
Revision of one-step methods for ODEs

In this course we consider initial value problems (IVPs) defined by au-
tonomous Ordinary Differential Equations (ODEs) of the form{

ẋ(t) = F(x(t)) ∈ Rd

x(0) = x0 ∈ Rd.
(1)

We recall that non-autonomous case can be reduced to this case by introducing
the additional equation ṫ = 1. We will refer to the vector field F interchangeably
as a function F : Rd → Rd and as a smooth vector field, denoting it as F ∈
X(Rd). F is supposed to be Lipschitz continuous, so that we can guarantee the
existence and uniqueness of the solution to (1).

Notation: I will try to stick as much as possible to the following notation
conventions. Vectors are represented with bold symbols, like x. Matrices are
not, but I write them with capital letters. For vector fields and sets I will use
calligraphic letters, such as F . To denote the exact flow map of a vector field
F : Rd → Rd I will use interchangeably ϕt

F : Rd → Rd and ϕF : R× Rd → Rd,
where ϕt

F (x) := ϕF (t,x).

Let us consider the time domain [0, T ], T > 0, and introduce a uniform
grid over it defined as ti = ih, i = 0, ..., N , h = T/N . A one-step numerical
method φh

F : Rd → Rd aims to provide an approximation of the exact flow map
ϕh
F : Rd → Rd of the vector field F to which it is applied. Whenever it will be

clear from the context which vector field we are working with, we will omit the
subscript F , and write φh.

Definition 1 (Method of order p). A one-step numerical method φh : Rd → Rd

has order p if, whenever applied to a smooth enough vector field F : Rd → Rd,
it satisfies

φh
F = ϕh

F +O(hp+1).

1 Runge–Kutta methods

The simplest numerical method one can consider is the explicit Euler method,
defined as

φh
F (x) = x+ hF(x).
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By Taylor expanding the exact solution at t = 0, we see that

ϕh
F (x) = x+ hF(x) +O(h2),

hence telling us that the explicit Euler method is first-order accurate. A gener-
alisation of this method is provided by the very popular family of Runge–Kutta
methods, with which we will work quite a lot. We provide the definition of these
methods for non-autonomous vector fields so it is presented in full generality.

Definition 2 (Runge–Kutta method). Let us consider the non-autonomous
differential equation ẋ(t) = F(t,x(t)). A Runge–Kutta method of s stages based
on the tableau (A,b, c), A ∈ Rs×s, b, c ∈ Rs, is a one-step method defined as

xn+1 = xn + h
s∑

i=1

biF(tn + cih,kn,i)

kn,i = xn + h

s∑
j=1

aijF(tn + cjh,kn,j).

We call kn,i, i = 1, ..., s, the hidden stages of the method.

We will generally drop the subscript n in the stages. A Runge–Kutta method
is explicit if the matrix A in the tableau is stricly lower triangular. In this case
there is no need to solve a non-linear algebraic equation at every step of the
method. If the method is implicit, one can approximate the solution of the
non-linear algebraic equation associated to one step by using iterative methods
like Newton, or quasi-Newton schemes.

The study of the order conditions of Runge–Kutta methods is very well
developed, but it is out of the scope of this course. For the interested reader
see [1, 3]. In practice, the order conditions will amount to restrictions over the
tableau (A,b, c).

Even though the order conditions for a generic Runge–Kutta method are not
simple to derive, we can do that for an important subfamily of these methods:
collocation methods. We dedicate the last part of this introduction of one-step
methods to collocation methods because they have an interesting interpretation,
and they will be perfect examples of structure-preserving numerical methods.

1.1 Collocation methods

Let us now consider the differential equation ẋ = F(x), and suppose that we
have just obtained an approximate solution xn ≈ x(tn). We want to approxi-
mate the solution x(t) at time tn+1 = tn + h, so after one time step. To do so,
we make the assumption that in-between time t = tn and tn+1 = tn + h we can
approximate the solution with a polynomial of degree s. Let us call x̃ ∈ Ps(R)
this polynomial.

To characterise it, we enforce that x̃(tn) = xn, and that

˙̃x(tn + cih) = F(x̃(tn + cih)), i = 1, ..., s,
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for a choice of s distinct numbers 0 ≤ c1 < c2 < ... < cs ≤ 1. These s + 1
conditions suffice to uniquely characterise a polynomial of degree s. We now
write explicitly the form of ˙̃x(t):

˙̃x(t) =

s∑
i=1

F(x̃(tn + cih))ℓi

(
t− tn
h

)
, (2)

where ℓi(t) ∈ Ps−1(R) are the elementary Lagrange polynomials such that

ℓi(cj) = δij =

{
1, i = j,

0, i ̸= j.

