Revision of one-step methods for ODEs

In this course we consider initial value problems (IVPs) defined by au-
tonomous Ordinary Differential Equations (ODEs) of the form

x(t) = F(x(t)) € R? (1)
X(O) = Xp € R4,

We recall that non-autonomous case can be reduced to this case by introducing

the additional equation f = 1. We will refer to the vector field F interchangeably

as a function F : R — R? and as a smooth vector field, denoting it as F €

X(R%). F is supposed to be Lipschitz continuous, so that we can guarantee the

existence and uniqueness of the solution to .

Notation: I will try to stick as much as possible to the following notation
conventions. Vectors are represented with bold symbols, like x. Matrices are
not, but I write them with capital letters. For vector fields and sets I will use
calligraphic letters, such as F. To denote the exact flow map of a vector field
F :R? — R? I will use interchangeably Pl - R? - R? and ¢5 : R x R* — R,
where ¢l (x) = ¢x(t,x).

Let us consider the time domain [0,7], T > 0, and introduce a uniform
grid over it defined as t; = ih, i = 0,..., N, h = T/N. A one-step numerical
method gp} : R? — R? aims to provide an approximation of the exact flow map

’}L- : R? — R? of the vector field F to which it is applied. Whenever it will be
clear from the context which vector field we are working with, we will omit the
subscript F, and write ¢".

Definition 1 (Method of order p). A one-step numerical method " : R4 — R?
has order p if, whenever applied to a smooth enough vector field F : R* — R?,
it satisfies

¢l = ¢l + O(RPT).

1 Runge-Kutta methods

The simplest numerical method one can consider is the explicit Euler method,
defined as
(%) = x + hF(x).



By Taylor expanding the exact solution at ¢t = 0, we see that
P(x) = x + hF(x) + O(h?),

hence telling us that the explicit Euler method is first-order accurate. A gener-
alisation of this method is provided by the very popular family of Runge-Kutta
methods, with which we will work quite a lot. We provide the definition of these
methods for non-autonomous vector fields so it is presented in full generality.

Definition 2 (Runge-Kutta method). Let us consider the non-autonomous
differential equation %(t) = F(t,x(t)). A Runge—Kutta method of s stages based
on the tableau (A,b,c), A € R®** b, c € R®, is a one-step method defined as

Xn41 =Xn +h Y biF(tn + cih kn;)
=1

Kni = Xn +h Y ai F(tn + cjh kn ).

j=1
We call k,, ;, i =1,..., 5, the hidden stages of the method.

We will generally drop the subscript n in the stages. A Runge-Kutta method
is explicit if the matrix A in the tableau is stricly lower triangular. In this case
there is no need to solve a non-linear algebraic equation at every step of the
method. If the method is implicit, one can approximate the solution of the
non-linear algebraic equation associated to one step by using iterative methods
like Newton, or quasi-Newton schemes.

The study of the order conditions of Runge-Kutta methods is very well
developed, but it is out of the scope of this course. For the interested reader
see [1L [3]. In practice, the order conditions will amount to restrictions over the
tableau (4, b, c).

Even though the order conditions for a generic Runge-Kutta method are not
simple to derive, we can do that for an important subfamily of these methods:
collocation methods. We dedicate the last part of this introduction of one-step
methods to collocation methods because they have an interesting interpretation,
and they will be perfect examples of structure-preserving numerical methods.

1.1 Collocation methods

Let us now consider the differential equation x = F(x), and suppose that we
have just obtained an approximate solution x, = x(t,). We want to approxi-
mate the solution x(¢) at time t,,41 = t, + h, so after one time step. To do so,
we make the assumption that in-between time ¢ = ¢, and t,4+1 = ¢, +h we can
approximate the solution with a polynomial of degree s. Let us call x € P*(R)
this polynomial.

