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Introduction

The theory of integrability was born with Newtonian mechanics and developed
rapidly and broadly. It finds its roots in Classical Mechanics, but it extends
even to Quantum Mechanics. Mathematicians and physicists started being in-
terested in finding differential equations with an explicit solution. After some
initial result, as the explicit integration of Kepler’s problem, they recognized the
difficulty of solving non-trivial systems of differential equations. A key point in
this realization was when, in 1841, Liouville discovered that the Riccati Equa-
tion can not be integrated by quadratures. From there on, the focus has shifted
to finding conditions that guarantee the integrability by quadratures of systems
of ODEs. The main approach was to explore theories and methods to determine
if a dynamical system defined by a vector field X admits:

• first integrals (or integrals of motion), i.e. functions whose Lie derivative
along X vanishes: LXf = 0, and/or

• dynamical symmetries (or symmetry fields), i.e. vector fields whose Lie
derivative along X vanishes: LXY = 0.

Two of the first classical results in this field involve these two invariants of the
dynamics separately. Precisely, consider a smooth n−dimensional manifold M
and a vector field X ∈ X(M). The first mentioned result ensures that if X
admits (n − 1) functionally independent first integrals f1, ..., fn−1 : M → R,
then it is integrable by quadratures. Moreover, it is important to recall even
the approach of Lie to integrability, fully based on dynamical symmetries. In-
deed, he discovered that when X admits (n−1) linearly independent dynamical
symmetries which pairwise commute, then it is integrable.

Starting from these initial results, the theory of integrability developed in vari-
ous directions, with the introduction of more general approaches to the problem.
We will present some of them in the following chapters. The research in the
field of integrability began mainly in the area of Hamiltonian dynamics, with
the classical Liouville-Arnold(-Mineur) Theorem. Then, it has expanded to dy-
namical systems defined on manifolds with a less rich geometric structure than
the Poisson or symplectic structure typical of Hamiltonian systems (i.e. non-
Hamiltonian).

In the Thesis, we follow the historical development of the research area and
we start investigating the two main integrability theorems for Hamiltonian sys-
tems: Liouville-Arnold Theorem ([5]) and noncommutative integrability Theo-
rem ([14] Nekhoroshev, [7] Mishchenko and Fomenko), analyzing the proof of
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the latter. In the proof, we follow a geometrical approach, working hence with
symplectic geometry, with the isotropic fibration in invariant tori and the prop-
erties of bifibrations.

The analysis then extends in the Chapters 3, 4 and 5 to non-Hamiltonian dy-
namical systems. By “non-Hamiltonian” we do not mean that the results we are
going to present do not apply to Hamiltonian systems, but just that they are not
based on the properties of Hamiltonian vector fields. We precisely investigate
the relation between two integrability results: Bogoyavlensky’s integrability and
Euler-Jacobi Theorem. The former ensures the fibration of the phase space in
invariant tori and the possibility of conjugating the dynamics to a quasi-periodic
flow on each fiber. On the other hand, Euler-Jacobi Theorem requires a time
reparametrization before this conjugation and it is limited to the case in which
the dynamics admits n − 2 functionally independent first integrals, where n is
the dimension of the manifold where the dynamics is defined. The key moti-
vation behind the relevance of this second Theorem is that it ensures a sort of
integrability notion for some mechanical systems which are not integrable in the
sense of Bogoyavlensky.

We even prove these two Theorems. In particular, we give a complete proof
of Euler-Jacobi Theorem (in Chapter 4) which is not easy to be found.

Proceeding in the analysis of non-Hamiltonian systems, we have been trying to
answer to the following question: is there any sufficient condition for a system
which is integrable in the sense of Euler-Jacobi to be even B-integrable? Chapter
5 is devoted to the analysis of this question and, in particular, here we recover
three sufficient conditions which allow us to answer positively to the question
above. Indeed, we focus on the case where the phase space M is a 2−torus and
X is a smooth non-vanishing vector field on M that is integrable à la Euler-
Jacobi. Two of the three conditions mentioned above, allow to recover a linearly
independent dynamical symmetry of X:

1. If there exists an α ∈ Λ1(M) with LXα = 0, then X admits a dynamical
symmetry Y . Moreover, if α satisfies some additional property, we will
prove that X is Bogoyavlensky’s integrable too,

2. If on M there is a closed curve γ such that all the orbits of X start-
ing there come back to it all at the same time, then the system is even
Bogoyavlensky’s integrable.

This generalization of the results presented for Hamiltonian systems (in Chapter
2), opens the doors to an even broader point of view on the theory of integra-
bility. Indeed, the main tool we use to prove the integrability Theorems is
to define a suitable change of coordinates which conjugates the dynamics to a
quasi-periodic flow on the invariant level sets. Through the Thesis, we build
this system of coordinates in the various settings, and we call them Liouville-
coordinates in the case of non-Hamiltonian systems and action-angle variables
in the more specific case of Hamiltonian systems.

Moreover, at the end of Chapter 3 we highlight a more conceptual approach
to the problem of integrability. Indeed, we analyze again the proof of Bogoy-
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avlensky’s Theorem but, this time, in the light of torus actions. This section
opens many interesting questions, one of these is: is there some torus action gen-
erating the fibration in 2−tori appearing in Euler-Jacobi Theorem? We have
just started working on this question which hence falls inside the “further work
ideas”.

To conclude this introduction, we briefly summarize the organization of the
chapters of the Thesis as follows:

• Chapter 1: In the first Chapter we introduce the basic geometrical con-
cepts which will be used in the following chapters.

• Chapter 2: This Chapter is dedicated to the description of the dynamical
and geometrical properties of integrable and superintegrable Hamiltonian
systems.

• Chapter 3: In the third Chapter we focus on Bogoyavlensky’s Theorem.
We state it, prove it, see an example and conclude focusing on torus
actions.

• Chapter 4: This Chapter focuses on Euler-Jacobi Theorem. Precisely,
here the aim is to give a detailed proof of the Theorem.

• Chapter 5: The last Chapter is fully devoted to the investigation of the
relations between Bogoyavlensky’s integrability and Euler-Jacobi theorem.
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Chapter 1

Geometrical tools

1.1 Symplectic vector spaces

Systems of differential equations arising from classical mechanics and physics
in general, have usually a phase space with a very rich geometrical structure.
An important tool to describe these spaces (mainly in the case of Hamiltonian
systems) is symplectic geometry.

Definition 1 (Symplectic vector space). A symplectic vector space is a pair
(E,Ω) where E is a vector space and Ω : E × E → R is a non-degenerate
skew-symmetric bilinear map.

Non-degeneracy means dim{w ∈ E : Ω(v, w) = 0 ∀v ∈ E} = 0. Given a pair
of symplectic vector spaces (E1,Ω1) and (E2,Ω2), a map ϕ : E1 → E2 is a
symplectomorphism if it is an isomorphism preserving the symplectic structure,
i.e. ϕ∗Ω2 = Ω1.

Key example: The basic example of a symplectic vector space is (R2n,Ωc)
where, given the basis {e1, ..., en, f1, ..., fn},

• Ωc(ei, ej) = Ω(fi, fj) = 0, ∀i, j = 1, ..., n,

• Ωc(ei, fj) = δij , ∀i, j = 1, ..., n.

This example suggests us to introduce the symplectic matrix J and to give an
equivalent characterization of the symplectic 2−form Ωc. Let

J =

[
0 In
−In 0

]
,

then for any given pair of vectors v, w ∈ R2n, Ωc(v, w) = vT Jw.

Definition 2 (Symplectic complement). Let (E,Ω) be a symplectic vector space
and F ⊂ E one of its subspaces. The symplectic complement of F with respect
to Ω is defined as

FΩ = {w ∈ E : Ω(v, w) = 0∀v ∈ F}.
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Sometimes we will call it the symplectic orthogonal of F .

Proposition 1. Given a symplectic vector space (E,Ω) and a subspace F ⊂ E,
then the two following results hold:

• dimE = dimF + dimFΩ.

• (FΩ)Ω = F

Proof. Define the inclusion map I : F → E and consider the pull-back

I∗ : E∗ → F ∗.

Recall that ϕ ∈ E∗ is a linear and continuous function ϕ : E → R, so the way
I∗ acts on ϕ is restricting it to F , namely I∗ϕ = ϕ|F : F → R is a linear and
continuous map. Consider now the contraction map i·Ω : E → E∗ such that
ivΩ = Ω(v, ·) : E → R, which by non-degeneracy of Ω is an isomorphism. This
gives that the map ψ = I∗◦i·Ω : E → F ∗ is composition of an isomorphism with
a surjective map, so it is surjective. Recalling that dimF ∗ = dimF , follows the
first result:

dimE = dimKer ψ + dim Imψ = dimKer ψ + dimF.

The last remark to be done is that the kernel of ψ reads:

Ker ψ = {v ∈ E : ivΩ(w) = 0∀w ∈ F} = FΩ.

To prove the second fact in the Proposition it is enough to check (FΩ)Ω ⊂ F
since the other inclusion is trivial or to show they have the same dimension. We
follow this second approach, relying on the first result we have just proven.

dimF + dimFΩ = dimE,

dimFΩ + dim (FΩ)Ω = dimE, which when subtracted gives:

dimF − dim (FΩ)Ω = 0.

Definition 3 (Classification of subspaces). Let (E,Ω) be a symplectic vector
space and F ⊂ E one of its subspaces.

• F is isotropic if Ω vanishes on it, namely if F ⊂ FΩ.

• F is co-isotropic if FΩ ⊂ F (i.e. if FΩ is isotropic).

• F is Lagrangian if both isotropic and co-isotropic, i.e. F = FΩ.

• F is symplectic if F ∩ FΩ = {0} (so E = F ⊕ FΩ).

A key property of symplectic vector spaces (and even manifolds as we will see
later) is that they are even-dimensional. This result is a direct consequence of
the following proposition.

Proposition 2 (Existence of a Lagrangian subspace). Any symplectic vector
space (E,Ω) admits a Lagrangian subspace.
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Proof. First of all let’s notice that all symplectic vector spaces have at least
the isotropic subspace F = {0}. Let L ⊂ E be a maximal isotropic subspace.
Namely, it is not strictly contained in any larger isotropic subspace. We now
check that this is a Lagrangian subspace. Suppose by contradiction LΩ 6= L,
which means L ⊂ LΩ since it is at least isotropic. This means there exists
v ∈ LΩ \ L. L̄ = L⊕ 〈v〉 is still an isotropic subspace of E by bilinearity of the
symplectic form and it strictly contains L. This is a contradiction since L was
supposed to be maximal.

This proposition has an immediate basic corollary.

Corollary 1. Every symplectic vector space (E,Ω) is even-dimensional.

Proof. Let F ⊂ E be one of the Lagrangian subspaces of E. Then

dimE = dimF + dimFΩ = dimF + dimF = 2dimF

is even.

Definition 4 (Symplectic basis). Consider a symplectic vector space (E,Ω).
The basis {e1, ..., en, f1, ..., fn} is symplectic if it gives the following representa-
tion of the symplectic form:

Ω(v, w) = vT Jw.

By Gram–Schmidt procedure, this basis can be constructed for any symplectic
vector space.

Proposition 3. Every symplectic vector space (E,Ω) of dimension 2n is sym-
plectomorphic to (R2n,Ωc).

This implies that all symplectic vector spaces with the same dimension are
symplectomorphic.

Proof. Let {e1, ..., en, f1, ..., fn} be the canonical basis of (R2n,Ωc) and consider
a symplectic basis {x1, ..., xn, y1, ..., yn} for (E,Ω). We can define the map
ϕ : R2n → E acting on the basis as follows:

ei → xi,

fi → yi.

This map is a diffeomorphism. Let’s check it preserves the symplectic structure:

(ϕ∗Ω)(v, w) = Ω(ϕ(v), ϕ(w)) = Ω
( n∑
i=1

vixi +

n∑
i=1

vn+iyi,

n∑
j=1

wjxj +

n∑
j=1

wn+jyj

)
=

=

n∑
i,j=1

viwn+jΩ(xi, yj) +

n∑
i,j=1

vn+iwjΩ(yi, xj) =

=

n∑
i,j=1

viwn+jΩc(ei, fj) +

n∑
i,j=1

vn+iwjΩc(fi, ej) = Ωc(v, w), ∀v, w ∈ R2n.
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1.2 Symplectic manifolds

Definition 5 (Symplectic manifold). A pair (M,Ω) is a symplectic manifold if
M is a smooth manifold and Ω ∈ Λ2(M) is a non-degenerate and closed 2-form.

Non-degenerancy of Ω means precisely that for any x ∈ M the pair (TxM,Ωx)
is a symplectic vector space. Since dimM = dimTxM, then every symplectic
manifold is even-dimensional.

Theorem 1 (Darboux). Let (M,Ω) be a symplectic manifold. For every point
m ∈M there exists a chart (U, x1, ..., xn, y1, ..., yn) at m such that

Ω|U =

n∑
i=1

dxi ∧ dyi.

These coordinates will be called Darboux coordinates. This Theorem can be
reinforced into the so-called Carathéodory-Jacobi-Lie Theorem.

Theorem 2 (Carathéodory-Jacobi-Lie). Let (M,Ω) be a symplectic manifold
of dimension 2n. Suppose in a neighbourhood of a point m ∈ M there exists
a family of k-differentiable functions (k ≤ n) pairwise in involution F1, ..., Fk,
with linearly independent differentials. Then they can be completed to a system
of Darboux coordinates in a neighbourhood U ⊂ M of m. Namely, there exist
2n− k functions {T1, ..., Tk, P1, ..., Pn−k, Q1, ..., Qn−k} such that

Ω|U =

k∑
i=1

dFi ∧ dTi +

n−k∑
j=1

dPj ∧ dQj .

The proof of this Theorem can be seen for example in [10]. Symplectic manifolds
emerge naturally from classical mechanics and in particular from Hamiltonian
dynamics. Let’s define a basic symplectic manifold: the phase space.

The phase space and Hamiltonian vector fields

Let Q be a smooth manifold, which can be seen as the configuration manifold
of a mechanical system. We denote with T ∗Q its cotangent bundle and with
π : T ∗Q → Q the canonical projection. T ∗Q is a manifold and it is called the
phase space of the system. This manifold is naturally endowed with a symplec-
tic structure. We can define on it a canonical symplectic two form starting from
the so called tautological one form θ ∈ Λ1(T ∗Q). Let n be the dimension of
Q and consider a point q = (q1, ..., qn) ∈ Q. A point in the 2n−dimensional
manifold T ∗Q is of the form (q, p) = (q1, ..., qn, p1, ..., pn).

