Neural networks and their connections with differential equations

Neural Networks (NNs)

 \triangleright Neural networks are typically visualised as something like this

Neural Networks (NNs)

 \triangleright Neural networks are typically visualised as something like this

Mathematically, a neural network is just a **parametric map** $\mathcal{N}_{\theta}:\mathbb{R}^c \to \mathbb{R}^d$, which is usually defined by composing L functions, called **layers**, as $\mathcal{N}_\theta = F_{\theta_L} \circ ... \circ F_{\theta_1}$, $\mathcal{F}_{\theta_i}:\mathbb{R}^{c_i}\rightarrow\mathbb{R}^{c_{i+1}},\; c_1=c,\;c_{L+1}=d.$

Neural Networks (NNs)

 \triangleright Neural networks are typically visualised as something like this

- Mathematically, a neural network is just a **parametric map** $\mathcal{N}_{\theta}:\mathbb{R}^c \to \mathbb{R}^d$, which is usually defined by composing L functions, called **layers**, as $\mathcal{N}_\theta = F_{\theta_L} \circ ... \circ F_{\theta_1}$, $\mathcal{F}_{\theta_i}:\mathbb{R}^{c_i}\rightarrow\mathbb{R}^{c_{i+1}},\; c_1=c,\;c_{L+1}=d.$
- \triangleright The parametrisation strategy behind \mathcal{N}_{θ} is defined by the so-called neural network architecture.

 \triangleright It is common practice to define layers by alternating linear maps with non-linear functions applied entrywise:

$$
F_{\theta_i}(\mathbf{x}) = \Sigma \circ L_i(\mathbf{x}), \ \Sigma(\mathbf{x}) := \begin{bmatrix} \sigma(x_1) \\ \vdots \\ \sigma(x_{c_i}) \end{bmatrix}.
$$

With a slight abuse of notation, from now on we will use σ both for the scalar function and for the vector function.

 \blacktriangleright It is common practice to define layers by alternating linear maps with non-linear functions applied entrywise:

$$
F_{\theta_i}(\mathbf{x}) = \Sigma \circ L_i(\mathbf{x}), \ \Sigma(\mathbf{x}) := \begin{bmatrix} \sigma(x_1) \\ \vdots \\ \sigma(x_{c_i}) \end{bmatrix}.
$$

With a slight abuse of notation, from now on we will use σ both for the scalar function and for the vector function.

 $\triangleright \sigma$ is called **activation function**. Common examples are $\sigma(x) = \text{ReLU}(x) = \text{max}\{0, x\}$, $\sigma(x) = \tanh(x), \ \sigma(x) = \frac{1}{1+e^{-x}}.$

 \blacktriangleright It is common practice to define layers by alternating linear maps with non-linear functions applied entrywise:

$$
F_{\theta_i}(\mathbf{x}) = \Sigma \circ L_i(\mathbf{x}), \ \Sigma(\mathbf{x}) := \begin{bmatrix} \sigma(x_1) \\ \vdots \\ \sigma(x_{c_i}) \end{bmatrix}.
$$

With a slight abuse of notation, from now on we will use σ both for the scalar function and for the vector function.

- $\triangleright \sigma$ is called **activation function**. Common examples are $\sigma(x) = \text{ReLU}(x) = \text{max}\{0, x\}$, $\sigma(x) = \tanh(x), \ \sigma(x) = \frac{1}{1+e^{-x}}.$
- Choosing $L_i(\mathbf{x}) = A_i \mathbf{x} + \mathbf{b}_i$, we recover the layer $F_{\theta_i}(\mathbf{x}) = \sigma(A_i \mathbf{x} + \mathbf{b}_i)$, typical of the so-called fully-connected neural networks.

 \triangleright It is common practice to define layers by alternating linear maps with non-linear functions applied entrywise:

$$
F_{\theta_i}(\mathbf{x}) = \Sigma \circ L_i(\mathbf{x}), \ \Sigma(\mathbf{x}) := \begin{bmatrix} \sigma(x_1) \\ \vdots \\ \sigma(x_{c_i}) \end{bmatrix}.
$$

With a slight abuse of notation, from now on we will use σ both for the scalar function and for the vector function.