To characterise it, we enforce that X(¢,) = x,,, and that

X(tn + cih) = F(X(tn + c;ih)), i=1,...,s,



for a choice of s distinct numbers 0 < ¢; < 3 < ... < ¢s < 1. These s + 1
conditions suffice to uniquely characterise a polynomial of degree s. We now
write explicitly the form of X(t):

() = Y. F&(t et (P, )

where /;(t) € P*~}(R) are the elementary Lagrange polynomials such that

1, i=j,
0, i # j.

We recall that these polynomials are defined as

ti(cy) = i = {

S

t—cj
0i(t) = L.
l() HCi—Cj
J=1
i

We now integrate both sides of over the interval [t,,t, + ¢;h] to get
S tntcih t—t
X(tn + cih) =%, + > F(X(tn + cjh))/ l (h”> dt.
j=1 tn
The change of variables ¢ = t,, + sh, allows us to rewrite the condition as

R(t + cih) = %0+ h S F(&(tn + ;1) / 0;(s)ds,
j=1 0

which can be rewritten as

k; =x, + hzaijf(kj)
j=1

if we set .
k, . =x(tn + c;h), a;; ::/ 2(s)ds.
0

Integrating over [ty,t, + h], we instead find

R(tn +h) =xn +hY_biF(ky),
i=1

where we set b; := fol l;(s)ds. We thus see that as long as we define x; =
o (x0) := X(to + h), we recover a one-step method of the Runge-Kutta type
with a suitably constrained tableau (A, b, c).

An important and common choice for the coefficients ¢y, ...,cs is the one
provided by Gauss-Legendre quadrature nodes. We call these methods Gauss-
Legendre collocation methods.



Theorem 1 (Gauss-Legendre collocation methods). The Gauss-Legendre col-
location methods based on s collocation nodes are of order 2s when applied to a
smooth enough vector field F : RY — R<.

To prove this theorem, we need a very formula which is very useful also for
other estimates. This is The Grobner-Alekseev formula:

Proposition 1 (Grobner-Alekseev Formula [I]). Let us consider the two au-
tonomous initial value problems

x(t) = F(x(1)) y(t) = Fy(t) +G(y(t)
x(0) = %o C v

with F € CY(R4,RY), and supposing they both admit a unique solution. Then

y(0) - x(0 = [ 2zt

0

G(y(r))dr (3)

zo=y(T)

for every T € [0,].
In , by qﬁ}t (zo) we refer to the time-t solution of the initial value problem

{xoe) = F(x(t))

x(7) = zp.

Proof. Since X(t), the polynomial approximation, is differentiable, it solves the
initial value problem

{sz(t) = F(X(t) + (>‘c(t> -7 (i(t>>)

X(tn) = Xy,

over the time interval [t,,t,+1]. Let us consider the initial value problem with
the same initial condition x, as above, but with the correct vector field F.
Call x the exact solution of this second problem. Using with G(x(t)) :=
x(t) — F(X(t)), we can say that

0 )

5o (§(t) — F(X(t) )) dt

zo=%(t)

X(tn11) = K(tri1) = |

n

(;un + sh) — F(X(tn + sh))) dt.
zo=X(tn+sh)

Lr+sh,tn g1
_h/ G+ (a)

The integral on the right-hand side can be approximated with the Gauss-
Legendre quadrature rule associated to the s nodes cq, ..., cs, so to get

X(tnt1) — X(tnt1) —hz M G(X(tn)) +O(RTY),

Zz0=X(tn,i)

(#)



where wy, ..., ws are the Gauss-Legendre quadrature weights, and ¢,, ; = t,, +¢;h.
By the characterisation of the collocation polynomial X in , we see that the
term (#) vanishes, and hence we can conclude the proof. O

An example of Gauss-Legendre collocation method is the implicit midpoint
method, with tableau
A=1/2,b=1, c=1/2,

and which writes

Xp +X
Xp4+1 = Xp + hF (nnJrl) .

2

See [2, Chapter 3] for more details about collocation methods.
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