In local coordinates the tautological one form can be written as

θ =

n∑
i=1

pidq
i.

It can be equivalently characterized with a coordinate free approach as follows:

• Let π : M = T ∗Q→ Q, π(q, p) = q be the canonical projection map.
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• Let m = (q, p) ∈ M be a point of the cotangent bundle. If its base point
is q = π(m), then p is a linear mapping p : TqQ→ R.

• The pull-back of the canonical projection at q is the linear map

π∗ : T ∗qQ→ T ∗mM.

• We define the tautological one form at m = (q, p) as the differential form
θ ∈ Λ1(M) such that θm = π∗p and hence

θm(Y ) = p(π∗Y ), ∀Y ∈ TmM,

where π∗ : TmM → TqQ is the push-forward of π at m.

This one form naturally generates a symplectic form on T ∗Q, which in local
coordinates reads:

Ω = −dθ =

n∑
i=1

dqi ∧ dpi.

This is the canonical symplectic form of the phase space. The fact that it is a
symplectic form can be seen by checking that the representative matrix of this
skew-symmetric mapping is exactly the symplectic matrix. Indeed,

• Ω(∂qj , ∂pk) =
∑n
i=1 dpi(∂pk)dqi(∂qj ) = δjk,

• Ω(∂qj , ∂qk) = Ω(∂pj , ∂pk) = 0.

Symplectic manifolds can be seen as the generalization of the phase space and
the construction done above explains the strong relation between classical me-
chanics, dynamical systems and symplectic geometry.

Definition 6 (Hamiltonian vector field). Given a symplectic manifold (M,Ω)
and a smooth function H : M → R, the Hamiltonian vector field of H is defined
by

iXH
Ω = −dH,

where iXH
: Ω2(M)→ Ω1(M) is the contraction map along the vector field XH .

Due to the presence of invariant differential forms, we will often apply Cartan’s
magic formula, so let’s introduce it and prove it here for two types of differential
forms.

Proposition 4 (Cartan’s formula). Given a smooth manifold M and a vector
field X ∈ X(M), then the following identity holds

LXα = diXα+ iXdα (1.1)

for every k−form α on M .

Proposition 5. If equation (1.1) holds for 1−forms, then it holds even for
closed 2− forms.
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Proof. All the elements involved in the identity (1.1) are considered locally, so
we can suppose the closed 2−form Ω to be exact, since it is true at least locally.
Let Ω = dα for some α ∈ Λ1(M). Since dΩ = 0, identity (1.1) in this case
reduces to

LXΩ = diXΩ.

We conclude the proof with the following direct computation

LXΩ = LXdα = dLXα = d
(
diXα+ iXdα

)
= d(iX(dα)) = diXΩ.

Proposition 6. Cartan’s formula holds for 1−forms.

Proof. Considering a local coordinate chart (U, x1, ..., xn), we can express the
1−form α as:

α =

n∑
i=1

fidx
i ∈ Λ1(M), with f1, ..., fn ∈ C∞(M).

By linearity of all the involved operators, we can reduce the proof to the form
fdx1. In this local chart the field along which we are contracting takes the form
X =

∑n
k=1X

k∂xk
. By direct computations we have

LX(fdx1) = LX(f)dx1 + fLX(dx1) = X(f)dx1 + fdLX(x1) =

= X(f)dx1 + fd(X(x1)) = df(X)dx1 + fdX1,

diX(fdx1) = d(fdx1(X)) = d(fX1) = X1df + fdX1,

iX(d(fdx1)) = iX(df ∧ dx1) = df(X)dx1 − dx1(X)df =

= df(X)dx1 −X1df,

which allows to conclude explicitly summing these terms as in Cartan’s formula.

As a natural consequence of Cartan’s magic formula, we see that the symplectic
form is invariant for a Hamiltonian vector field:

LXH
Ω = diXH

Ω + iXH
dΩ = −d2H = 0.

Moreover, the Hamiltonian H is a first integral of XH :

LXH
(H) = dH(XH) = Ω(XH , XH) = 0,

where we have concluded by the skew-symmetry of Ω.

To prove noncommutative integrability, we will use various concepts of differen-
tial geometry, so first of all we need to define them here.

Definition 7 (Lagrangian, isotropic, co-isotropic submanifolds). Let (M,Ω)
be a symplectic manifold and N ⊂ M be a submanifold. N is said to be La-
grangian (resp. isotropic, co-isotropic) if for any n ∈ N the tangent space TnN
is Lagrangian (resp. isotropic, co-isotropic), where its symplectic orthogonal is
defined as

(TnN)Ω = {w ∈ TnM : Ω(v, w) = 0∀v ∈ TnN}.
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Another basic concept we will use is the one of tangent distribution.

Definition 8 ((Tangent) distribution). Let M be a smooth n−dimensional
manifold. A tangent distribution D of constant rank k, with 0 ≤ k ≤ n, is a
collection of k−dimensional tangent spaces defined as follows:

D =
⋃
x∈M

Vx

where for any x ∈M the vector space Vx ⊂ TxM has dimension k.

Similarly to what happens with integral curves of vector fields (which are 1−rank
distributions), for a k−dimensional distribution D it is reasonable to ask if there
is a k−dimensional submanifold N ⊂ M whose tangent spaces are pointwise
coinciding with the elements Dx = Vx of D.

Theorem 3 (Frobenius). A distribution D on the manifold M is (completely)
integrable if and only if it is closed with respect to the Lie bracket, namely

∀X,Y ∈ D, [X,Y ] ∈ D.

This condition guaranteeing the integrability of the distribution is called involu-
tivity. We will not prove this Theorem here since it is out of our purposes, but
a proof of it can be found in [6]. Let’s present an example of a non-integrable
distribution.
Consider the two vector fields X = ∂x, Y = x∂z +∂y on M = R3 and define the
rank-2 distribution D = span{X,Y }.

[X,Y ] = ∂z 6∈ D,

so we conclude by Frobenius Theorem that it is not integrable. This means there
is no 2−dimensional submanifold N ⊂M to which D is pointwise tangent. We
will see that integrability of tangent distributions is related to integrability of
dynamical systems.

Let (M,Ω) be a symplectic manifold and F a foliation of M . The foliation is said
to be Lagrangian (resp. isotropic, co-isotropic) if all its leaves are Lagrangian
(resp. isotropic, co-isotropic) submanifolds. Moreover, given a foliation F we
can define its polar F⊥, if it exists, as the foliation whose leaves have as tan-
gent spaces the symplectic orthogonal of the tangent spaces to the leaves of F ,
namely:

∀N leaf of F⊥∀x ∈ N, TxN = (TxS)Ω

where S is the leaf of the foliation F where x lives. If the polar does exist, then
(F ,F⊥) is called a dual-pair or a bifoliation. Moreover, when F is isotropic
(resp. co-isotropic, Lagrangian) then the polar F⊥, if it exists, is co-isotropic
(resp. isotropic, Lagrangian). We define dimension of a foliation to be the
dimension of its leaves and in case F is isotropic and dimM = 2n, then follows
dimF ≤ n, while if it is co-isotropic then dimF ≥ n. Suppose that the dual
pair (F ,F⊥) is well defined and that each of these two foliations are defined by
a submersion π1 : M → B1 and π2 : M → B2 which are fibrations, then such
a pair is even called bifibration. Given a foliation F , we can denote with F the
k−dimensional distribution composed by the collection of tangent spaces to the
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leaves of F . We can define the distribution F⊥ which associates to any point
x ∈ M the symplectic orthogonal to the respective element in F : Fx. Hence
the existence of the polar F⊥ is equivalent to the integrability of the orthogonal
distribution F⊥.

Definition 9 (First integral of a foliation). A first integral f of a foliation F
is a function which is constant on its leaves. If the foliation is defined by the
submersion π : M → B, then the first integrals are the lifts via π of all the
functions defined on B:

f̃ = f ◦ π : M → R.

This definition is coherent with the classical definition of first integrals of a
vector field. Indeed, let X ∈ X(M) and f : M → R a first integral of X, i.e.
LXf = 0. Then the function f is constant on the orbits of X which are leaves
of the foliation defined by X on M .

Proposition 7 (Characterization of first integrals). A function f is a first
integral of a foliation F if and only if its Hamiltonian vector field lives in F⊥.

Proof. A first integral is a function which is constant on the leaves of the folia-
tion, so these leaves are contained in the level sets of f . Moreover we know that
for any Y ∈ X(M), LY f = df(Y ) = Ω(Y,Xf ). By definition, being constant on
each leaf means that the function f does not vary along any vector field Y ∈ F ,
which is hence equivalent to say

∀Y ∈ F,Ω(Xf , Y ) = 0, i.e. Xf ∈ F⊥

Proposition 8. Let (M,Ω) be a symplectic manifold and f, g ∈ C∞(M). Then

[Xf , Xg] = X{f,g}.

Proof. The proof can be done with the following direct computation for any
h ∈ C∞(M):

[Xf , Xg](h) = Xf (Xg(h))−Xg(Xf (h)) = {f, {g, h}} − {g, {f, h}} =

= {h, {g, f}} = −{{g, f}, h} = {{f, g}, h} = X{f,g}(h).
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As an immediate consequence, denoted with XHam(M) the vector space of
Hamiltonian vector fields on M , then:

[XHam(M),XHam(M)] ⊂ XHam(M).

Proposition 9 (Existence of a polar). Let F be a foliation of a symplectic
manifold (M,Ω). Then F admits a polar if and only if the Poisson bracket of
every two first integrals of F is again a first integral.

Proof. The polar does exist if and only if the distribution F⊥ is integrable, i.e.
by Frobenius Theorem it is closed with respect to the Lie Bracket.

Step 1: Let’s assume that F admits a polar F⊥. This means that F⊥ is an
integrable distribution. Hence for any pair of first integrals f, g ∈ C∞(M) we
have [Xf , Xg] ∈ F⊥. This allows us to conclude, since

[Xf , Xg] = X{f,g} ∈ F⊥

means that {f, g} is a first integral too.

Step 2: Let’s now assume for any pair of first integrals f, g ∈ C∞(M), {f, g}
is again a first integral. To show that F⊥ is completely integrable and hence
F⊥ does exist, we rely again on Frobenius Theorem. By assumption, we know
that [Xf , Xg] = X{f,g} ∈ F⊥. We conclude by noticing that the distribution
has local bases made by the Hamiltonian vector fields of first integrals of F and
the result follows by bilinearity of the Lie bracket.

Indeed, any point m ∈M has a neighbourhood U where there are

c = 2n− dim(F)

functions f1, ..., fc which have everywhere independent differentials and are first
integrals of F . For instance, it is enough to take these local coordinates to
be transversal to the leaf where m lives. Xf1 , ..., Xfc belong to F⊥ and being
linearly independent they form a local basis.

Assuming the existence of the polar F⊥ of F , the following two corollaries hold.

Corollary 2. The leaves of F are generated by the flows of the Hamiltonian
vector fields of the first integrals of F⊥.

Corollary 3. A function is a first integral of F if and only if it is in involution
with every first integral of F⊥.

1.3 Poisson Manifolds

Definition 10 (Poisson manifold). A Poisson manifold is a pair (M, {·, ·})
where M is a manifold and {·, ·} is called a Poisson bracket. The map

{·, ·} : C∞(M)× C∞(M)→ C∞(M) :

• is bilinear and skew-symmetric,
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• satisfies Leibniz’s rule, namely

{fg, h} = f{g, h}+ {f, h}g ∀f, g, h ∈ C∞(M),

• satisfies Jacobi’s identity:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0, ∀f, g, h ∈ C∞(M).

The notion of Hamiltonian vector field is well defined even on a Poisson manifold.
The Hamiltonian vector field Xh of h ∈ C∞(M) reads

Xh(f) = {h, f}, ∀f ∈ C∞(M).

This implies that a function f ∈ C∞(M) is a first integral of Xh if and only if
h and f are in involution, i.e. {h, f} = 0.

Definition 11 (Poisson mapping). A smooth map ϕ : M1 → M2 between two
Poisson manifolds (M1, {·, ·}1) and (M2, {·, ·}2) is called a Poisson mapping if it
preserves the Poisson structure, namely

{f, g}2 ◦ ϕ = {f ◦ ϕ, g ◦ ϕ}1, ∀f, g ∈ C∞(M2).

Just to clarify, this means ϕ∗{f, g}2 = {ϕ∗f, ϕ∗g}1. A Poisson manifold is
naturally foliated into leaves which have a symplectic structure and are called
symplectic leaves. In order to present this symplectic structure, for every x ∈M
we can define the subspace Sx ⊂ TxM

Sx = {v ∈ TxM : Xf (x) = v for some f ∈ C∞(M)}.

The collection of all the subspaces Sx, x ∈M , is a completely integrable distri-
bution and so it defines a foliation F of M , whose leaves are its integral man-
ifolds. Moreover, these leaves are endowed with a symplectic structure which
is naturally defined as Ω(v, w) := {f, g}, where f, g ∈ C∞(M) are the unique
functions such that Xf (x) = v and Xg(x) = w. The simplest case of Poisson
manifold is the one of a connected symplectic manifold, in this case we have a
single symplectic leaf covering the whole manifold.

An alternative way to define a Poisson manifold is as a pair (M,Π) where M is a
smooth n−dimensional manifold and Π is a bi-vector field satisfying the relation
[Π,Π]ST = 0 (where this is the Schouten bracket). This bi-vector field is called
Poisson structure for the manifold M . For any pair of functions f, g ∈ C∞(M)
we can set

{f, g} = (df ∧ dg)(Π).

For any pair U = X1 ∧ Y1 and V = X2 ∧ Y2 of bi-vector fields on M ,

[U, V ]ST = [U,X2 ∧ Y2]ST = [U,X2]ST ∧ Y2 + (−1)(2−1)1X2 ∧ [U, Y2]ST =

= X2 ∧ [Y2, X1 ∧ Y1]ST − [X2, X1 ∧ Y1]ST ∧ Y2 = X2 ∧X1 ∧ [Y2, Y1] + ...

...+X2 ∧ [Y2, X1] ∧ Y1 −X1 ∧ [X2, Y1] ∧ Y2 − [X2, X1] ∧ Y1 ∧ Y2.