- $\triangleright \sigma$ is called **activation function**. Common examples are $\sigma(x) = \text{ReLU}(x) = \text{max}\{0, x\}$, $\sigma(x) = \tanh(x), \ \sigma(x) = \frac{1}{1+e^{-x}}.$
- Choosing $L_i(\mathbf{x}) = A_i \mathbf{x} + \mathbf{b}_i$, we recover the layer $F_{\theta_i}(\mathbf{x}) = \sigma(A_i \mathbf{x} + \mathbf{b}_i)$, typical of the so-called fully-connected neural networks.
- We can also choose $L_i(\mathbf{x}) = k_i \cdot \mathbf{x} + \mathbf{b}_i$, so realise the linear layer by convolution, and get a map that shows up in **convolutional neural networks**

 \blacktriangleright The weights θ of the neural network \mathcal{N}_{θ} are usually found by approximately solving a suitable optimisation problem. This optimisation process is called network training.

- \triangleright The weights θ of the neural network \mathcal{N}_{θ} are usually found by approximately solving a suitable optimisation problem. This optimisation process is called network training.
- \triangleright The cost function which is minimised, called **loss function** in machine learning, is defined thanks to the data one has available, or thanks to properties we would like the approximation to satisfy.

- \triangleright The weights θ of the neural network \mathcal{N}_{θ} are usually found by approximately solving a suitable optimisation problem. This optimisation process is called network training.
- \triangleright The cost function which is minimised, called **loss function** in machine learning, is defined thanks to the data one has available, or thanks to properties we would like the approximation to satisfy.
- \triangleright One of the simplest loss functions we can work with is the **mean-squared error**. Say that we want to approximate the function $F: \Omega \to \mathbb{R}^d$, $\Omega \subset \mathbb{R}^c$, and we have the dataset $\{(\mathbf{x}_i, \mathbf{y}_i = F(\mathbf{x}_i))\}_{i=1}^N$, $\mathbf{x}_i \in \Omega$, then we can work with the loss function

$$
\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left\| \mathcal{N}_{\theta}(\mathbf{x}_i) - \mathbf{y}_i \right\|_2^2.
$$

- \triangleright The weights θ of the neural network \mathcal{N}_{θ} are usually found by approximately solving a suitable optimisation problem. This optimisation process is called network training.
- \triangleright The cost function which is minimised, called **loss function** in machine learning, is defined thanks to the data one has available, or thanks to properties we would like the approximation to satisfy.
- \triangleright One of the simplest loss functions we can work with is the **mean-squared error**. Say that we want to approximate the function $F: \Omega \to \mathbb{R}^d$, $\Omega \subset \mathbb{R}^c$, and we have the dataset $\{(\mathbf{x}_i, \mathbf{y}_i = F(\mathbf{x}_i))\}_{i=1}^N$, $\mathbf{x}_i \in \Omega$, then we can work with the loss function

$$
\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \|\mathcal{N}_{\theta}(\mathbf{x}_i) - \mathbf{y}_i\|_2^2.
$$

After minimising the loss function, we hopefully have a good set of parameters θ^* and we can use \mathcal{N}_{θ^*} to make new predictions, for unseen inputs.

Theorem

Let $\Omega \subset \mathbb{R}^c$ be a compact set and assume $\sigma : \mathbb{R} \to \mathbb{R}$ is not a polynomial. For any continuous function $F: \Omega \to \mathbb{R}$ and for any $\varepsilon > 0$ there is a single-layer neural network

$$
\mathcal{N}_{\theta}(\mathsf{x}) := \mathbf{w}^{\top} \sigma(\mathsf{A}\mathbf{x} + \mathbf{b}), \ \mathsf{A} \in \mathbb{R}^{h \times d}, \mathbf{b}, \mathbf{w} \in \mathbb{R}^{h},
$$

with $h \in \mathbb{N}$ large enough, such that

 $\max_{\mathbf{x} \in \Omega} |F(\mathbf{x}) - \mathcal{N}_{\theta}(\mathbf{x})| \leq \varepsilon.$

¹Kurt Hornik, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators". In: Neural networks 2.5 (1989), pp. 359–366.

Theorem

Let $\Omega \subset \mathbb{R}^c$ be a compact set and assume $\sigma : \mathbb{R} \to \mathbb{R}$ is not a polynomial. For any continuous function $F: \Omega \to \mathbb{R}$ and for any $\varepsilon > 0$ there is a single-layer neural network

$$
\mathcal{N}_{\theta}(\mathsf{x}) := \mathbf{w}^{\top} \sigma(\mathsf{A}\mathbf{x} + \mathbf{b}), \ \mathsf{A} \in \mathbb{R}^{h \times d}, \mathbf{b}, \mathbf{w} \in \mathbb{R}^{h},
$$

with $h \in \mathbb{N}$ large enough, such that

$$
\max_{\mathbf{x}\in\Omega}|F(\mathbf{x})-\mathcal{N}_{\theta}(\mathbf{x})|\leq\varepsilon.
$$

This theorem extends to vector-valued functions, and similar results exist also for deeper networks.

