define layers by alternating linear maps with non-linear functions
applied entrywise:

Fθi (x) = Σ ◦ Li (x), Σ(x) :=

σ(x1)

...
σ(xci)

 .

With a slight abuse of notation, from now on we will use σ both for the scalar function
and for the vector function.

σ is called activation function. Common examples are σ(x) = ReLU(x) = max{0, x},
σ(x) = tanh(x), σ(x) = 1

1+e−x .

Choosing Li (x) = Aix+ bi , we recover the layer Fθi (x) = σ(Aix+ bi), typical of the
so-called fully-connected neural networks.

We can also choose Li (x) = ki ∗ x+ bi , so realise the linear layer by convolution, and get
a map that shows up in convolutional neural networks

NNs and Dynamical Systems 3 / 13

Examples of layers

It is common practice to define layers by alternating linear maps with non-linear functions
applied entrywise:

Fθi (x) = Σ ◦ Li (x), Σ(x) :=

σ(x1)

...
σ(xci)

 .

With a slight abuse of notation, from now on we will use σ both for the scalar function
and for the vector function.

σ is called activation function. Common examples are σ(x) = ReLU(x) = max{0, x},
σ(x) = tanh(x), σ(x) = 1

1+e−x .

Choosing Li (x) = Aix+ bi , we recover the layer Fθi (x) = σ(Aix+ bi), typical of the
so-called fully-connected neural networks.

We can also choose Li (x) = ki ∗ x+ bi , so realise the linear layer by convolution, and get
a map that shows up in convolutional neural networks

NNs and Dynamical Systems 3 / 13

Finding the weights of a NN

The weights θ of the neural network Nθ are usually found by approximately solving a
suitable optimisation problem. This optimisation process is called network training.

The cost function which is minimised, called loss function in machine learning, is defined
thanks to the data one has available, or thanks to properties we would like the
approximation to satisfy.

One of the simplest loss functions we can work with is the mean-squared error. Say that
we want to approximate the function F : Ω → Rd , Ω ⊂ Rc , and we have the dataset
{(xi , yi = F (xi))}Ni=1, xi ∈ Ω, then we can work with the loss function

L(θ) = 1

N

N∑

i=1

∥Nθ(xi)− yi∥22 .

After minimising the loss function, we hopefully have a good set of parameters θ∗ and we
can use Nθ∗ to make new predictions, for unseen inputs.

NNs and Dynamical Systems 4 / 13

Finding the weights of a NN

The weights θ of the neural network Nθ are usually found by approximately solving a
suitable optimisation problem. This optimisation process is called network training.

The cost function which is minimised, called loss function in machine learning, is defined
thanks to the data one has available, or thanks to properties we would like the
approximation to satisfy.

One of the simplest loss functions we can work with is the mean-squared error. Say that
we want to approximate the function F : Ω → Rd , Ω ⊂ Rc , and we have the dataset
{(xi , yi = F (xi))}Ni=1, xi ∈ Ω, then we can work with the loss function

L(θ) = 1

N

N∑

i=1

∥Nθ(xi)− yi∥22 .

After minimising the loss function, we hopefully have a good set of parameters θ∗ and we
can use Nθ∗ to make new predictions, for unseen inputs.

NNs and Dynamical Systems 4 / 13

Finding the weights of a NN

The weights θ of the neural network Nθ are usually found by approximately solving a
suitable optimisation problem. This optimisation process is called network training.

The cost function which is minimised, called loss function in machine learning, is defined
thanks to the data one has available, or thanks to properties we would like the
approximation to satisfy.

One of the simplest loss functions we can work with is the mean-squared error. Say that
we want to approximate the function F : Ω → Rd , Ω ⊂ Rc , and we have the dataset
{(xi , yi = F (xi))}Ni=1, xi ∈ Ω, then we can work with the loss function

L(θ) = 1

N

N∑

i=1

∥Nθ(xi)− yi∥22 .

After minimising the loss function, we hopefully have a good set of parameters θ∗ and we
can use Nθ∗ to make new predictions, for unseen inputs.

NNs and Dynamical Systems 4 / 13

Finding the weights of a NN

The weights θ of the neural network Nθ are usually found by approximately solving a
suitable optimisation problem. This optimisation process is called network training.

The cost function which is minimised, called loss function in machine learning, is defined
thanks to the data one has available, or thanks to properties we would like the
approximation to satisfy.

One of the simplest loss functions we can work with is the mean-squared error. Say that
we want to approximate the function F : Ω → Rd , Ω ⊂ Rc , and we have the dataset
{(xi , yi = F (xi))}Ni=1, xi ∈ Ω, then we can work with the loss function

L(θ) = 1

N

N∑

i=1

∥Nθ(xi)− yi∥22 .

After minimising the loss function, we hopefully have a good set of parameters θ∗ and we
can use Nθ∗ to make new predictions, for unseen inputs.