These computations follow from the fact that the Schouten bracket of two vec-
tor fields coincides with their Jacobi-Lie bracket and, when it is computed be-
tween a bi-vector field and a vector field, it is skew-symmetric. Consider a
2n−dimensional smooth manifold M locally coordinatized by

{x1, ..., xn, y1, ..., yn}.
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The standard Poisson structure in this chart reads:

Πs =

n∑
i=1

∂

∂xi
∧ ∂

∂yi
.

The Poisson bracket generated by this structure is the classical one:

{f, g} = (df ∧ dg)
( n∑
i=1

∂

∂xi
∧ ∂

∂yi

)
=

n∑
i=1

(df ∧ dg)
( ∂

∂xi
∧ ∂

∂yi

)
=

=

n∑
i=1

∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi
.

Given a smooth function h ∈ C∞(M), its Hamiltonian vector field with respect
to the Poisson structure Π is defined as

Xh := i−dhΠ.

This definition is compatible with the classical definition of Hamiltonian vector
fields when we consider the standard structure Πs:

i−dhΠs =

n∑
i=1

( ∂

∂xi
∧ ∂

∂yi

)
(−dh) =

n∑
i=1

∂

∂xi
(−dh)

∂

∂yi
− ∂

∂yi
(−dh)

∂

∂xi
=

=

n∑
i=1

− ∂h
∂xi

∂

∂yi
+
∂h

∂yi

∂

∂xi
= Xh.

Definition 12 (Casimir). Given a Poisson manifold (M, {·, ·}), a Casimir for
M is a function f ∈ C∞(M), which is in involution with all other functions, i.e.
{f, g} = 0 for all g ∈ C∞(M). Equivalently, f is constant along the flow of any
Hamiltonian vector field.

For connected symplectic manifolds, Casimirs are constant functions. Indeed,
XC = 0 implies dC = 0 and hence they are constant. When the Poisson struc-
ture is degenerate, for example if we consider the following Poisson structure on
R4

Π =
∂

∂x
∧ ∂

∂y
,

then there are non-constant Casimir functions. In this case for example the
function f(x, y, z, t) = z is a Casimir, since i−dzΠ = 0, and it is not constant.

Proposition 10. Let (M,Ω) be a symplectic manifold and π : M → B a
surjective submersion with connected level sets. Denote with F the foliation of
M whose leaves are the fibers of π. F has a polar foliation F⊥ if and only if
there exists a Poisson structure on B compatible to the one of M , i.e. π becomes
a Poisson mapping.

Proof. Assume there is a polar F⊥. Given an open subset U ⊂ B and a pair of
functions f, g ∈ C∞(U), then their lift via π are first integrals of F in π−1(U).
By the closure of the set of first integrals with respect to the Poisson bracket,
even {f ◦ π, g ◦ π}M is a first integral. Moreover, since the level sets of π are
connected, there exists a function Pf,g defined in U such that

{f ◦ π, g ◦ π}M = Pf,g ◦ π,
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which means that this Poisson bracket just depends on the fiber of π. So we
can just set {f, g}B := Pf,g.

Conversely, assume there exists a compatible Poisson structure {·, ·}B on B.
Since any first integral of F is the lift to M via π of a function f ∈ C∞(B),
then the Poisson bracket of every two first integrals of F is still a first integral,
which implies that F admits a polar. In fact

{f ◦ π, g ◦ π}M = {f, g}B ◦ π

is a first integral. This implies that the set of first integrals of F is closed with
respect to the Poisson structure of M and hence F⊥ does exist.

Proposition 11. Consider the same setting of the previous Proposition. As-
suming the polar F⊥ does exist, then the following conditions are equivalent:

1. The leaves of F are isotropic,

2. The number of independent local Casimirs of B coincides with the dimen-
sion of the level sets of π,

3. The leaves of F are generated by the Hamiltonian vector fields of the lifts
to M of the Casimirs of B,

4. The first integrals of F⊥ are exactly the lifts to M of the Casimirs of B.

Proof. We see that (3) and (4) are just a restatement of the same condition since
the Hamiltonian vector fields of the first integrals of F⊥ generate the leaves of
F . Moreover, these 2 conditions are a restatement even of (2). Indeed, since the
Casimirs are functionally independent, so are their lifts. Hence their number
coincides with the dimension of the leaves of F if and only if they are generated
by the Hamiltonian vector fields of these lifts.

It now remains to prove that (1) and (2) are equivalent. The number nx of
independent Casimirs of B at π(x) coincides with the number of independent
first integrals at x both of F and F⊥. The Hamiltonian vector fields of these
functions are both tangent to the leaves of F and F⊥, then

nx = dim(Fx ∩ F⊥x ).

But dim(Fx ∩ F⊥x ) ≤ dim(Fx), which implies that nx = dim(Fx) if and only if
dim(Fx) = dim(Fx ∩ F⊥x ), i.e. F is isotropic.

Before going on, let’s remark that condition (2) gives important information
about the rank of the Poisson structure induced on the base manifold B. Indeed,
the dimension of the leaves of F coincides with dimM − dimB. On the other
hand, the rank of the Poisson structure at π(x), with x ∈ M , is equal to
dimB − nx, where nx is the number of independent Casimirs of B at π(x).
In particular, the Poisson structure is non-degenerate if and only if it just has
constant functions as Casimirs. We conclude noticing that nx coincides with
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the dimension of the level sets of π; hence follows that the rank of the induced
Poisson structure on B is

dimB − (dimM − dimB) = 2dimB − dimM.

Proposition 12. Let (M,Ω) be a symplectic manifold, π1 : M → B a surjective
submersion whose level sets are connected and isotropic. Let F be the foliation
with leaves coinciding with the fibers of π1. Suppose it has a polar F⊥ with
leaves coinciding with the connected components of the level sets of the surjective
submersion π2 : M → A. Both A and B are manifolds. Then there exists a
unique surjective submersion π3 : B → A such that π3 ◦ π1 = π2. Moreover, the
symplectic leaves of B are the connected components of the level sets of π3.

Proof. The foliation F is isotropic, so the leaves of F⊥ are co-isotropic subman-
ifolds. Moreover, we know that these leaves contain the leaves of the foliation F
by construction, hence they are a disjoint union of level sets of π1. This implies
that a map of the form π3 : B → A is well defined. π3 is a surjective submersion
since both π1 and π2 have these properties.

To show the second part of the statement, we start noticing that the dimension
of the symplectic leaves coincides with the one of the level sets of π3. Indeed,
the one of the symplectic leaves is equal to the rank of the Poisson structure on
B, precisely it coincides with 2 dimB − dimM . Moreover, the dimension of A
is equal to the one of the leaves of F and hence dimA = dimM − dimB. This
implies that

dimπ−1
3 ({c}) = dimB−dimA = dimB−(dimM−dimB) = 2 dimB−dimM.

Moreover, the tangent spaces to the leaves and to the connected components of
the level sets of π3 coincide (it can be seen by lifting a system of local coordinates
from A to B), so we can conclude the desired result.
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Chapter 2

Superintegrability of
Hamiltonian systems

In this Chapter we analyze two classical results in the field of integrability of
vector fields. They are Liouville-Arnold Theorem and Mishchenko and Fomenko
Theorem for superintegrable systems. We will consider Hamiltonian vector fields
defined on a symplectic manifold (M,Ω).

2.1 Completely integrable systems

The notion of complete integrability is related to the Liouville-Arnold Theorem.

Definition 13 (Regular level set). Consider a manifold M and a submersion
F = (f1, ..., fk) : M → Rk. A level set N = {m ∈ M : F (m) = f̄} is said to be
regular if

df1 ∧ ... ∧ dfk 6= 0 on N.

Theorem 4 (Liouville-Arnold). Consider a 2n−dimensional symplectic man-
ifold (M,Ω) and a Hamiltonian vector field XH of Hamiltonian function H ∈
C∞(M). Let

F = (f1, ..., fn) : M → Rn

be a submersion whose components are functionally independent first integrals of
XH (i.e. {H, fi} = 0 for any i = 1, ..., k) which are pairwise in involution. We
additionally assume that the level sets of F are regular, compact and connected.
Then each level set is diffeomorphic to a n−dimensional torus Tn. Furthermore,
for each level set N = {F = f̄} there exists a tubular neighbourhood U(N)
endowed with a system of Darboux coordinates (a1, ..., an, α1, ..., αn), with ai =
ai(F ) for any i = 1, ..., n. Precisely, U(N) ' F × Tn with F ⊆ Rn an open
neighbourhood of f̄ and the vector field XH restricted to U(N) reads:

X|U(N) =

n∑
i=1

ωi(a1, ..., an)
∂

∂αi
, where ωi : F → R are differentiable functions.

This result is not explicitly proven here, but the proof can be found in [1] or
[5]. Indeed, we can see this Theorem as a particular case of a noncommutative
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integrability Theorem for Hamiltonian vector fields, which will be proven in the
remaining part of the Chapter.

An immediate consequence of Liouville-Arnold Theorem is that Hamiltonian
dynamical systems with a 2−dimensional phase space are completely integrable,
while when the dimension is 4, it is enough to have a single first integral f
functionally independent from the Hamiltonian function H. Precisely, since

0 = LXH
f = XH(f) = {H, f},

the involutivity comes for free due to the Hamiltonian nature of the fieldXH . We
now analyze the case of two uncoupled harmonic oscillators. This example allows
to recover the differences between the description of the dynamics provided by
Liouville-Arnold Theorem and the noncommutative approach to integrability.

2.1.1 Two uncoupled oscillators

Let

H = ω1
p2

1 + q2
1

2
+ ω2

p2
2 + q2

2

2
= h1(q1, p1) + h2(q2, p2)

be the Hamiltonian of a system defined on the phase space M = R4 \ {0 ∈ R4}
endowed with the standard symplectic form Ω = dp1 ∧ dq1 + dp2 ∧ dq2. Here
(ω1, ω2) ∈ R2 are the frequencies of two oscillators. Two cases are possible, the
resonant and non-resonant one:

• when ω1/ω2 ∈ Q the oscillators are resonant,

• while if ω1/ω2 6∈ Q, they are non-resonant.

In the first case we will see that there are more than 2 first integrals and the
system is superintegrable. The functions h̄1(q1, q2, p1, p2) := h1(q1, p1) and
h̄2(q1, q2, p1, p2) := h2(q2, p2), are first integrals in involution. Indeed,

LXH
h̄1 =


ω1p1

ω2p2

−ω1q1

−ω2q2

 ·

ω1q1

0
ω1p1

0

 = 0

and similarly for h̄2. Moreover,

0 = {H, h̄1} = {h̄1 + h̄2, h̄1} = {h̄2, h̄1},

so the two first integrals are in involution. This implies that all the regular
invariant level sets

{m ∈M : (h̄1 × h̄2)(m) = c ∈ R>0 ×R>0} = {h̄1 = c1} × {h̄2 = c2} ' S1 × S1

are diffeomorphic to T2. We can consider the two functions τ1 and τ2 such that:

Xh̄i
=

∂

∂τi
, i = 1, 2.

With respect to (h̄1, τ1, h̄2, τ2) the vector field XH reads:

XH =
∂

∂τ1
+

∂

∂τ2
.
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Indeed, these functions are not well-defined coordinates, since there is not a
unique representation of all the points of M . Indeed, for all τi ∈ {ti + 2π/ωiZ}
we get the same point on the phase space M . Therefore, we project on the
quotient space

π : (h̄1, τ1, h̄2, τ2)→ (h̄1, τ1 mod (2π/ω1), h̄2, τ2 mod (2π/ω2)).

This projection allows to coordinatize properly the phase space M as

ϕ : R+ × R+ × S1
2π/ω1

× S1
2π/ω2

→M,ϕ(a1, a2, α1, α2) = (q1, p1, q2, p2)

=
(√2a1

ω1
sin (ω1α1),

√
2a1

ω1
cos (ω1α1),

√
2a2

ω2
sin (ω2α2),

√
2a2

ω2
cos (ω2α2)

)
,

which is a global diffeomorphism. This is not a symplectic diffeomorphism just
because of a scalar coefficient. To get a symplectomorphism and hence the so
called action-angle variables, we just compose the map π with the diffeomor-
phism

p : R+ × R+ × S1
2π × S1

2π → R+ × R+ × S1
2π/ω1

× S1
2π/ω2

p(a1, a2, α1, α2) = (a1/ω1, α1ω1, a2/ω2, α2ω2).

Now we can conclude defining the global diffeomorphism C := ϕ◦p which reads:

C(b1, b2, β1, β2) = (q1, p1, q2, p2) =

= (
√

2b1 sin (β1),
√

2b1 cos (β1),
√

2b2 sin (β2),
√

2b2 cos (β2)).

This is a symplectomorphism with respect to the form Ω = dp1∧dq1 +dp2∧dq2

on M and Ω̄ = db1 ∧ dβ1 + db2 ∧ dβ2 on the other space. Hence these are
action-angle variables for the system and with respect to these coordinates the
dynamics is conjugated to the one given by the Hamiltonian vector field of
h := C∗H = ω1b1 + ω2b2:

Xh = ω1
∂

∂β1
+ ω2

∂

∂β2
.

2.2 Noncommutative integrability: statement and
first example

A considerably important number of Hamiltonian systems on symplectic man-
ifolds have more integrals of motion than n = 1

2dimM . This gives rise to
a richer description of the dynamics, based on the theory of noncommutative
integrability.

Theorem 5 (Noncommutative integrability). Let (M,Ω) be a 2n−dimensional
symplectic manifold and H ∈ C∞(M) a smooth Hamiltonian function on M .
Assume that there exist (2n− k) ≥ n functionally independent first integrals of
XH defining a submersion

F = (F1, ..., F2n−k) : M → R2n−k

with compact and connected fibers. Moreover, suppose that there exist functions
Pij : F (M)→ R such that
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• rank(P (F (x))) = 2n− 2k, ∀x ∈M,

• {Fi, Fj} = Pij ◦ F, i, j = 1, ..., 2n− k.

Then any level set N of F is invariant, diffeomorphic to Tk and it admits a
tubular neighbourhood U(N) which has a locally trivial fibration U(N) ' Tk×B
structure, with B ⊆ R2n−k. Furthermore, any invariant level set of F restricted
to this tubular neighbourhood corresponds to a point in B and, coordinatizing B
with

(x1, ..., xn−k, y1, ..., yn−k, a1, ..., ak),

the restriction of Ω to U(N) reads

Ω|U(N) =

n−k∑
i=1

dxi ∧ dyi +

k∑
j=1

daj ∧ dαj . (2.1)

The restriction of the vector field XH to U(N) in this coordinate system reads

XH

∣∣∣
U(N)

=

k∑
i=1

ωi(a1, ..., ak)
∂

∂αi
.