¹ Hornik, Stinchcombe, and White, ["Multilayer feedforward networks are universal approximators".](#page-12-0)

A particularly interesting network architecture is the one of ResNets. The layers of these networks are of the from

$$
F_{\theta_i}(\mathbf{x}) = \mathbf{x} + \mathcal{F}_{\theta_i}(\mathbf{x}),
$$

where an example could be $\mathcal{F}_{\theta_i}(\mathbf{x}) = B_i^\top \sigma(A_i \mathbf{x} + \mathbf{b}_i)$, $A_i, B_i \in \mathbb{R}^{h \times c_i}$, $\mathbf{b}_i \in \mathbb{R}^{h}$.

 \triangleright The reason why they were introduced is because they are much easier to train when the network has a high number of layers.

Why ResNets?

Recall that to minimise the loss function $\mathcal{L}(\theta)$ we have to use some numerical method, like gradient descent

$$
\theta_{k+1} = \theta_k - \tau \nabla L(\theta_k).
$$

If $\|\nabla L(\theta_k)\|_2$ is very large or very small, we will struggle to find a meaningful set of weights.

ResNets as dynamical systems

Residual Neural Networks (ResNets) are networks of the form $\mathcal{N}_\theta=F_{\theta_L}\circ...\circ F_{\theta_1}$ with

$$
F_{\theta_i}(\mathbf{x}) = \mathbf{x} + B_i^{\top} \sigma (A_i \mathbf{x} + \mathbf{b}_i) \in \mathbb{R}^d, \ \mathbf{x} \in \mathbb{R}^d,
$$

$$
A_i, B_i \in \mathbb{R}^{h \times d}, \ \mathbf{b}_i \in \mathbb{R}^h, \ \theta_i = \{A_i, B_i, \mathbf{b}_i\}.
$$

ResNets as dynamical systems

Residual Neural Networks (ResNets) are networks of the form $\mathcal{N}_\theta=F_{\theta_L}\circ...\circ F_{\theta_1}$ with

$$
F_{\theta_i}(\mathbf{x}) = \mathbf{x} + B_i^{\top} \sigma (A_i \mathbf{x} + \mathbf{b}_i) \in \mathbb{R}^d, \ \mathbf{x} \in \mathbb{R}^d,
$$

$$
A_i, B_i \in \mathbb{R}^{h \times d}, \ \mathbf{b}_i \in \mathbb{R}^h, \ \theta_i = \{A_i, B_i, \mathbf{b}_i\}.
$$

The layer \blacktriangleright

$$
F_{\theta_i}(\mathbf{x}) = \mathbf{x} + B_i^{\top} \sigma (A_i \mathbf{x} + \mathbf{b}_i) = \mathbf{x} + \mathcal{F}_{\theta_i}(\mathbf{x}) \in \mathbb{R}^d
$$

is an explicit Euler step of size 1 for the initial value problem

$$
\begin{cases} \dot{\mathbf{y}}(t) = B_i^\top \sigma(A_i \mathbf{y}(t) + \mathbf{b}_i) = \mathcal{F}_{\theta_i}(\mathbf{y}(t)), \\ \mathbf{y}(0) = \mathbf{x} \end{cases}
$$

.

 \triangleright We can define ResNet-like neural networks by choosing a family of parametric functions $\mathcal{S}_\Theta=\left\{\mathcal{F}_\theta:\mathbb{R}^d\to\mathbb{R}^d:~\theta\in\Theta\right\}$ and a numerical method $\varphi_\mathcal{F}^h$, like explicit Euler defined as $\varphi_{\mathcal{F}}^h(\mathsf{x}) = \mathsf{x} + h\mathcal{F}(\mathsf{x})$, and set

$$
\mathcal{N}_{\theta}(\mathbf{x}) = \varphi_{\mathcal{F}_{\theta_L}}^{h_L} \circ \cdots \circ \varphi_{\mathcal{F}_{\theta_1}}^{h_1}(\mathbf{x}), \ \mathcal{F}_{\theta_1}, ..., \mathcal{F}_{\theta_L} \in \mathcal{S}_{\Theta}.
$$

 \triangleright We could also combine these residual blocks with lifting and projection layers, as for usual neural networks.

