
Methods conserving first integrals

We can say that there are two classes of one-step numerical methods pre-
serving first integrals (conservation laws): methods that preserve a broad class
of first integrals without having to know them, and methods that require the
knowledge of the first integral to preserve.

We start with the first class of methods, focusing on polyomial invariants.

1 Polynomial invariants

1.1 Linear invariants

Theorem 1 (Conservation of linear first integrals). All explicit and implicit
Runge–Kutta methods conserve linear invariants.

Proof. We focus on the differential equation ẋ(t) = F(x(t)), and suppose it
admits the linear first integral I(x) = v⊤x, v ∈ Rd. In other words, we suppose
that v⊤F(x) = 0 for every x ∈ Rd.

Let us define the Runge–Kutta stages

ki = x0 + h

s∑
j=1

aijF(kj),

and the associated one-step update

x1 = x0 + h

s∑
i=1

biF(ki).

The proof can be concluded by the following derivation:

I(x1) = v⊤x0 + h

s∑
i=1

biv
⊤F(ki) = v⊤x0 = I(x0).

Exercise 1. Implement the Runge–Kutta method you prefer, and verify that
when applied to the equations of the SIR model

Ṡ(t) = −βI(t)S(t),

İ(t) = βI(t)S(t)− γI(t),

Ṙ(t) = γI(t),
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it preserves the linear invariant E(S, I,R) = S + I +R.

1.2 Quadratic invariants

We now focus on quadratic functions of the form Q(x) = x⊤Cx with C ∈ Rd×d

symmetric. This is a generic enough quadratic function since if we manage to
conserve it, we will also be able to conserve something like Q̃(x) = x⊤Cx+v⊤x
by linearity and Theorem 1.

Remark 1. The theorem and proof we are going to see now are very important
since we will use similar techniques and definitions also in the subsequent topics.

Theorem 2 (Conservation of quadratic first integrals). Let us consider a Runge–
Kutta method with tableau determined by the triple (A,b, c). Let us define the
matrices B = diag(b) and M = BA + A⊤B − bb⊤. If M = 0s×s then the
Runge–Kutta method under consideration conserves quadratic first integrals.

Before moving to the proof, we explicitly write down the entry mij of the
matrix M ∈ Rs×s:

mij = biaij + ajibj − bibj .

Proof. Let us focus on the differential equation ẋ(t) = F(x(t)) and suppose
it admits the first integral Q(x) = x⊤Cx, i.e., that x⊤CF(x) = 0 for every
x ∈ Rd. The hidden stages of the Runge–Kutta method under consideration
write

ki = x0 + h

s∑
j=1

aijF(kj), (1)

leading to the update x1 = x0 + h
∑s

i=1 biF(ki). We now expand Q(x1) to get

Q(x1) = x⊤
1 Cx1 = Q(x0) + h2

s∑
i,j=1

bibjF(ki)
⊤CF(kj) + 2h

s∑
i=1

bix
⊤
0 CF(ki).

(2)
We now notice that, from (1), we can express x0 in s different ways as

x0 = ki − h

s∑
j=1

aijF(kj).
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We replace this i-dependent rewriting in the last term of (2), to get

Q(x1) = x⊤
1 Cx1 = Q(x0) + h2

s∑
i,j=1

bibjF(ki)
⊤CF(kj)

+ 2h

s∑
i=1

bik
⊤
i CF(ki)︸ ︷︷ ︸

=0

−2h2
s∑

i,j=1

biaijF(kj)
⊤CF(ki)

= Q(x0) + h2
s∑

i,j=1

bibjF(ki)
⊤CF(kj)− h2

s∑
i,j=1

biaijF(kj)
⊤CF(ki)

− h2
s∑

i,j=1

bjajiF(ki)
⊤CF(kj)

= Q(x0)− h2
s∑

i,j=1

mijF(ki)
⊤CF(kj) = Q(x0)

if mij = 0 for every i, j ∈ {1, ..., s}.

Example 1. An example of a Runge–Kutta method which preserves quadratic
first integrals is the implicit mid-point method, which has tableau

A = 1/2, b = 1, c = 1/2,

and writes

x1 = x0 + hF
(
x0 + x1

2

)
.

In this case, in fact, one has

M = BA+A⊤B − bb⊤ = 1/2 + 1/2− 1 = 0.

The implicit mid-point is a particular case of a more general family of meth-
ods preserving quadratic first integral, as we argue in the following proposition.

Proposition 1. All Gauss-Legendre collocation methods preserve quadratic first
integrals.