The coordinates which allow to write Ω as in (2.1), are called generalized action-
angle variables. Let’s notice that completely integrable systems are a particular
case of noncommutative integrability. Indeed, when k = n and the Poisson
structure degenerates to Pij = 0 for any i, j, then the hypotheses of Liouville-
Arnold Theorem are satisfied. We now analyze again the example of two reso-
nant uncoupled harmonic oscillators, but, this time, in the light of this integra-
bility result.

2.2.1 Superintegrability of two uncoupled resonant oscil-
lators

Consider the Hamiltonian function

H(q1, q2, p1, p2) = ω1
q2
1 + p2

1

2
+ ω2

q2
2 + p2

2

2
= h1(q1, p1) + h2(q2, p2),

where ω1/ω2 ∈ Q because in this case, due to the previous analysis we have
a periodic flow on the torus, so there is a finer geometric structure then the
fibration in 2−tori. Without loss of generality, we assume ω1 = ω2 = 1. Let’s
verify that the system admits 3 first integrals

XH(F1) = LXH
(q1q2 + p1p2) =


q2

q1

p2

p1

 ·

p1

p2

−q1

−q2

 = p1q2 + q1p2 − q1p2 − q2p1 = 0,

XH(F2) = LXH
(p1q2−p2q1) =


−p2

p1

q2

−q1

·

p1

p2

−q1

−q2

 = −p1p2 +p1p2−q1q2 +q1q2 = 0,
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XH(F3) = LXH

(q2
1 + p2

1 − q2
2 − p2

2

2

)
=


q1

−q2

p1

−p2

 ·

p1

p2

−q1

−q2

 = 0.

These three first integrals define a surjective submersion with compact fibers and
we now verify that they satisfy the other assumptions of the noncommutative
integrability Theorem. Computing their Poisson brackets we have

{F1, F2} = {q1q2 + p1p2, p1q2 − p2q1} = q2
2 − q2

1 − (−p2
2 + p2

1) = −2F3,

{F1, F3} =
1

2
{q1q2 + p1p2, p

2
1 + q2

1 − q2
2 − p2

2} = q2p1 + p1q2 − q1p2 − q1p2 = 2F2

{F2, F3} =
1

2
{p1q2 − p2q1, p

2
1 + q2

1 − p2
2 − q2

2} = −p2p1 − p1p2 − (q2q1 + q1q2) = −2F1,

{F1, F1} = {F2, F2} = {F3, F3} = 0.

So they can be arranged in the matrix of the Poisson brackets P (the Poisson
tensor of the system) which reads:

P =

 0 −2F3 2F2

2F3 0 −2F1

−2F2 2F1 0

 = 2F̂ ,

where F = [F1, F2, F3]T . This is the hat matrix of 2F so Pv = 2F × v for any
v ∈ R3. This means in particular that P is constant on the level sets of F , as
required in the noncommutative integrability Theorem. Moreover, since it is a
skew-symmetric matrix, then it has necessarily even-rank, so rank P = 2. The
configuration manifold in this case has dimension n = 2, the matrix has rank
2 = 4 − 2k, which implies that we should have k = 1. The fact that we have
3 = 2n− k independent first integrals hence guarantees that the hypotheses of
noncommutative integrability Theorem hold. We can now define two fibrations
of the phase space M = R4\{0 ∈ R4}. The first one is given by the Hamiltonian:

H : M → A,

where A is the action space of the system. In this case the action space is
A = R>0 and the fibers of H are 3−dimensional spheres S3 since we have

H(q1, p1, q2, p2) =
1

2
(q2

1 + p2
1 + q2

2 + p2
2) = a ∈ R>0,

so H−1(a) ' S3. On the other hand, we have the fibration given by the three
functionally independent first integrals F = (F1, F2, F3) : M → B = R3. The
regular level sets of F are diffeomorphic to 1−dimensional tori (S1) thanks
to noncommutative integrability Theorem. Moreover, being connected and of
dimension 1, they coincide with the orbits which are hence periodic. The key
point now is to project via the fibration F each level set of H onto B. The base
space B is coordinatized by F = (F1, F2, F3) and hence in correspondence of a
single level set of H, we get a 2−dimensional sphere. Indeed, on each level set,
{H = a ∈ R>0}, the modulus of the vector F = (F1, F2, F3) is constant since
F 2

1 +F 2
2 +F 2

3 = H2 = a2. These 2−dimensional spheres are the symplectic leaves
of the base space B since they coincide with the orbits of the action of R3 on the
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level sets of H generated by the Hamiltonian vector fields XF1
, XF2

, XF3
. To be

precise, it is not correct in general to say that the level sets of the Hamiltonian
admit a product structure, but what happens is that there is a fibration from
S3 to S2 with fibers coinciding with the orbits of the Hamiltonian vector field
XH , which are diffeomorphic to S1, i.e. S3 ' S1 × S2. This fibration is known
with the name of Hopf fibration. Let’s highlight that the analysis done in this
example follows the approach suggested by Proposition 12.

2.3 Proof of the Theorem

In this section, we prove noncommutative integrability Theorem. Instead of
working directly on Theorem 5, thanks to the properties of bifibrations we first
of all recover some equivalent results, proving then one of them.

Theorem 6. Consider a 2n-dimensional symplectic manifold (M,Ω) where is
defined a fibration F : M → B with compact, connected and isotropic fibers of
dimension k ≤ n. Call F the foliation whose leaves coincide with the fibers of
F . Assume the polar F⊥ of F does exist. Then

• the fibers of F are diffeomorphic to Tk,

• any fiber N of F has a tubular neighbourhood U(N) endowed with gener-
alized action-angle variables.

We now introduce (and then prove) a proposition which shows why Theorem 6
is equivalent to Theorem 5.
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Proposition 13. Let G : M → G(M) be a fibration with the same properties
of the one in Theorem 5 and call F the foliation whose leaves coincide with the
fibers of G. Then the fibers of G are isotropic and F admits a polar foliation
F⊥. Moreover, any fibration F defined as in Theorem 6 can be described in
a neighbourhood of each fiber by (2n − k) functions with the same properties
satisfied by the components of G.

Before proving this proposition, let’s highlight how it can help proving Theorem
5. Due to this proposition, we get that the fibration defined by the 2n−k func-
tionally independent first integrals of the vector field XH , is isotropic. Moreover,
the foliation F defined by the level sets of these first integrals admits a polar.
Therefore, Theorem 5 implies Theorem 6. Furthermore, every fibration defined
as in Theorem 6 can be written in the form of the Theorem 5. Hence, we even
get that Theorem 6 implies Theorem 5. The advantage of Theorem 6 is that
due to the global structure of its hypotheses we get a better description of the
geometrical situation and this is why we have introduced this equivalent result.
Let’s now prove proposition 13.

Proof. The first integrals of the foliation F coincide, up to a possible rescaling
or combination, with the components of the fibration G = (G1, ..., G2n−k). By
assumption we know

{Gi, Gj} = Pij ◦G, i, j = 1, ..., 2n− k.

Recalling that this foliation is defined by the submersion G and hence the lift
to M via G of any function g ∈ C∞(G(M)) is a first integral of F , we conclude
the family of first integrals of F is closed under the Poisson bracket. This is
equivalent to the existence of a polar F⊥. Since the polar does exist and the
leaves of F are isotropic submanifolds of M , follows:

rank P (G) = 2 dim(G(M))− dimM.

Here P = (Pij) is the Poisson tensor defined on G(M). This is true in our case
since by assumption rank P (G) = 2n− 2k and

2 dim(G(M))− dimM = 2(2n− k)− 2n = 2n− 2k.

We now move to the second part of the statement.

Consider a point u ∈ F (M). Define a diffeomorphism C : U → R2n−k where
U ⊂ B is a small-enough open neighbourhood of u. Set

G := C ◦ (F |F−1(U)) : F−1(U)→ R2n−k.

Since C is a diffeomorphism and F is a submersion, up to restricting the arrival
space, the map G is a surjective submersion. The level sets of G coincide with
the fibers of F by construction. Hence G defines a fibration on F−1(U) (a
neighbourhood of a fiber of F ). We can define the components of F as the
components of G:

G = (G1, ..., G2n−k) = (C1 ◦ F, ..., C2n−k ◦ F ).
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We conclude verifying these components satisfy the required properties. By
assumption, F admits a polar F⊥. Hence

{Gi, Gj} = {Ci ◦ π, Cj ◦ π} = {Ci, Cj} ◦ π.

Furthermore, the fibers of G are isotropic. This implies that the rank of the
Poisson tensor P (G) is the correct one.

We now conclude the chain of equivalent results with Theorem 7. Indeed, we
first prove this Theorem is equivalent to Theorem 6 (and hence even to Theorem
5) and then prove it.

Theorem 7. Consider a symplectic manifold (M,Ω) of dimension 2n. Assume
there are k ≤ n functionally independent functions which are pairwise in involu-
tion F1, ..., Fk : M → R (call F = (F1, ..., Fk)). Call D the tangent distribution
generated by the Hamiltonian vector fields XF1

, ..., XFk
and suppose the integral

manifolds of D are compact and the fibers of a fibration π. Then each connected
component N ⊂M of these integral manifolds is diffeomorphic to Tk and admits
a tubular neighbourhood U(N) where a set of generalized action-angle variables
(a, x, y, α) is well defined. Moreover,

• the integral manifolds coincide with the level sets of the map

(a, x, y) : U(N)→ R2n−k,

• the actions a1, ..., ak are functions of F1, ..., Fk.

This theorem is equivalent to Theorem 6. Precisely, the action of Rk defined
by the Hamiltonian vector fields XF1 , ..., XFk

defines a foliation F on M . The
leaves of F are isotropic submanifolds since a vector field tangent to these leaves
is of the form

Y =

k∑
i=1

giXFi
.

Indeed, for any Y, Z ∈ X(N), where N is a leaf of F , we have:

Ω(Y, Z) =

k∑
i,j=1

cijΩ(XFi , XFj ) =

k∑
i,j=1

cij{Fi, Fj} = 0.

Moreover, F admits a polar foliation and hence Theorem 6 follows from this
one. Furthermore, let’s assume there is a fibration π : M → B satisfying the
hypotheses of Theorem 6. Since the polar foliation F does exist and the fibers
of π are isotropic, follows that the leaves of F are generated by the Hamiltonian
vector fields of the lifts to M of the Casimirs of B. Let G1, ..., Gk : B → R be
the Casimirs of B. Since the existence of a polar for the foliation defined by π
is equivalent to the fact that π is a Poisson mapping between (M, {·, ·}M ) and
(B, {·, ·}B), follows that defining Hi = Gi ◦ π for any i = 1, ..., k:

{Hi, Hj}M = {Gi ◦ π,Gj ◦ π}M = {Gi, Gj}B ◦ π = 0.

Hence there exist k functionally independent functions H1, ..,Hk : M → R in
involution. Moreover, the integral manifolds of the distribution generated by the
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lifted Casimirs coincide exactly with the k−dimensional fibers of π, so all the
hypotheses of this last theorem hold. Follows that even the second implication
is proven and the two theorems in analysis are indeed equivalent. We now prove
Theorem 7.

Proof. All the connected components of the fibers of π are k−dimensional
tori since they all have k independent, tangent and commuting vector fields:
XF1 , ..., XFk

(see Proposition 21). Indeed, they commute since [XFi , XFj ] =
X{Fi,Fj} = 0. Consider a point m ∈ M and call N ⊂ M the connected com-
ponent of the fiber of π where m lives. By Theorem 2 we can complete the set
{F1, .., Fk} to a Darboux system of coordinates in a neighbourhood P ⊂M . In
this system of coordinates the symplectic form Ω reads

Ω|P =

k∑
i=1

dFi ∧ dTi +

n−k∑
j=1

dXj ∧ dYj .

We define

• T := T (P ) ⊂ Rk and

• F := (F ×X × Y )(P ) ⊂ R2n−k,

where T = T1 × ... × Tk, X = X1 × ... × Xn−k and same for Y . We then
coordinatize the whole space P via the inverse map

C := (F ×X × Y × T )−1 : F × T → P.

In the remaining part of the proof we will denote with (F,X, Y, T ) the coordi-
nates on P , while with (f, x, y, t) the associated ones in F × T . Precisely:

f := C∗F, x := C∗X, y := C∗Y, t := C∗T.

The Hamiltonian vector fields of the Fis are translations along the Tis, namely
XFi

= ∂/∂Ti. This implies that each fiber of π with non-trivial intersection with
P can be coordinatized by the Tis and it can be written as (F ×X×Y )−1(c) for
some c ∈ R2n−k. Precisely, F ×X × Y : P → F is a surjective submersion with
compact fibers, hence by Ehresmann’s Theorem it is a locally-trivial fibration.
Namely, if (F ×X × Y )(N) = c for a certain torus N ⊂M , then there exists a
small-enough open neighbourhood B ⊂ F of c such that

U(N) = (F ×X × Y )−1(B) ' N × U ' Tk × U,

where U(N) is a tubular neighbourhood of N . With an abuse of notation,
we keep calling F the open set of R2n−k defining the tubular neighbourhood
introduced above. We now define the section

σ : F → P, σ(b) := C(b, 0)

and assume P to be small enough so that each invariant torus, with non-trivial
intersection with P , intersects σ(F) in exactly one point (this can be done due
to the locally-trivial fibration introduced above). σ(F) ⊂ M is an embedded
submanifold of M of dimension 2n−k. The XFis define an action of Rk on each
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Figure 2.1: Visual description of the involved maps

torus N . We call it Φ. Thanks to this action, we can coordinatize the tubular
neighbourhood U(N) of N as follows:

C(b, τ) := Φ(τ, σ(b)).

Assume σ(b̄) = C(b̄, 0) = m.

Proposition 14. The map C : F × T →M is a local diffeomorphism and it is
symplectic with respect to the standard symplectic form

Ωs =

k∑
i=1

dfi ∧ dti +

n−k∑
j=1

dxj ∧ dyj .

Proof. To show that it is a local diffeomorphism, we verify that the columns of
the Jacobian matrix JC of C are linearly independent in a neighbourhood of m.
We then conclude by inverse function theorem. We have already seen that

∂C
∂ti

(b̄, 0) =
∂Φ

∂ti
(0, σ(b̄)) = XFi(Φ(0, σ(b̄)) = XFi(C(b̄, 0)) = XFi(m).