NNs and Dynamical Systems 4 / 13

Universal approximation theorems1

Theorem

Let Ω ⊂ Rc be a compact set and assume σ : R → R is not a polynomial. For any continuous
function F : Ω → R and for any ε > 0 there is a single-layer neural network

Nθ(x) := w⊤σ(Ax+ b), A ∈ Rh×d ,b,w ∈ Rh,

with h ∈ N large enough, such that

max
x∈Ω

|F (x)−Nθ(x)| ≤ ε.

This theorem extends to vector-valued functions, and similar results exist also for deeper
networks.

1Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are universal
approximators”. In: Neural networks 2.5 (1989), pp. 359–366.

NNs and Dynamical Systems 5 / 13

Universal approximation theorems1

Theorem

Let Ω ⊂ Rc be a compact set and assume σ : R → R is not a polynomial. For any continuous
function F : Ω → R and for any ε > 0 there is a single-layer neural network

Nθ(x) := w⊤σ(Ax+ b), A ∈ Rh×d ,b,w ∈ Rh,

with h ∈ N large enough, such that

max
x∈Ω

|F (x)−Nθ(x)| ≤ ε.

This theorem extends to vector-valued functions, and similar results exist also for deeper
networks.

1Hornik, Stinchcombe, and White, “Multilayer feedforward networks are universal approximators”.
NNs and Dynamical Systems 5 / 13

Residual Neural Networks (ResNets)

A particularly interesting network architecture is the one of ResNets. The layers of these
networks are of the from

Fθi (x) = x+ Fθi (x),

where an example could be Fθi (x) = B⊤
i σ(Aix+ bi), Ai ,Bi ∈ Rh×ci , bi ∈ Rh.

The reason why they were introduced is because they are much easier to train when the
network has a high number of layers.

NNs and Dynamical Systems 6 / 13

Why ResNets?

Recall that to minimise the loss function L(θ) we have to use some numerical method, like
gradient descent

θk+1 = θk − τ∇L(θk).

If ∥∇L(θk)∥2 is very large or very small, we will struggle to find a meaningful set of weights.

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Decision Boundary with a Test accuracy of 78.35%

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Decision Boundary with a Test accuracy of 50.55%

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Decision Boundary with a Test accuracy of 100.00%

0 1000 2000 3000
Training iterations

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

∥ ∥ ∥
∂
y
N

∂
y
N
−
k

∥ ∥ ∥ 2

`2 norms of the Jacobians for MLP

0 1000 2000 3000
Training iterations

10−33

10−27

10−21

10−15

10−9

10−3

103

∥ ∥ ∥
∂
y
N

∂
y
N
−
k

∥ ∥ ∥ 2

`2 norms of the Jacobians for MLP

0 1000 2000 3000
Training iterations

100

101

102

∥ ∥ ∥
∂
y
N

∂
y
N
−
k

∥ ∥ ∥ 2

`2 norms of the Jacobians for ResNet

NNs and Dynamical Systems 7 / 13

ResNets as dynamical systems

Residual Neural Networks (ResNets) are networks of the form Nθ = FθL ◦ ... ◦ Fθ1 with

Fθi (x) = x+ B⊤
i σ (Aix+ bi) ∈ Rd , x ∈ Rd ,

Ai ,Bi ∈ Rh×d , bi ∈ Rh, θi = {Ai ,Bi ,bi} .

The layer
Fθi (x) = x+ B⊤

i σ (Aix+ bi) = x+ Fθi (x) ∈ Rd

is an explicit Euler step of size 1 for the initial value problem

{
ẏ(t) = B⊤

i σ(Aiy(t) + bi) = Fθi (y(t)),

y(0) = x
.

NNs and Dynamical Systems 8 / 13

ResNets as dynamical systems

Residual Neural Networks (ResNets) are networks of the form Nθ = FθL ◦ ... ◦ Fθ1 with

Fθi (x) = x+ B⊤
i σ (Aix+ bi) ∈ Rd , x ∈ Rd ,

Ai ,Bi ∈ Rh×d , bi ∈ Rh, θi = {Ai ,Bi ,bi} .

The layer
Fθi (x) = x+ B⊤

i σ (Aix+ bi) = x+ Fθi (x) ∈ Rd

is an explicit Euler step of size 1 for the initial value problem

{
ẏ(t) = B⊤

i σ(Aiy(t) + bi) = Fθi (y(t)),

y(0) = x
.

NNs and Dynamical Systems 8 / 13

ResNet-like archtectures

We can define ResNet-like neural networks by choosing a family of parametric functions
SΘ =

{
Fθ : Rd → Rd : θ ∈ Θ

}
and a numerical method φh

F , like explicit Euler defined
as φh

F (x) = x+ hF(x), and set

Nθ(x) = φhL
FθL

◦ · · · ◦ φh1
Fθ1

(x), Fθ1 , ...,FθL ∈ SΘ.

We could also combine these residual blocks with lifting and projection layers, as for usual
neural networks.

NNs and Dynamical Systems 9 / 13

Example

Figure 1: Action of a ResNet based on dynamical systems of the form B⊤
i σ(Aix+ bi) trained to

distinguish the red from the blue points.

NNs and Dynamical Systems 10 / 13

Neural networks for dynamical systems discovery

Apart from using dynamical systems and numerical analysis to study neural networks, we
can also use neural networks to solve and discover differential equations.