Example

Figure 1: Action of a ResNet based on dynamical systems of the form $B_i^{\perp}\sigma(A_i\mathbf{x}+\mathbf{b}_i)$ trained to distinguish the red from the blue points.

Neural networks for dynamical systems discovery

Apart from using dynamical systems and numerical analysis to study neural networks, we can also use neural networks to solve and discover differential equations.

Neural networks for dynamical systems discovery

- Apart from using dynamical systems and numerical analysis to study neural networks, we can also use neural networks to solve and discover differential equations.
- \triangleright The task of dynamical systems discovery can be summarised as follows:

 \triangleright To train the overall model \mathcal{N}_{θ} we can minimise the loss function

$$
\mathcal{L}(\theta) = \frac{1}{N} \sum_{n=1}^N \left\| \varphi^h_{\mathcal{N}_{\theta}}(\mathbf{x}_0^n) - \mathbf{x}_1^n \right\|_2^2,
$$

where $\mathbf{x}_0^n \in \Omega \subset \mathbb{R}^d$, and $\mathbf{x}_1^n \approx \phi^h(\mathbf{x}_0^n)$.

Example with Hamiltonian system

$$
H(q,p) = \frac{1}{2} \begin{bmatrix} p_1 & p_2 \end{bmatrix}^{\top} \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} + \frac{q_1^4 + q_2^4}{4} + \frac{q_1^2 + q_2^2}{2}.
$$

Neural networks solving differential equations

We can also use neural networks to solve differential equations on a certain time interval $[0, T]$, and for initial conditions in $\Omega \subset \mathbb{R}^d$.

Neural networks solving differential equations

- We can also use neural networks to solve differential equations on a certain time interval $[0, T]$, and for initial conditions in $\Omega \subset \mathbb{R}^d$.
- We can define a network $\mathcal{N}_{\theta}:[0,T]\times\mathbb{R}^d\to\mathbb{R}^d$. We can also enforce the initial condition, so that $\mathcal{N}_\theta(0,\mathbf{x}_0)=\mathbf{x}_0$ for every $\mathbf{x}_0\in\mathbb{R}^d$. This can be done for example by defining

$$
\mathcal{N}_{\theta}(t,\mathbf{x}) = \mathbf{x} + \widetilde{\mathcal{N}}_{\theta}(t,\mathbf{x}) - \widetilde{\mathcal{N}}_{\theta}(0,\mathbf{x}),
$$

for an arbitrary network $\widetilde{\mathcal{N}}_{\theta}:[0,\, T]\times\Omega\rightarrow\mathbb{R}^{d}$.

Neural networks solving differential equations

- We can also use neural networks to solve differential equations on a certain time interval $[0, T]$, and for initial conditions in $\Omega \subset \mathbb{R}^d$.
- We can define a network $\mathcal{N}_{\theta}:[0,T]\times\mathbb{R}^d\to\mathbb{R}^d$. We can also enforce the initial condition, so that $\mathcal{N}_\theta(0,\mathbf{x}_0)=\mathbf{x}_0$ for every $\mathbf{x}_0\in\mathbb{R}^d$. This can be done for example by defining

$$
\mathcal{N}_{\theta}(t,\mathbf{x}) = \mathbf{x} + \widetilde{\mathcal{N}}_{\theta}(t,\mathbf{x}) - \widetilde{\mathcal{N}}_{\theta}(0,\mathbf{x}),
$$

for an arbitrary network $\widetilde{\mathcal{N}}_{\theta}:[0,\, T]\times\Omega\rightarrow\mathbb{R}^{d}$.

 \blacktriangleright To train \mathcal{N}_{θ} we can minimise the loss function

$$
\mathcal{L}(\theta) = \frac{1}{N} \sum_{n=1}^{N} \left\| \frac{d}{dt} \mathcal{N}_{\theta}(t, \mathbf{x}_{0}^{n}) \right\|_{t=t_{n}} - \mathcal{F} \left(\mathcal{N}_{\theta}(t_{n}, \mathbf{x}_{0}^{n}) \right) \left\|_{2}^{2}
$$

at sufficiently many collocation points $t_n\in[0,\,T]$ and $\mathsf{x}_0^n\in\Omega\subset\mathbb{R}^d$.

Example: Hénon-Heiles

Equations of motion

$$
\dot{q}_1 = p_1, \ \dot{q}_2 = p_2, \ \dot{p}_1 = -q_1 - 2q_1q_2, \ \dot{p}_2 = -q_2 - (q_1^2 - q_2^2).
$$

[NNs and Dynamical Systems](#page-0-0) 14 / 13