Taking then the derivative with respect to the other variables and evaluating
them at (b̄, 0) we get

∂σ

∂f1
(b̄), ...,

∂σ

∂fk
(b̄),

∂σ

∂x1
(b̄), ...,

∂σ

∂xn−k
(b̄),

∂σ

∂y1
(b̄), ...,

∂σ

∂yn−k
(b̄).

Since σ is transversal to N = (F ×X × Y )−1(b̄), we conclude that they are all
linearly independent vectors and hence C is a local diffeomorphism. We now
need to check that the map C : F × T → P is symplectic. This amounts to
prove that C∗(Ω|P ) = Ωs.

Ω|P =

k∑
i=1

dFi ∧ dTi +

n−k∑
j=1

dXj ∧ dYj
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implies:

C∗Ω|P =

k∑
i=1

d(C∗Fi) ∧ d(C∗Ti) +

n−k∑
j=1

d(C∗Xj) ∧ d(C∗Yj) =

=

k∑
i=1

d(Fi ◦ C) ∧ d(Ti ◦ C) +

n−k∑
j=1

d(Xj ◦ C) ∧ d(Yj ◦ C) =

=

k∑
i=1

dfi ∧ dti +

n−k∑
j=1

dxj ∧ dyj = Ωs.

We can restrict C to A× B ⊂ F × T in such a way that

C : A× B → C(A× B) = U(N)

is a diffeomorphism. What remains to do at this point is to transform (f, x, y, t)
into (a, x, y, α̂) via a symplectomorphism on A× Rk and hence define the gen-
eralized action-angle variables. On each invariant torus

(F ×X × Y )−1(b),

all the points have the same period lattice and matrix with respect to the action
given by the XFis (because of what we will prove in Proposition 21). We call
them respectively Gb and L(b).

Proposition 15. Consider a pair of points m = C(b1, τ1) and n = C(b2, τ2) in
U(N). Then Gb1 = Gb2 when F (m) = F (n).

Proof. In this proof we need two group actions. One consists in (R2n−k,+)
acting on M and is defined as

θ : R2n−k × U(N)→ U(N),

θs := Φ
XF1
s1 ◦ ... ◦ Φ

XFk
sk ◦ Φ

XX1
sk+1 ◦ ... ◦ Φ

XXn−k
sn ◦ Φ

XY1
sn+1 ◦ ... ◦ Φ

XYn−k
s2n−k .

The second action is the usual one of Rk over U(N):

Φτ := Φ
XF1
τ1 ◦ ... ◦ Φ

XFk
τn .

XFi
= ∂/∂Ti commutes with all the other Hamiltonian vector fields of the type

XFj
, XXh

and XYl
. This implies that:

Φτ ◦ θs = θs ◦ Φτ , ∀τ ∈ Rk, ∀s ∈ R2n−k.

Let’s recall that τ̄ ∈ Gb1 if and only if Φτ̄ (m) = m. This implies that

Φτ̄ (θt(m)) = θs(Φτ̄ (m)) = θs(m).

Hence if n = θs(m), then Gb1 = Gb2 . Now what remains to verify is that
θs(m) = n for some s ∈ R2n−k if and only if F (m) = F (n).

XFj =
∂

∂Tj
, XXh

=
∂

∂Yh
, XYl

= − ∂

∂Xl
,
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so the action θ leaves unchanged the first k components, those associated to the
coordinates F1, ..., Fk. This means that it is possible to have θt(m) = n if and
only if F (m) = F (n), since on these level sets the action of θ is transitive.

We can hence denote the period lattice and matrix with Gf and L(f) respec-
tively. Recall that the period matrix has the following entries

Lij(f) = uj(f) · ei,

where {uj(f)}kj=1 is the basis of the period lattice. Now we uniform the period

lattices of all the fibers F−1(f) intersecting U(N). To do so, we introduce the
angular coordinate α̂ = L−1(f) t, similarly to what we will do to prove Bogoy-
avlensky’s Theorem. Moreover, to complete the symplectic diffeomorphism ψ
defining the generalized action-angle variables, remains to find an action func-
tion a = a(f) in such a way that

Ωs =

k∑
i=1

dfi ∧ dti = ψ∗Ω =

k∑
i=1

dai(f) ∧ dα̂i.

To get an explicit condition which guarantees the validity of this expression, we
compute

dai ∧ dα̂i =

k∑
j=1

∂ai(f)

∂fj
dfj ∧ dα̂i.

Moreover, ti =
∑k
j=1 Lij(f)α̂j , so

dfi ∧ dτi = dfi ∧ d
( k∑
j=1

Lij(f)α̂j

)

= dfi ∧
[( k∑

j,h=1

∂Lij(f)

∂fh
α̂jdfh

)
+
( k∑
j=1

Lij(f)dα̂j

)]
=

=
[( k∑

j,h=1

∂Lij(f)

∂fh
α̂jdfi ∧ dfh

)
+
( k∑
j=1

Lij(f)dfi ∧ dα̂j
)]
.

This implies necessarily

∂Lij(f)

∂fh
α̂j −

∂Lhj(f)

∂fi
α̂j = 0 ∀i, j, h = 1, ..., k, (2.2)

Lji(f) =
∂ai(f)

∂fj
∀i, j = 1, ..., k. (2.3)

The condition (2.2) can be seen as the closure condition of the 1−form

βj =

k∑
i=1

Lij(f)dfi,

and when it holds, (2.3) can be integrated locally and hence we can find the
action functions ai = ai(f) up to restricting the domain A.
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Proposition 16. The period matrix satisfies the symmetry property in Equation
(2.2) if and only if the section σ : A → P is co-isotropic.

Proof. The action Φ generated by the Hamiltonian vector fields XF1 , ..., XFk
is

not free and, supposing m ∈ F−1(f), for any ν ∈ Zk we have m = Φ(L(f)ν,m).
Hence the inverse images under C of the submanifold σ(A) are defined by the
submanifolds of A× Rk given by

Σν : (f, x, y)→ (f, x, y, L(f)ν), ν ∈ Zk,

since all the times L(f)ν map σ(f, x, y) to the same point of the Liouville torus
(F × X × Y )−1(f, x, y). This construction is helpful since we have previously
proven that C is symplectic and hence it sends co-isotropic submanifolds into co-
isotropic submanifolds. Therefore, we check what has to happen to have that,
for at least a ν ∈ Zk, Σν(A) is co-isotropic. This is equivalent to prove that for
any (f, x, y, t) ∈ Σν(A), (T(f,x,y,t)Σν(A))Ω is isotropic for this particular ν ∈ Zk.
The dimension of Σν(A) is (2n− k). We consider

Xj =
∂

∂xj
, Yj =

∂

∂yj
, Wi =

∂

∂fi
+

k∑
r,s=1

∂Lrs
∂fi

νs
∂

∂tr
, i = 1, ..., k, j = 1, ..., n− k

where
k∑

r,s=1

∂Lrs
∂fi

νs
∂

∂tr
=

k∑
r=1

∂

∂fi

( k∑
s=1

Lrsνs

) ∂

∂tr

is a linear combination of independent vector fields with coefficients given by the
i−th column of the Jacobian matrix of L(f)ν. Since L is an isomorphism, all
the Wis are independent as desired. Hence a vector V belongs to the symplectic
complement of this space if and only if it is of the form

V =

k∑
i=1

λiWi,

noticing that necessarily the components along the Xjs and Yjs vanish. This
means that (T(f,x,y,t)Σν(A))Ω is isotropic if and only if Ω(Wi,Wj) = 0 for any
i, j = 1, .., k.

• dfh(Wi) = δih,

• dth(Wi) =
∑k
s=1

∂Lhs

∂fi
νs.

This implies that:

(dfh ∧ dth)(Wi,Wj) = δih

k∑
s=1

∂Lhs
∂fi

νs − δjh
k∑
s=1

∂Lhs
∂fj

νs

Hence we conclude

Ω(Wi,Wj) =

k∑
h=1

(dfh ∧ dth)(Wi,Wj) =

k∑
s=1

(∂Lis
∂fi

− ∂Ljs
∂fj

)
νs = 0

if and only if the condition (2.2) holds (indeed, take ν with all the components
different from zero).
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The section σ : A → U(N) is co-isotropic since the tangent space to σ(A) is
generated by the vector fields

∂

∂F1
, ...,

∂

∂Fk
,
∂

∂X1
, ...,

∂

∂Xn−k
,
∂

∂Y1
, ...,

∂

∂Yn−k
.

Indeed, the tangent space of the symplectic complement of σ(A) is generated
by

∂

∂F1
, ...,

∂

∂Fk
,

and Ω vanishes on this space. We therefore get that σ(A) is co-isotropic as
desired. So we are now ready to conclude the proof, since we have just built a
symplectic diffeomorphism

ψ : A× Rk → U × Rk, (f, x, y, t)→ (a, x, y, α)

up to restricting A to a small enough open subset. Projecting with the diffeo-
morphism

p : U × Rk → U × Tk, (a, x, y, α)→ (a, x, y, α mod 1)

we get the desired diffeomorphism between U(N) and U × Tk, i.e. the locally
trivial fibration of the tubular neighbourhood of N :

U(N)
F×X×Y×T−−−−−−−−→

'
A× B ψ−→

'
U × Rk p−→

'
U × Tk,

where U(N) = C(A× B).
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Chapter 3

Bogoyavlensky’s
integrability Theorem

In this Chapter, we present Bogoyavlensky’s integrability Theorem for non-
Hamiltonian dynamical systems. It gives the standard definition of integrability
of a vector field X ∈ X(M) defined on a smooth n−dimensional manifold M .
This Theorem relies on the existence of n tensor invariants which are either
symmetry fields or integrals of motion. For this reason, before moving to the
statement and proof of the Theorem, we now properly define the notion of
dynamical symmetry (i.e. symmetry field) and of (Lie) group action.

3.1 Dynamical symmetries and group actions

Let M be a smooth n−dimensional manifold. We can define the Lie-algebra of
vector fields (X(M), [·, ·]) where

[X,Y ] = XY − Y X

is the (Jacobi-)Lie bracket, namely it is a map [·, ·] : X(M) × X(M) → X(M)
with the following properties:

1. it is bilinear and skew-symmetric,

2. it satisfies Jacobi’s identity, i.e.

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0, ∀X,Y, Z ∈ X(M).

We say that two vector fields X,Y ∈ X(M) commute if their Jacobi-Lie bracket
vanishes, i.e. [X,Y ] = 0. The Jacobi-Lie bracket has even a dynamical inter-
pretation since

[X,Y ] = LXY.
For this reason, we say that if X and Y commute then Y is a dynamical sym-
metry for X (and vice versa).

Proposition 17 (Characterization of commuting fields). Let X,Y ∈ X(M),
where M is a n−dimensional smooth manifold. They commute if and only if

ΦXt ◦ ΦYs = ΦYs ◦ ΦXt ∀t, s
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which make the computation reasonable, where ΦXt ,Φ
Y
s : R ×M → M are the

flows of the two fields. This is equivalent to have

(ΦYs )∗X = X ∀s.

Proof. We start assuming (ΦYs )∗X = X. By definition,

0 =
d

ds
X =

d

ds
(ΦYs )∗X = (ΦYs )∗[X,Y ].

This implies [X,Y ] = 0 as expected since the push-forward is a linear map. Vice
versa, if we suppose [X,Y ] = 0, then

d

ds
(ΦYs )∗X = 0,

i.e. (ΦYs )∗X = (ΦY0 )∗X = X.

The flow of a vector field can be seen as the action of the additive group (R,+)
on the manifold M , which is a particular case of Lie group action. We recall the
pair (G, ·) is a Lie group if it is an algebraic group and G is a smooth manifold,
where · and the inversion map are compatible with the differentiable structure
of G, i.e.

• · : G×G→ G, (a, b)→ a · b,

• a→ (a)−1

are differentiable.

Definition 14 (Lie group action). Let M be a smooth manifold and (G, ·) be
a Lie group. The (left) action of the group G on M is a map

ϕ : G×M →M, ϕ(g,m) = ϕg(m)

such that:

1. ϕ(1G,m) = m ∀m ∈M ,

2. for any g ∈ G the map ϕg : M →M is a diffeomorphism and

3. ∀g, h ∈ G, ϕg ◦ ϕh(m) = ϕg·h(m).

Let ϕ be the action of (G, ·) on M .

• The orbit of m ∈M is Orb(m) = {ϕg(m) : g ∈ G} ⊆M .

• The isotropy subgroup of m ∈M is Gm = {g ∈ G : ϕg(m) = m}.

• ϕ is a free action if all the isotropy groups are trivial, i.e. ϕg(m) = m if
and only if g = 1G.

• It is a transitive action if ϕg is surjective for any g ∈M , i.e. for any pair
m,n ∈M , there exists g ∈ G such that ϕg(m) = n.

• It is a proper action if the map ψ : G×M →M×M, ψ(g,m) = (ϕg(m),m)
is proper.
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A Lie group G is said to be a symmetry-group for the vector field X ∈ X(M)
if the action ϕ : G × M → M commutes with the flow of X. Namely, if
Φ : R×M →M is the flow of X, then ϕg ◦ Φt = Φt ◦ ϕg for any t ∈ R, g ∈ G.

A group action ψ : G×M →M can be seen even as the flow of a single vector
field, called infinitesimal generator of the action. To define this vector field we
need to introduce some preliminary definition. A one-parameter subgroup of
G is a differentiable map σ : R → G which is even a homomorphism between
the groups (R,+) and (G, ·). The image of a one-parameter subgroup of G is a
differentiable curve in G. We can define the notion of Lie-algebra of the group
G and we will denote it with g. This Lie-algebra is defined by the tangent space
at the identity TeG endowed with the commutator

[ξ, η] := [Xξ, Xη](e) ∀ξ, η ∈ g.

Here on the right hand side we consider the Jacobi-Lie bracket and Xξ is called
the left extension of ξ ∈ g and is defined as

Xξ(g) := Teψg(ξ).

The one-parameter subgroup of G associated to ξ ∈ g can be now defined as
the integral curve σξ : R→ G of Xξ with σξ(0) = e, σ′ξ(0) = ξ. The basic map
which allows to associate g with G is the exponential map:

expG : g→ G, expG(ξ) := σξ(1).