Proof. The proof does not aim to show that these methods satisfy the assump-
tions of Theorem 2, but we use the main properties of collocation methods.

Let u(t) be the polynomial approximation of the solution provided by the
collocation method over the time interval [tn, tn+1 = tn + h]. Let us consider
the function q(t) := Q(u(t)) = u(t)⊤Cu(t), which has time derivative

d

dt
q(t) = 2u̇(t)⊤Cu(t).
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We thus have

q(tn+1) = q(tn) +

∫ tn+h

tn

q̇(t)dt (3)

= q(tn) + 2h

∫ 1

0

u̇(tn + sh)⊤Cu(tn + sh)ds (4)

Recalling that Gaussian quadrature rules based on s quadrature nodes are exact
for polynomials up to degree 2s − 1, and that u(t) is of degree s, we conclude
that the integral in (4) can be exactly computed by Gaussian quadrature since
u̇(t)⊤Cu(t) ∈ P2s−1(R). Thus, we get

q(tn+1)− q(tn) = 2h
s∑

i=1

u̇(t0 + cih)
⊤Cu(t0 + cih)

= 2h

s∑
i=1

F(u(t0 + cih))
⊤Cu(t0 + cih) = 0,

which allows us to conclude the proof since q(tn+1) = Q(xn+1) and q(tn) =
Q(xn).

Example 2 (Free rigid body). An interesting example in this case is provided
by the equations of motion of a free rigid body, which can be written as

ẋ(t) =

 0 x3/I3 −x2/I2
−x3/I3 0 x1/I1
x2/I2 −x1/I1 0

x(t),

and hence have the quadratic first integral Q(x) = ∥x∥22. They also conserve
another first integral which is still quadratic: Q̃(x) = x⊤I−1x where I =
diag(I1, I2, I3) ∈ R3×3.

Exercise: Approximate the solution to this system by using the implicit
mid-point method and verify that the two first integrals are both preserved. What
does this imply?

PROBLEM: As can be found in [1, Theorem IV 3.3], for n ≥ 3, there is no
Runge–Kutta method that can conserve all the poylnomial invariants of degree
n. We thus need to look for other families of methods that help us preserving
them and also generic non-polynomial first integrals.

2 Methods preserving generic first integrals

The methods we are going to see now belong two classes: projection methods
and discrete gradient methods. Both of these families of methods rely on the
knowledge of the first integral to be preserved, and the method is built in such
a way that we can preserve the level sets of this target function.
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Figure 1: Illustration of one step of a projection method based on the one-step
method φh : Rd → Rd.

2.1 Projection methods

We can reformulate the problem of preserving the invariant function I : Rd → R
into something much more generic. Conserving a first integral indeed means
preserving its level sets. More precisely, let us suppose to start from the initial
condition x0, then what we really want to do is ensure that the updated positions
we get starting there remain on the (non-linear) manifold

Mx0
:=

{
x ∈ Rd : I(x) = I(x0)

}
⊂ Rd,

which has dimension d − 1. We can thus interpret this desired result as a
constraint over the numerical method.

After one step starting at x0, a generic one-step method will exit the manifold
Mx0 , but we will not get “too far” from it. We can then project back the
obtained point to the correct level set. This is the main idea behind projection
methods, also illustrated in Figure 1. We now formalise the definition of these
methods and provide an example for a simple conserved quantity.

Let us consider an arbitrary one-step method φh : Rd → Rd of order p, for
example a Runge–Kutta method. We define a projection method based on φh

as follows:
x̃1 = φh(x0), x1 := ΠMx0

(x̃1),

where
ΠMx0

(x̃1) := arg min
y∈Mx0

∥y − x̃1∥2 .

A practical way to compute these terms, is by defining

x1(λ) = x̃1 + λ∇I(x̃1),
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and looking for a λ∗ ∈ R such that x1(λ∗) ∈ Mx0 , i.e., I(x1(λ∗)) = I(x0). We
also remark that if I is smooth enough, one has

I (x̃1) = I
(
ϕh(x0) +O(hp+1)

)
= I

(
ϕh(x0)

)
+O

(
hp+1

)
= I (x0) +O

(
hp+1

)
,

and hence x0 tends to be a good initial guess for the iterative method we have
to use to solve the (non-linear) algebraic equation to satisfy the constraints.

Example 3. For the case I(x) = ∥x∥22/2, we have ∇I(x) = x, and hence
x1(λ) = (1 + λ)φh(x0). The preservation of the first integral is then equivalent
to

(1 + λ)2 ∥φh(x0)∥22 = ∥x0∥22 ,

which implies

λ = −1±
∥x0∥2

∥φh(x0)∥2
.