The task of dynamical systems discovery can be summarised as follows:

To train the overall model Nθ we can minimise the loss function

L(θ) = 1

N

N∑

n=1

∥∥∥φh
Nθ

(xn0)− xn1

∥∥∥
2

2
,

where xn0 ∈ Ω ⊂ Rd , and xn1 ≈ ϕh(xn0).

NNs and Dynamical Systems 11 / 13

Neural networks for dynamical systems discovery

Apart from using dynamical systems and numerical analysis to study neural networks, we
can also use neural networks to solve and discover differential equations.

The task of dynamical systems discovery can be summarised as follows:

To train the overall model Nθ we can minimise the loss function

L(θ) = 1

N

N∑

n=1

∥∥∥φh
Nθ

(xn0)− xn1

∥∥∥
2

2
,

where xn0 ∈ Ω ⊂ Rd , and xn1 ≈ ϕh(xn0).
NNs and Dynamical Systems 11 / 13

Example with Hamiltonian system

H(q, p) =
1

2

[
p1 p2

]⊤
[
5 −1
−1 5

] [
p1
p2

]
+

q41 + q42
4

+
q21 + q22

2
.

NNs and Dynamical Systems 12 / 13

Neural networks solving differential equations

We can also use neural networks to solve differential equations on a certain time interval
[0,T], and for initial conditions in Ω ⊂ Rd .

We can define a network Nθ : [0,T]×Rd → Rd . We can also enforce the initial condition,
so that Nθ(0, x0) = x0 for every x0 ∈ Rd . This can be done for example by defining

Nθ(t, x) = x+ Ñθ(t, x)− Ñθ(0, x),

for an arbitrary network Ñθ : [0,T]× Ω → Rd .

To train Nθ we can minimise the loss function

L(θ) = 1

N

N∑

n=1

∥∥∥∥∥
d

dt
Nθ (t, x

n
0)

∣∣∣∣
t=tn

−F (Nθ (tn, x
n
0))

∥∥∥∥∥

2

2

at sufficiently many collocation points tn ∈ [0,T] and xn0 ∈ Ω ⊂ Rd .

NNs and Dynamical Systems 13 / 13

Neural networks solving differential equations

We can also use neural networks to solve differential equations on a certain time interval
[0,T], and for initial conditions in Ω ⊂ Rd .

We can define a network Nθ : [0,T]×Rd → Rd . We can also enforce the initial condition,
so that Nθ(0, x0) = x0 for every x0 ∈ Rd . This can be done for example by defining

Nθ(t, x) = x+ Ñθ(t, x)− Ñθ(0, x),

for an arbitrary network Ñθ : [0,T]× Ω → Rd .

To train Nθ we can minimise the loss function

L(θ) = 1

N

N∑

n=1

∥∥∥∥∥
d

dt
Nθ (t, x

n
0)

∣∣∣∣
t=tn

−F (Nθ (tn, x
n
0))

∥∥∥∥∥

2

2

at sufficiently many collocation points tn ∈ [0,T] and xn0 ∈ Ω ⊂ Rd .

NNs and Dynamical Systems 13 / 13

Neural networks solving differential equations

We can also use neural networks to solve differential equations on a certain time interval
[0,T], and for initial conditions in Ω ⊂ Rd .

We can define a network Nθ : [0,T]×Rd → Rd . We can also enforce the initial condition,
so that Nθ(0, x0) = x0 for every x0 ∈ Rd . This can be done for example by defining

Nθ(t, x) = x+ Ñθ(t, x)− Ñθ(0, x),

for an arbitrary network Ñθ : [0,T]× Ω → Rd .

To train Nθ we can minimise the loss function

L(θ) = 1

N

N∑

n=1

∥∥∥∥∥
d

dt
Nθ (t, x

n
0)

∣∣∣∣
t=tn

−F (Nθ (tn, x
n
0))

∥∥∥∥∥

2

2

at sufficiently many collocation points tn ∈ [0,T] and xn0 ∈ Ω ⊂ Rd .

NNs and Dynamical Systems 13 / 13

Example: Hénon–Heiles

Equations of motion

q̇1 = p1, q̇2 = p2, ṗ1 = −q1 − 2q1q2, ṗ2 = −q2 − (q21 − q22).

0 20 40

t

−0.5

0.0

0.5

q1 ODE45 q1 SympFlow

0 20 40

t

−0.50

−0.25

0.00

0.25

p1 ODE45 p1 SympFlow

0 20 40

t

0.0

0.5

q2 ODE45 q2 SympFlow

0 20 40

t

−0.5

0.0

0.5

p2 ODE45 p2 SympFlow

Solution predicted using SympFlow with Hamiltonian Matching

100 102

t

10−9

10−6

10−3

|H
(ψ
t(
x

0
))
−
H

(x
0
)| Long-time energy behaviour

ODE45

MLP

100 102

t

10−9

10−6

10−3

|H
(ψ
t(
x

0
))
−
H

(x
0
)| Long-time energy behaviour

ODE45

SympFlow

NNs and Dynamical Systems 14 / 13

	anm0:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