This map allows to describe all the one-parameter subgroups in a simpler way
as

{exp(tξ) : t ∈ R} ⊂ G,

and hence the exponential map sends lines of g into differentiable curves of G.
We now define the infinitesimal generator of the Lie-group action

ψ : G×M →M, (g,m)→ ψg(m) := g ·m

associated to the element ξ ∈ g as the following vector field on M :

ξM (m) =
d

dt
(expG(tξ) ·m)

∣∣∣
t=0
∈ TmM.

Consider now X ∈ X(M) with flow Φ : R×M →M . The infinitesimal generator
of this group action coincides with the vector field X itself. Precisely, in this
case expR(tξ) = tξ for any t ∈ R = G, ξ ∈ g ' R and if we set ξ = 1

ξM (m) =
d

dt
Φ(expR(ξt),m)

∣∣∣
t=0

=
d

dt
Φ(ξt,m)

∣∣∣
t=0

= X(Φ(t,m))|t=0 = X(m).

Furthermore, any action of (R,+) can be seen as the flow of a vector field, which
is precisely its infinitesimal generator.

The reason why symmetry groups are important to analyze dynamical systems,
is because they allow to study a reduced version of the system, instead of the
original one. Indeed, consider a vector field X ∈ X(M) which is invariant
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under the group action ϕ : G ×M → M . We can define the projection map
π : M →M/G introducing the following equivalence relation on M :

m1,m2 ∈M,m1 ∼ m2 ⇐⇒ ϕ(g,m2) = m1

for some g ∈ G. M/G is called the orbit space and we endow it with the quotient
topology.

Proposition 18. Assume ϕ : G×M →M is a free and proper Lie-group action
with n = dimM ≥ k = dimG. Then M/G is a smooth manifold (thanks to
Quotient Manifold’s Theorem whose proof can be found in [6]). Furthermore,
the orbits of ϕ are k−dimensional submanifolds of M diffeomorphic to G and
π : M →M/G is a submersion, where dim (M/G) = n− k.

In general the push-forward of a vector field is not a vector field, but in this
setting with ϕ free and proper everything works fine. Indeed, we can define
X̃ = π∗X ∈ Γ(T (G/M)) the vector field on M/G such that

ΦX̃t ◦ π = π ◦ ΦXt , ∀t ∈ R.

The pair (M/G, X̃) is the reduced system and describes the dynamics of X
transversally to the orbits of ϕ. When we are able to compute the integral
curves of the reduced vector field X̃, we can then study the dynamics along the
orbits of ϕ via a reconstruction procedure. The reconstruction part consists in
computing the integral of a known function if we are able to explicitly find the
integral curves of the reduced vector field t → rt. Indeed, this second part is
important to describe the dynamics of X along the orbits of ϕ.

We will use mainly group actions of (R,+) or of (S1,+) on M . Such actions
can be seen as flows of their infinitesimal generators. For this reason, we will
always refer to flows of vector fields instead of group actions.

Proposition 19. Let M be a smooth manifold of dimension n and Y1, ..., Yk be
tangent, independent and commuting vector fields on M (1 ≤ k ≤ n), namely
[Yi, Yj ] = 0 ∀i, j = 1, ..., k. Then the map

Φ : Rk ×M →M, Φ(τ ,m) = ΦY1
τ1 ◦ ... ◦ ΦYk

τk
(m)

is a group action of (Rk,+) on M .

Proof. First of all Φ(0,m) = m. Then

Φ(τ + µ,m) = ΦY1
τ1+µ1

◦ ... ◦ ΦYk
τk+µk

(m) = ΦY1
τ1 ◦ ... ◦ ΦYk

τk
◦ ΦY1

µ1
◦ ... ◦ ΦYk

µk
(m)

since the vector fields commute and hence even their flows do. By definition,
this amounts to Φτ ◦Φµ(m) as desired. The fact that the map Φτ : M →M is
a diffeomorphism, comes because it is the composition of diffeomorphisms.

Proposition 20 (Action of S1). Consider a smooth n−dimensional manifold
M and a vector field Y ∈ X(M) with flow ΦY : R × M → M . If Y has
all periodic orbits with the same period T > 0, then it generates an action of
(S1
T ,+) over M defined as

ϕ : S1
T ×M →M, ϕ(t mod T,m) := ΦY (t,m) ∀t ∈ R.
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With S1
T we refer to R/(TZ).

Proof. The map ϕ is well defined by the periodicity of the flow of Y , namely

Φ(t+ kT,m) = Φ(t,m) = Φ(t+ kT mod T,m) for all k ∈ Z.

ϕ(0,m) = ΦY (0,m) = m since ΦY is a group action. Then for any pair s, t ∈ R
follows:

ϕ((t+ s) mod T,m) = ΦY (t+ s,m) = ΦY (t,ΦY (s,m)) =

= ΦY (t, ϕ(s mod T,m)) = ϕ(t mod T, ϕ(s mod T,m)).

ΦY is a diffeomorphism, so even ϕ has this property. This is enough to prove
that ϕ is an action of S1

T on M .

3.2 Statement of Bogoyavlensky’s Theorem

The standard notion of integrability for non-Hamiltonian vector fields is rather
recent and it is due to Bogoyavlensky [17]. We now state this Theorem and
then define a class of dynamical systems to be integrable thanks to this result.

Theorem 8 (Broad integrability). Let M be a smooth manifold of dimension
n and X ∈ X(M) a vector field. Let 0 < k ≤ n and

F = (f1, ..., fn−k) : M → Rn−k

be a submersion whose components are functionally independent integrals of
motion of X. Suppose its level sets N = {m ∈M : F (m) = f} are compact and
connected. Moreover, let Y1, ..., Yk ∈ X(M) be linearly independent dynamical
symmetries of X, which pairwise commute and preserve the first integrals of X,
i.e.

• LYiX = [Yi, X] = 0, i = 1, ..., k,

• [Yi, Yj ] = 0, i, j = 1, ..., k,

• LYifj = 0, for all i = 1, ..., k, j = 1, ..., n− k,

• Y1 ∧ ... ∧ Yk 6= 0 on N .

Then N is diffeomorphic to the k−dimensional torus Tk and X is conjugated
to a linear flow on it, namely we can write it as

ḟi = 0, i = 1, ..., n− k
α̇j = ωj , j = 1, ..., k, ωj ∈ R

where (α1, ..., αk) are angular coordinates on N . Moreover, each invariant torus
N admits a neighbourhood U(N) and a diffeomorphism

ϕ : U(N)→ F (U(N))× Tk, ϕ(m) = (f(m), α(m))

conjugating topologically the vector field X to the following system

ḟj = 0, j = 1, ..., n− k
α̇i = ωi(f), i = 1, ..., k

on U(N) where the ωi : F (U(N))→ R are differentiable functions.
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As a consequence of this Theorem, we call the n−tuple (Y1, ..., Yp, f1, ..., fq) an
integrable dynamical system of type (p, q), or a (p, q)−integrable system, defined
over the n−dimensional manifold M , if

• Yi ∈ X(M), ∀i = 1, ..., p,

• Y1 ∧ ... ∧ Yp 6= 0 and df1 ∧ ... ∧ dfq 6= 0,

• F = (f1, ..., fq) : M → Rq is a submersion,

• p+ q = n, 0 < p ≤ n, 0 ≤ q < n,

• [Yi, Yj ] = 0, ∀i, j = 1, ..., p,

• LYjfk = 0, ∀j = 1, ..., p, ∀k = 1, ..., q.

Hence, a given vector field X ∈ X(M) is integrable if it belongs to some n−tuple
as above. We will often refer to dynamical systems integrable in this sense as
B-integrable or broadly-integrable systems.

3.3 Example of B-integrable system

We report here an example of integrable system of type (2, 2). Consider the
vector field

X = px∂x + py∂y −
ypxpy
1 + y2

∂px − y∂py

defined on the phase space M = S1×R×R2. This system admits 2 independent
symmetry fields which are

X, Y = ∂x.

The coordinate x is cyclic and hence [X,Y ] = 0. Moreover, X has two integrals
of motion which are

• E = 1
2 [p2

x(1 + y2) + p2
y] + 1

2y
2,

• J = px
√

1 + y2.

Let’s verify that LXE = LXJ = 0 here:

LXE = y(p2
x + 1)py − px(1 + y2)

ypxpy
1 + y2

− ypy = 0,

LXJ =
pxy√
1 + y2

py −
√

1 + y2
ypxpy
1 + y2

= 0.

These two first integrals of X are preserved by Y since both E and J do not
depend on x. This means that the hypotheses of Bogoyavlensky’s Theorem hold
and hence this vector field is (2, 2)−integrable.
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3.4 Proof of Bogoyavlensky’s Theorem

In this section we prove the Theorem 8.

Proof. The map F is a submersion and, moreover, by Ehresmann’s Theorem
it defines a locally-trivial fibration. This implies that for any regular value
c ∈ Rn−k, F−1(c) is a k−dimensional invariant embedded submanifold N ⊂M .
By assumption, these fibers are compact and connected. Since the k independent
vector fields Y1, ..., Yk preserve the first integrals of X, i.e.

LYifj = 0, ∀i = 1, ..., k, ∀j = 1, .., n− k,

then they are all tangent to the fibers of F .

Proposition 21. Consider a smooth, compact and connected n−dimensional
manifold M . Suppose Y1, ..., Yn ∈ X(M) are n linearly independent and pairwise
commuting tangent vector fields. Then M is diffeomorphic to Tn.

Proof. We have
[Yi, Yj ] = 0, ∀i, j = 1, ..., n.

By Proposition 19, they define the following group action of (Rn,+):

Φ : Rn ×M →M, Φ(t,m) := ΦY1
t1 ◦ ... ◦ ΦYn

tn (m),

with t = (t1, ..., tn) ∈ Rn. We can now define the following map

ψm : Rn →M, ψm(t) := Φ(t,m), ∀m ∈M.

Lemma 1. For any m ∈M , the map ψm is a surjective local diffeomorphism.

Proof. To prove it is a local diffeomorphism, we write the Jacobian matrix of
ψm and check that it has full rank.

∂ψm
∂τ1

(τ) =
∂ΦY1

τ1

∂τ1
◦ ΦY2

τ2 ◦ ... ◦ ΦYn
τn (m) = Y1(ΦY1

τ1 ◦ ΦY2
τ2 ◦ ... ◦ ΦYn

τn (m)) =

= Y1(Φ(m, τ)).

Since all the fields pairwise commute, so do their flows. This implies

∂ψm
∂τi

(τ) = Yi(Φ(m, τ)) ∀i = 1, ..., n.

We get that the Jacobian matrix has all independent columns, and hence ψm is
a local diffeomorphism by inverse function theorem.

The manifoldM is connected, hence it is even path connected. Call α : [0, 1]→M
the smooth path connecting two points m = α(0) and m′ = α(1) of M . Proving
surjectivity is equivalent to proving the existence of a τ̄ such that ψm(τ̄ ) = m′.
For any point n ∈ α, where by α we are indicating the image of the curve, there
exists an open neighbourhood Nn such that ψn|Nn

is a diffeomorphism. This
collection of open sets is an open covering of the compact set represented by
the image of the curve α. By compactness, we can extract a finite set of points
{n1, ..., nk} such that {Nn1

, ..., Nnk
} cover α. Taking care that the adjacent
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neighbourhoods have non-trivial intersection, we can transition from ni to ni+1

thanks to some τ i ∈ Rn. We can now set τ = τ 1 + ...+ τ k and get

ψτ (m) = m′.

This implies that ψm is surjective for any m in M and, equivalently, that the
group action Φ is transitive.

Lemma 2. Each point m ∈M has the same isotropy group with respect to the
action Φ of (Rn,+) on M . Moreover, this group is discrete.

Proof. We have just proven that ψm is a local diffeomorphism, so in particular
it is injective in a neighbourhood of any point m ∈ M . This means that any
τ ∈ Gm is an isolated point, i.e. the isotropy group is discrete. Moreover, all
the isotropy subgroups coincide since the action Φ is transitive. Indeed, for any
pair of points m,n ∈M we have

n = Φ(t,m) = ψt(m) for some t ∈ Rn.

Hence, if τ ∈ Gm, then

Φ(τ , n) = ψτ ◦ ψt(m) = ψt ◦ ψτ (m) = ψt(m) = n

and τ ∈ Gn.

Another property of the isotropy group is that it is not trivial, otherwise the
map ψm would be injective for any m and this is impossible since M is compact
by assumption. As every discrete subgroup of Rn, Gm = G is a k−dimensional
lattice of Rn (1 < k ≤ n) and it can be written as

G = {τ =

k∑
i=1

νici : ci ∈ Z, νi ∈ Rn}.

The set of vectors {ν1, ...,νk} is called basis of the lattice. This is not unique
in general. Every k−dimensional lattice of Rn is isomorphic to the standard
lattice with basis e1, ..., ek, where the ei’s are the vectors of the canonical basis
of Rn. To see this fact, we can complete the basis {ν1, ...,νk} to a basis of Rn
adding (n− k) linearly independent vectors νk+1, ...,νn. We can then define a
coordinate transformation via the matrix L:

Lij = νj · ei.

Now, up to this change of coordinates, we can suppose G = {
∑k
i=1 ciei : ci ∈ Z}.

Let’s consider the quotient space Rn/G, where each pair of points x, y ∈ Rn with
x − y ∈ Zk × {0 ∈ Rn−k} belong to the same equivalence class. This implies
that Rn/G ' Tk × Rn−k.

The surjective map ψm : Rn →M induces the global diffeomorphism

ψ̂m : Rn/G ' Tk × Rn−k →M
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defined in such a way that ∀t ∈ Rn,

ψm(t) = ψ̂m([t]).

This can be done since ψm is constant on the fibers of π : Rn → Tk × Rn−k.
Indeed, if ψm(t) = ψm(τ ), then we get

ψm(t) = Φ(t,m) = Φ(τ ,m) = ψm(τ ), t, τ ∈ Rk,

which when set as the argument of Φ−t brings to

m = Φ(−t,Φ(τ ,m)) = Φ(τ − t,m),

which means t− τ ∈ G (i.e. [t] = [τ ]). ψ̂m is surjective since ψm is surjective.

To show injectivity, we need to show ψ̂m([x]) = ψ̂m([y]) if and only if x ∼ y.

This equality implies ψm(x) = ψm(y), and hence x − y ∈ G. So ψ̂m is an
isomorphism. To prove it is a global diffeomorphism, is enough to prove it is a
local diffeomorphism. Both π and ψm are local diffeomorphisms (precisely, the
first k components of π being a covering map of Tk can be turned into a map
with constant rank k endowing Rk with a natural differentiable structure, while
the remaining components are the identity map), so since ψm = ψ̂m ◦ π, we can
derive the desired result.