We recall that these polynomials are defined as

ℓi(t) =

s∏
j=1
j ̸=i

t− cj
ci − cj

.

We now integrate both sides of (2) over the interval [tn, tn + cih] to get

x̃(tn + cih) = xn +

s∑
j=1

F(x̃(tn + cjh))

∫ tn+cih

tn

ℓj

(
t− tn
h

)
dt.

The change of variables t = tn + sh, allows us to rewrite the condition as

x̃(tn + cih) = xn + h

s∑
j=1

F(x̃(tn + cjh))

∫ ci

0

ℓj(s)ds,

which can be rewritten as

ki = xn + h

s∑
j=1

aijF(kj)

if we set

ki := x̃(tn + cih), aij :=

∫ ci

0

ℓj(s)ds.

Integrating (2) over [tn, tn + h], we instead find

x̃(tn + h) = xn + h

s∑
i=1

biF(ki),

where we set bi :=
∫ 1

0
ℓi(s)ds. We thus see that as long as we define x1 =

φh
F (x0) := x̃(t0 + h), we recover a one-step method of the Runge–Kutta type

with a suitably constrained tableau (A,b, c).
An important and common choice for the coefficients c1, ..., cs is the one

provided by Gauss-Legendre quadrature nodes. We call these methods Gauss-
Legendre collocation methods.
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Theorem 1 (Gauss-Legendre collocation methods). The Gauss-Legendre col-
location methods based on s collocation nodes are of order 2s when applied to a
smooth enough vector field F : Rd → Rd.

To prove this theorem, we need a very formula which is very useful also for
other estimates. This is The Gröbner-Alekseev formula:

Proposition 1 (Gröbner-Alekseev Formula [1]). Let us consider the two au-
tonomous initial value problems{

ẋ(t) = F(x(t))

x(0) = x0

,

{
ẏ(t) = F(y(t)) + G(y(t))
y(0)

with F ∈ C1(Rd,Rd), and supposing they both admit a unique solution. Then

y(t)− x(t) =

∫ t

0

∂ϕτ,t
F (z0)

∂z0

∣∣∣∣∣
z0=y(τ)

G(y(τ))dτ (3)

for every τ ∈ [0, t].

In (3), by ϕτ,t
F (z0) we refer to the time-t solution of the initial value problem{

ẋ(t) = F(x(t))

x(τ) = z0.

Proof. Since x̃(t), the polynomial approximation, is differentiable, it solves the
initial value problem{

˙̃x(t) = F(x̃(t)) +
(
˙̃x(t)−F(x̃(t))

)
˙̃x(tn) = xn

over the time interval [tn, tn+1]. Let us consider the initial value problem with
the same initial condition xn as above, but with the correct vector field F .
Call x the exact solution of this second problem. Using (3) with G(x̃(t)) :=
˙̃x(t)−F(x̃(t)), we can say that

x(tn+1)− x̃(tn+1) =

∫ tn+1

tn

∂ϕ
t,tn+1

F (z0)

∂z0

∣∣∣∣∣
z0=x̃(t)

(
˙̃x(t)−F(x̃(t))

)
dt

= h

∫ 1

0

∂ϕ
tn+sh,tn+1

F (z0)

∂z0

∣∣∣∣∣
z0=x̃(tn+sh)

(
˙̃x(tn + sh)−F(x̃(tn + sh))

)
dt.

The integral on the right-hand side can be approximated with the Gauss-
Legendre quadrature rule associated to the s nodes c1, ..., cs, so to get

x(tn+1)− x̃(tn+1) = h

s∑
i=1

ωi
∂ϕ

tn,i,tn+1

F (z0)

∂z0

∣∣∣∣∣
z0=x̃(tn,i)

G(x̃(tn,i))︸ ︷︷ ︸
(#)

+O(h2s+1),
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where ω1, ..., ωs are the Gauss-Legendre quadrature weights, and tn,i = tn+cih.
By the characterisation of the collocation polynomial x̃ in (2), we see that the
term (#) vanishes, and hence we can conclude the proof.

An example of Gauss-Legendre collocation method is the implicit midpoint
method, with tableau

A = 1/2, b = 1, c = 1/2,

and which writes

xn+1 = xn + hF
(
xn + xn+1

2

)
.

See [2, Chapter 3] for more details about collocation methods.
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