Since when h = 0 we would like to recover λ = 0, we choose the plus sign, hence
getting the projection method

x1 =
φh(x0)

∥φh(x0)∥2
∥x0∥2 .

Exercise 2. Think of how one could extend this reasoning to multiple first
integrals, so to situations where one does not just want to preserve the level sets
of I, but of a finite set of independent first integrals I1, ..., In : Rd → R.

Typically projection methods are not so well seen in the community of geo-
metric integration, because even though effective in preserving the conservation
laws, they tend to break any other property the base method φh might have
had (e.g., preserving linear invariants, being symplectic, or being volume pre-
serving).

2.2 Discrete gradient methods

The last class of energy preserving methods we are going to see are discrete
gradient methods. These are based on rewriting the vector field F : Rd → Rd

in a convenient way, which is the skew-gradient formulation we have already
mentioned. More explicitly, we rewrite them as

F(x) = S(x)∇I(x), Rd×d ∋ S(x)⊤ = −S(x),

where I : Rd → R is known to be a first integral of F . Discrete gradient methods
are all implicit. They are based on the notion of discrete gradient, which we
now define.

Definition 1 (Discrete gradient). Let I : Rd → R be a scalar valued con-
tinuously differentiable function. A discrete gradient of I is a function ∇I :
Rd × Rd → Rd such that
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1. limy→x ∇I(x,y) = ∇I(x), for all x ∈ Rd,

2. ∇I(x,y)⊤(y − x) = I(y)− I(x) for all x,y ∈ Rd.

We now provide three examples of discrete gradients:

1. Average Vector Field (AVF) :

∇I(x,y) :=

∫ 1

0

∇I ((1− s)x+ sy) ds,

2. Gonzalez:

∇I(x,y) := ∇I

(
x+ y

2

)
+

I(y)− I(x)− (y − x)⊤∇I
(
x+y
2

)
∥y − x∥2

(y − x),

3. Itoh-Abe:

∇I(x,y) :=


I(y1,x2,...,xd)−I(x)

y1−x1
I(y1,y2,x3,...,xd)−I(y1,x2,x3,...,xd)

y2−x2

...
I(y)−I(y1,...,yd−1,xd)

yd−xd

 .

We now prove that the AVF provides a discrete gradient, and we leave the proof
for the others as an exercise. First, let us notice that

I(y)− I(x) =

∫ 1

0

d

ds
I((1− s)x+ sy)ds

=

∫ 1

0

∇I((1− s)x+ sy)⊤(y − x)ds = ∇I(x,y)⊤(y − x)

as desired. Furthermore,

lim
y→x

∇I(x,y) =

∫ 1

0

lim
y→x

∇I((1− s)x+ sy)ds = ∇I(x).

Once we choose a discrete gradient ∇I, we can define the associated discrete
gradient method

xn+1 = xn + hS(xn,xn+1)∇I(xn,xn+1), (5)

where S : Rd ×Rd → Rd×d is such that S(x,x) = S(x) and for every x,y ∈ Rd,
one has S(x,y)⊤ = −S(x,y).

Proposition 2. The scheme in (5) conserves the first integral I : Rd → R of
F : Rd → Rd.
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Proof. To proof follows by direct calculation. First, by one of the properties of
discrete gradients we see that

I(xn+1)− I(xn) = ∇I(xn,xn+1)
⊤(xn+1 − xn).

Replacing the expression for xn+1 − xn defined by (5), we can see that

I(xn+1)− I(xn)

h
= ∇I(xn,xn+1)

⊤S(xn,xn+1)∇I(xn,xn+1) = 0

by the skew-symmetry of S(xn,xn+1).

An interesting remark is that in case of polynomial first integrals, the AVF
method is appealing since polynomial integrals can be exactly computed by
quadratures. Furthermore, even when we have not so smooth situations, we
could rely on the Itoh-Abe approach, since this does not need gradient informa-
tion at all! This is a choice used in non-smooth optimisation, since the proposed
methodology can also be extended to dissipative systems of the form

ẋ(t) = −∇V (x(t))

for example. For this class of equations, (5) is slightly changed to

xn+1 = xn − h∇V (xn,xn+1),

since instead of conserving the function V : Rd → R we want to dissipate V .
This is desirable in case we are interested in minimising V . Indeed, we see that

V (xn+1)− V (xn) = ∇V (xn,xn+1)
⊤(xn+1 − xn) = −h

∥∥∇V (xn,xn+1)
∥∥2
2
≤ 0.
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