Since M is compact and compactness is preserved by diffeomorphisms, even
Rn/G is compact. From this follows n = k and we can conclude that M is
diffeomorphic to a n−dimensional torus.

This proposition implies that all the invariant fibers of F are diffeomorphic to
k−dimensional tori and the action Φt := ΦY1

t1 ◦ ...Φ
Yk
tk

generated by the symme-
tries of X is transitive. We now need to show that, on each invariant torus, the
dynamics can be conjugated to a linear flow. Consider the vector fields

Ȳi =

k∑
j=1

LjiYj .

The matrix L is invertible, so these new vector fields are independent and they
commute with X since they are a linear combination with constant coefficients
of the Yjs. Moreover, by bilinearity of the Jacobi-Lie bracket, they pairwise
commute:

[Ȳm, Ȳn] =

k∑
j,h=1

LjmLhn[Yj , Yh] = 0.

They preserve the first integrals of X, in fact

LȲm
fh = dfh

( k∑
j=1

LjmYj

)
=

k∑
j=1

Ljidfh(Yj) = 0, ∀h = 1, ..., n− k.

This means that they are k commuting vector fields tangent to the invariant
torus N . They hence define an action of Rk on it.
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Claim : These fields are the generators of the action Φ, when the period
lattice is expressed with respect to the canonical basis:

Φ̂(t,m) := Φ(Lt,m) = ΦȲ1
t1 ◦ ... ◦ ΦȲk

tk
(m).

Indeed, suppose that t ∈ G ∈ {
∑n
i=1 ciei : ci ∈ Z}, then we can apply the

change of coordinates L : Rk → Rk:

Φ̂t = ΦLt = Φ(L1jtj ,....,Lkjtj) =

= ΦY1

L1jtj
◦ ... ◦ ΦYk

Lkjtj
= Φ

∑k
j=1 tjL1jY1

1 ◦ ... ◦ Φ
∑k

j=1 tjLkjYk

1 =

= Φ
∑k

j=1 tj
∑k

i=1 LijYi

1 = Φ
∑k

j=1 tj Ȳj

1 = ΦȲ1
t1 ◦ ...Φ

Ȳk
tk
.

Let’s now show that all these fields have only periodic orbits with period 1. In
the canonical basis, the isotropy group G can be identified with Zk so

Φ(t,m) = Φ(τ ,m)

if and only if t− τ ∈ Zk. Consider

t = (t1, 0, ..., 0) and τ = (τ1, 0, ..., 0).

This implies t1 − τ1 ∈ Z, which means that all the orbits of all these vector
fields are 1−periodic. By Proposition 20, we get that Φ̂ is an action of Tk on
M . Moreover, the fields Ȳ1, ..., Ȳk form a basis of the tangent space to each
invariant torus N = {F = f ∈ Rn−k} ⊂M . Hence

X|N =

k∑
i=1

ωiȲi,

for some ωi : N → R, i = 1, ..., k. The ωis are constant on each invariant torus.
Indeed,

0 = [Ȳk, X] =

k∑
i=1

ωi(f , α1, ..., αk)[Ȳk, Ȳi] +

k∑
i=1

LȲk
(ωi)Ȳi =

k∑
i=1

LȲk
(ωi)Ȳi

and by linear independence of the Ȳis this implies ωi = ci ∈ R for any i = 1, ..., k.
From this follows the desired local result:

X|N =

k∑
i=1

ci
∂

∂αi
,

where we set Ȳi = ∂/∂αi since they are all 1−periodic so the coordinates describ-
ing the motion along their integral curves can be seen as angular coordinates.

We now need to show how to extend the construction done above to a tubular
neighbourhood of any invariant level set of the fibration F . Consider a point
m ∈M and a small enough open neighbourhood P ⊂M such that the map

C = (F, y) : P → Rn−k × Rk
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is a diffeomorphism onto its image. This map defines a coordinate system on
P and, up to considering a subset of P , we can suppose there is the product
structure: C(P ) = F × Y, where F (P ) = F and y(P ) = Y. Let (f̄ , ȳ) = C(m)
and consider the section σ : F → P defined as σ(f) := C−1(f, ȳ). σ(F) ⊂ M
is a (n− k)-dimensional embedded submanifold and it intersects in exactly one
point each level set of F with non-trivial intersection with P . To proceed, we
now consider the same action of Rk as before, but this time we extend it to
the whole set F−1(F). Recalling that for each f ∈ F we have an associated
invariant torus, we see that this action is defined on a collection of invariant
tori. The action reads

Φ : Rk × F−1(F)→ F−1(F), (τ , σ(f))→ Φ(τ , σ(f))

and is generated by the commuting vector fields Y1, ..., Yk.

Figure 3.1: Visual description of these mappings

The induced map

ϕσ : F × Rk → F−1(F), ϕσ(f , τ ) = Φ(τ , σ(f))

is well defined, surjective and differentiable since we have proven these properties
on each invariant torus. Indeed, for each fixed f ∈ F the map

ϕf,σ : Rk → F−1(f)

has these properties and, changing the value of f ∈ F , we can select each
and every invariant torus in F−1(F) by construction. Let’s now compute the
Jacobian matrix of ϕσ. With the same computations done in the proof of
Proposition 21, we have

∂ϕσ
∂τk

(f̄ , 0) = Yk(Φ(0, σ(f̄))) = Yk(σ(f̄)).

We can even compute
∂σ

∂fi
(f̄) =

∂C−1

∂fi
(f̄ , 0)

and since C is a diffeomorphism, this implies that ∂fiϕσ are all independent. At
each point m ∈ σ(F), by transversality, we have

TmM = Tmσ(F)⊕ 〈Y1(m), ..., Yk(m)〉.
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This implies that all the columns of the Jacobian matrix are independent and
hence, by inverse function theorem, ϕσ is a local diffeomorphism at (f̄ , 0). Let’s
now denote with A× B an open neighbourhood of (f̄ , 0) such that

ϕσ : A× B → ϕσ(A× B)

is a diffeomorphism. We can notice that even Φτ ◦ ϕσ is a diffeomorphism on
A × B for any τ ∈ Rn−k. This allows us to naturally define a diffeomorphism
on every product space with structure A× (τ + B) since ∀t ∈ (B + τ), we have
(t− τ) ∈ B and we can set

ϕσ : A× (τ + B)→ ϕσ(A× (τ + B)), ϕσ(f, t) := Φτ ◦ ϕσ(f, t− τ).

We have already proven that on each invariant torus, the isotropy group is one
and the same. We denote it with Gσ(f). The important thing to check is if this
group varies in a differentiable way passing from an invariant torus to those in
its tubular neighbourhood. We define the map

G : F → Rk, f → Gσ(f)

describing how the period lattice (and even matrix) changes from torus to torus.
Let’s recall that t ∈ Gσ(f) if and only if ϕσ(t, f) = Φ(t, σ(f)) = σ(f). We see
that:

∂Φ

∂ti
(t, σ(f)) = Yi(Φ(t, σ(f))).

This means the relation Φ(t, σ(f))−σ(f) = 0 can be turned into a differentiable
relation of the form t = G(f) = Gσ(f) by implicit function theorem. Namely,
there exists a set of functions

A 3 f → (u1(f), ..., uk(f)) ∈ Rk×k

which are differentiable defining the basis of the period lattice on each invariant
torus F−1(f). We can define the change of basis as follows:

Lij(f) = uj(f) · ei.

By construction, this depends in a differentiable way on f ∈ A. We can now
conclude as in the local version of the Theorem, defining the fields

Ȳi =

k∑
j=1

Lji(f)Yj .

For any fixed f ∈ A these vector fields pairwise commute, conserve the first
integrals of X, commute with X, and have all 1−periodic orbits. This implies
that the same holds in this case. We can consider the diffeomorphism

ψ̂σ : F × Tk → F−1(F)

which is generated by the fields Ȳi, namely

ψ̂σ(f,α mod 1) := ΦȲ1
α1
◦ ... ◦ ΦȲk

αk
(σ(f)).
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The restriction of X on F−1(A) is given by

X|F−1(A) =

k∑
j=1

ωj(f,α)Ȳj ,

and since [X|F−1(A), Ȳh] = 0 for any h = 1, ..., k, we get:

0 = [Ȳh, X|F−1(A)] =

k∑
j=1

ωj(f, α)[Ȳj , Ȳh] +

k∑
j=1

LȲh
(ωj)Ȳj =

k∑
j=1

LȲh
(ωj)Ȳj .

By linear independence of the Ȳhs, we get

LȲh
(ωi) = 0, ∀h, i = 1, ..., k.

Recalling that

Ȳh =
∂

∂αh
,

we get

LȲh
ωi =

∂ωi
∂αh

(f, α) = 0, ∀h = 1, ..., k, ∀i = 1, ..., k.

Namely, these functions are constant on each invariant torus: ωi = ωi(f). This
allows us to conclude the proof and get

X|F−1(A) =

k∑
j=1

ωj(f)
∂

∂αj
.

3.5 Torus actions and Bogoyavlensky’s Theorem

In this Section we consider integrable systems of type (p, q) defined on a smooth
n−dimensional manifold M (p+ q = n, as defined in Section 3.2). Most of the
ideas and results presented in this last Section come from [16].

Theorem 9 (Non-Hamiltonian integrability). Consider (Y1, ..., Yp, F1, ..., Fq),
an integrable system of type (p, q), defined on the (p + q)-dimensional man-
ifold M . Suppose the fibers of the submersion F = (F1, ..., Fq) : M → Rq
to be regular, connected and compact. Then, any level set N ⊂ M of F ad-
mits a tubular neighbourhood U(N) ' N × Bq ⊂ M , Bq open ball of Rq, and
a Tp-action Φ : Tp × U(N) → U(N) which is free and preserves the system
(i.e. the dynamical symmetries and the first integrals), whose orbits are the
level sets of F = (F1, ..., Fq). Moreover, there exists a system of coordinates
(α1, ..., αp, a1, ..., aq) identifying U(N) with Tp×Bq. Furthermore, in this coor-
dinate system, the vector fields defining the dynamics read

Yi =

p∑
j=1

bij(a1, ..., aq)
∂

∂αj
i = 1, ..., p. (3.1)
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We refer to (α1, ..., αp, a1, ..., aq) as Liouville coordinates. As seen in the Section
3.4, these regular level sets are all diffeomorphic to p−dimensional tori and we
call them Liouville tori.

Proof. To define the system of Liouville coordinates, we show that F is a locally-
trivial fibration. Indeed, we analyze two equivalent proofs to this problem. The
former is the most classical and standard one, while the latter is reported because
it allows to build in a constructive way the diffeomorphism and it even explains
why we often refer to the open neighbourhood of N as a tubular neighbourhood.

1. The map F : U(N)→ F (U(N)) := F is a surjective submersion, and it is
proper since its level sets are compact. Then, by Ehresmann’s Theorem,
it is a locally trivial-fibration. This precisely means that if N = F−1(f),
then there exists an open neighbourhood Uf ⊂ Rq of f such that

ϕ : F−1(Uf )→ F−1(f)× Uf ' Tp × Uf

is a diffeomorphism. Therefore, we define the tubular neighbourhood of
N as

U(N) = F−1(Uf ).

2. The idea behind this second approach comes from [12]. Consider a Rie-
mannian metric g on M . Define the exponential map induced by the
metric at a point n ∈ N

expn : TnM →M, v → γv(1),

where γv : R→M is the unique geodesic curve satisfying

γv(0) = n and γ′v(0) = v.

This map sends an open neighbourhood of the zero vector of TnM to an
open neighbourhood of n in M and is a local diffeomorphism. The normal
bundle of the Liouville torus N is

NormN := {(x, v) ∈ TM : x ∈ N, v ∈ NormxN},

where
NormxN := {v ∈ TxM : g(v, w) = 0, ∀w ∈ TxN}

and π : NormN → N is the canonical projection (x, v) → x. N can be
identified with the zero-section of its normal bundle:

σ : N → NormN, x→ (x, 0) ∈ N × {0}.

We can now conclude thanks to the exponential map. Indeed, consider an
arbitrary point m ∈ N . Thanks to the exponential map, we can identify a
neighbourhood Um ⊂M with a neighbourhood Vm ⊂ NormN . Precisely,
geodesics are curves realizing the distances between points, and a point
(x, v) ∈ NormN has as the nearest point on N exactly x. We then
consider the map

Φm : Vm → Um, (x, v)→ expx(v)
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with Vm and Um small enough so that Φm is a diffeomorphism. Hence,
we can associate each x ∈ N to all the points in the neighbourhood U(N)
of the zero-section of the form (x, v). This construction can be repeated
with any point in N and, by compactness, we can cover N with finitely
many open sets

N ⊂ ∪ki=1Umi
= U ⊂M

where these diffeomorphisms are well defined. Furthermore, they are com-
patible one with the others, since they coincide with the exponential map.
We can therefore extend these local maps to a global one identifying U
with a tubular neighbourhood U(N) ' N ×Bq, where Bq is an open ball
of Rq.

The existence of the free torus action comes from the same approach followed
in the proof of Bogoyavlensky’s integrability Theorem. Indeed, the vector fields
Y1, ..., Yp define an action of Rp on U(N). Each level set of F = (F1, ..., Fq)
is a connected component of an integral manifold of the tangent distribution
D = span{Y1, ..., Yp}, and is hence a p−dimensional torus when compact. The
period lattice on each torus is unique and we can uniform those of the tori
fibrating U(N) with the change of basis

(u1(f), ..., up(f))
L−1

−−−→ (e1, ..., ep),

where (e1, ..., ep) is the canonical basis of Rp. We define then another action of
Rp on U(N) as

Φ̂(t,m) := Φ(Lt,m)

which induces an action of Tp over U(N) since its generators are all 1−periodic
vector fields. Now call W1, ...,Wp the generators of the torus action and define as
angular coordinates the parameters moving along their integral curves. Namely,

Wi =
∂

∂αi
, i = 1, ..., p.

To obtain the expression in (3.1), the procedure is exactly the same seen in
Bogoyavlensky’s Theorem. We just need to fix a vector field among Y1, ..., Yp,
i.e. set X = Yi, and then repeat the procedure with the others.

We call the torus action generated by the vector fields W1, ...,Wp Liouville torus
action. This action is very important both from the practical and conceptual
point of view. The following Theorem, gives one of the main reasons behind
this relevance.

Theorem 10 (Fundamental conservation property). Consider a Liouville torus
N of a (p, q)-integrable system (Y1, ..., Yp, F1, ..., Fq) defined on a smooth mani-
fold M of dimension (p + q). Moreover, assume G ∈ Γ(⊗hTM ⊗k T ∗M) is an
invariant tensor field for the system, i.e. LYiG = 0 for any i = 1, ..., p. Then,
the Liouville torus action

Φ : Tp × U(N)→ U(N)

preserves this tensor field, where U(N) is a tubular neighbourhood of N endowed
with a system of Liouville coordinates.
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Proof. Consider a system of Liouville coordinates (α1, ..., αp, a1, ..., aq) on U(N),
where we suppose the torus action Φ is generated by

Wi :=
∂

∂αi
, i = 1, ..., p.

Fix a natural number s ∈ [0, h+ k] and define the space

Ts ⊂ Γ(⊗hTM ⊗k T ∗M)

as the one made by elements of the type

ε =
∂

∂αi1
⊗ ...⊗ ∂

∂αib
⊗ ∂

∂aj1
⊗ ...⊗ ∂

∂ajc
⊗ dαi′1 ⊗ dαi′u ⊗ daj′1 ⊗ daj′v

where b + c = h, u + v = k, c + u ≤ s. Notice that since with respect to the
Liouville coordinates

Yi =

p∑
h=1

bih(a)
∂

∂αh
,

follows

LYi

∂

∂ak
=
[ p∑
h=1

bih(a)
∂

∂αh
,
∂

∂ak

]
= −

p∑
h=1

∂bih(a)

∂ak

∂

∂αh
∈ span{W1, ...,Wp},

LYi
dαk = dLYi

αk = d(bik(a)) =

q∑
j=1

∂bik(a)

∂aj
daj ∈ span{da1, ..., daq},

LYi

∂

∂αk
= LYi

dak = 0.

This means that if ε generated Ts, then (LYiε) ∈ Ts−1. Furthermore, by con-
struction we see that

T−1 ⊂ T0 ⊂ ... ⊂ Ts−1 ⊂ Ts ⊂ ... ⊂ Th+k = Γ(⊗hTM ⊗k T ∗M),

where T−1 := {0}. By assumption, LYi
G = 0 for any i = 1, ..., p. Defining Ḡ the

average1 of this tensor with respect to the torus action Φ on U(N), we get that
even LYi Ḡ = 0 for any i = 1, .., p. Precisely, set

Ḡm(µ1, ..., µb+c, Z1, ..., Zu+v) :=

∫
Tp

(Φ∗αG)m(µ1, ..., µb+c, Z1, ..., Zu+v) dα1∧...∧dαp

where m ∈ U(N), µi ∈ T ∗(U(N)), Zj ∈ T (U(N)). This shows why LYi
Ḡ = 0,

since the Lie derivative goes inside the sign of integral and commutes with the
pull-back because Wi commutes with the vector fields generating Φ.

We now set Ĝ = G − Ḡ and prove Ĝ ≡ 0 by induction. Precisely, Ĝ ∈ Th+k

and, assuming it belongs to a certain Ts, we now prove it belongs even to Ts−1.
Suppose, by contradiction, that Ĝ has a term ρ ∈ Ts \ Ts−1 of the form

ρ = ϕ
∂

∂αi1
⊗ ...⊗ ∂

∂αib
⊗ ∂

∂aj1
⊗ ...⊗ ∂

∂ajc
⊗ dθi′1 ⊗ dθi′u ⊗ dzj′1 ⊗ dzj′v = ϕ ε.

1The averaging technique is useful to generate other invariant tensors as explained in [18],
Chapter 9, Introduction to Lie Groups
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We have already seen that for any i = 1, ..., p,

LYi
ρ = Yi(ϕ) ε+ Γ, Γ ∈ Ts−1.

Moreover, by linearity of the Lie derivative, LYi Ĝ = 0 implies necessarily
Yi(ϕ) = 0 and hence the coefficient of this monomial term is necessarily con-
stant on each Liouville torus. Furthermore, by construction, Ĝ has zero average

on each torus (
¯̂G = Ḡ − ¯̄G = 0) and this implies that the average on each torus

of ϕ is 0 too (i.e. ϕ|N ≡ 0). This is a contradiction since if ϕ = 0 then ρ ∈ Ts−1.
Hence follows that it is not possible to have a monomial term in Ĝ which belongs
to Ts \ Ts−1. By induction, we get that the same holds when s = 0 and this
implies Ĝ ∈ T−1 = {0}. We can now say that G = Ḡ, which concludes the proof
since it means that G is invariant with respect to the torus action Φ (namely,
¯̄G = Ḡ = G).
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Chapter 4

Euler-Jacobi Theorem

Some dynamical systems defined on a n−dimensional smooth manifold M ,
which do not have a natural Hamiltonian structure, can still be integrable even
when the hypotheses of Bogoyavlensky’s Theorem do not hold. As we are going
to see now, when there are n− 2 functionally independent first integrals and an
invariant volume form, then we have a sort of integrability. With these available
quantities (plus some technical assumptions on the phase space and on the ana-
lyzed vector field), a vector field is conjugated to a linear flow on each invariant
torus (up to a time reparametrization).

4.1 Statement of the Theorem

In this section, we state the Euler-Jacobi Theorem, giving some context and
reference for mechanical systems which are integrable in this sense.

Theorem 11 (Euler-Jacobi). Consider a smooth vector field V on an orientable
and smooth manifold M of dimension n. Assume

F = (f1, ..., fn−2) : M → Rn−2

is a submersion whose components are functionally independent first integrals of
V . Moreover, let µ be an invariant volume form for the system (i.e. LV µ = 0).
Consider a regular invariant level set of F

N = {f1 = c1, ..., fn−2 = cn−2}

and suppose it to be compact, connected and that V does never vanish on it.
Then N and all the nearby integral surfaces are diffeomorphic to T2. Further-
more, in some neighborhood of N there exist local coordinates f1, ..., fn−2, xn−1, xn
such that xn−1, xn are angular coordinates on the tori and in these coordinates
the vector field takes the form{

ḟi = 0, i = 1, ..., n− 2

ẋj =
λj(f)

Φ(f,xn−1,xn) , j = n− 1, n.
(4.1)

Moreover, if the original vector field, its integrals of motion and the invariant
volume form are real analytic, then so are also the functions xj, Φ and λj with
j = n− 1, n.
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As we can see from the expression (4.1), the scalar function Φ motivates why
at the beginning of this Chapter we have said this Theorem gives a sort of in-
tegrability result. Indeed, here emerges that the vector field conjugated by the
local system of coordinates (f1, ..., fn−2, xn−1, xn) to a quasi-periodic flow on
the invariant tori is not V , but the rescaling ΦV .

A classical example of system which is integrable in the sense of Euler-Jacobi is
the Chaplygin sphere, a non-holonomic mechanical system [23],[24],[25].

4.2 Proof of the Theorem

In this section we give a detailed proof of Euler-Jacobi Theorem. Since it is
quite long, we split it into various steps.

Proof. First of all let’s notice that since F defines a submersion, the invariant
level set N is a 2−dimensional embedded submanifold of M . We start with a
classical result in differential geometry:

Proposition 22 (Corollary to Poincaré-Hopf Theorem). If a 2-dimensional
smooth, connected and compact manifold S admits a smooth nowhere vanishing
tangent vector field, then it is homeomorphic to T2.

The Poincaré-Hopf Theorem is stated and presented in Appendix A.

Proof. The proof of this theorem is based on the Poincaré-Hopf Theorem on the
Euler characteristic of a surface. Having a nowhere vanishing vector field on a
compact, connected and orientable surface implies that its Euler characteristic
is χ(S) = 0. This value is a topological invariant. Hence we can conclude by
the classification of compact and connected surfaces that S is homeomorphic to
T2.

This first result allows us to use two angular coordinates to describe the dy-
namics on each regular invariant level set of the submersion. The second step
is to show that the restriction of the invariant volume form µ on the invariant
set N is still an invariant form for X = V |N .

Proposition 23. Suppose that a vector field V ∈ X(M) on a n−dimensional
manifold M has an invariant volume form µ and (n−2) first integrals f1, ..., fn−2

defining the following invariant surface

N = {f1 = c1, ..., fn−2 = cn−2} = {F = c}

which is supposed to be regular, i.e. df1 ∧ ...∧ dfn−2 6= 0 on N . Then the vector
field X = V |N admits an invariant measure ω defined by a 2−form as

ω ∧ df1 ∧ ... ∧ dfn−2 = µ.

Proof. Consider a local system of coordinates with

f1 = x1, ..., fn−2 = xn−2.

The volume form µ can be written as

µ = ρ(x1, ..., xn) dx1 ∧ ... ∧ dxn,
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so its restriction ω on N is of the form

ω = µ|N = ρ(c1, ..., cn−2, xn−1, xn)dxn−1 ∧ dxn = ρ̃c(xn−1, xn)dxn−1 ∧ dxn.

Let’s now denote with V 1, ..., V n the components of the vector field V with
respect to this coordinate system. Since the fis are first integrals, we know that
for any i = 1, ..., n− 2

V i = dxi(V ) = dfi(V ) = V (fi) = LV fi = 0.

Define α = df1 ∧ ... ∧ dfn−2 ∈ Λn−2(M). We see that

LV α =

n−2∑
i=1

df1 ∧ ... ∧ dfi−1 ∧ d(LV fi) ∧ dfi+1 ∧ ... ∧ dfn−2 = 0.

To proceed we could rely on Liouville’s Theorem [11], but we choose to conclude
in a self-contained way using just basic differential properties. To simplify the
notation, we call Ω = α ∧ dxn−1 ∧ dxn. Let’s compute

0 = LV µ = LV (ρΩ) = LV (ρ)Ω + ρα ∧ (LV (dxn−1 ∧ dxn)) =

=
[( ∂ρ

∂xn−1
V n−1 +

∂ρ

∂xn
V n
)

Ω + ρα ∧
(
dV n−1 ∧ dxn + dxn−1 ∧ dV n

)]
=

=
[∂(ρV n−1)

∂xn−1
+
∂(ρV n)

∂xn

]
Ω.

This implies that the term multiplying Ω in the last line vanishes at any point
(x1, ..., xn) ∈M . Repeating the same computations with

x1 = c1, ..., xn−1 = cn−2

fixed, we get that even LXω = 0.

At this point we have a volume form ω on N which is invariant for the vector
field X = V |N . We can look at such a 2−form as a symplectic structure on this
invariant set. We now introduce on N a multi-valued Hamiltonian function H.

Figure 4.1: Situation where H : R→ R is not 1−periodic

To be clear, let’s specify that by multi-valued function we mean that H is not
1−periodic in its variables when seen as a function from R2 to R. This is

57



the same situation which happens for functions defined on S1 which are not
1−periodic and can be described as in Figure 4.1. Hence locally on N there is a
classical Hamiltonian function and we have dH = iXω (precisely, this function
exists since we are working on the covering space R2 of the torus which is
simply connected, but when thought as a function on the torus it is multi-
valued). On the other hand, the 1−form dH is single valued and, if γ1 is the
cycle {(xn−1, 0) : xn−1 ∈ S1} of N and similarly γ2 corresponds to the angular
coordinate xn, it reads

dH =
(∫

γ1

dH
)
dxn−1 +

(∫
γ2

dH
)
dxn + dh(xn−1, xn)

= c1dx
n−1 + c2dx

n + dh(xn−1, xn).

Here (xn−1, xn) are 1−periodic “angular” coordinates onN , while h is 1−periodic
in both its entries when seen as a function from R2 to R. We can then recover
the multi-valued function H as follows:

H = c1xn−1 + c2xn + h(xn−1, xn).

At this point the aim is to find two linearly independent commuting vector fields
on N so that we can prove that

• N is diffeomorphic to T2,

• there are angular coordinates with respect to which the dynamics is a
linear flow,

• we can extend this construction on the tori in some tubular neighbourhood
of N .

First of all let’s introduce the Riemannian metric g = (dxn−1)2 + (dxn)2 on N
and define the vector field

ξ =
1

|∇H|
∇H.

We notice that this vector field, which is globally defined on N , is pointwise
orthogonal to X with respect to the metric g. Indeed,

iXω = ρ̃
[
dxn−1(X)dxn − dxn(X)dxn−1

]
= c1dx

n−1 + c2dx
n + dh,

which implies

g(X, ξ) = dxn−1(X)dxn−1(ξ) + dxn(X)dxn(ξ) =

=
1

ρ̃|∇H|

[(
c2 +

∂h

∂xn

)(
c1 +

∂h

∂xn−1

)
−
(
c1 +

∂h

∂xn−1

)(
c2 +

∂h

∂xn

)]
= 0

where everything is evaluated at a point n ∈ N . This implies that the flow of
the vector field ξ preserves the trajectories of X. To show this fact let’s notice
that since LXH = 0, then the level sets {H = h} are invariant with respect
to the flow of X. But since N is 2−dimensional, the trajectories of X coincide
with these level sets1. So flowing along an integral curve of ξ for a certain time

1In case these level sets are closed curves, since they do not contain any equilibrium point,
they coincide with closed trajectories. If they are open subsets, then they are connected spaces
and a trajectory is both open and closed and hence it coincides with the whole level set.
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t = c we pass from the trajectory γh = {H = h} to γh+c = {H = h+ c}. From
this follows that a trajectory of X is closed if and only if all the others are closed.

Let’s notice that we still do not have a dynamical symmetry for X. Consider
now the vector field

ξ̃ = ξ + λX.

Proposition 24. There exists a λ ∈ R such that the vector field ξ̃ has at least
a closed trajectory α which is non-homotopically trivial and transversal to the
vector field X.

Proof. To prove this result we first of all need to prove that there is a closed
transversal α for the nowhere vanishing vector field X.

Recall that homotopies are homeomorphisms so since X has no orbits of the
type Orb(x0) = {x0}, then there are no homotopically trivial closed trajectories
since they could be continuously deformed into the trivial loop.

Figure 4.2: Not admissible case

Let’s now consider what happens in the neighbourhood of a point P0 ∈ N lying
on the trajectory γ0 = {H = 0}. The possibilities are only two as presented in
Figure (4.3).

(a) γ0 closed (b) γ0 not closed

Figure 4.3: Two possibilities to build α.

1. γ0 is not closed. Then we can take as α an arbitrary non-trivial cycle on
N transversal to X.

2. γ0 is closed and defines itself a non-homotopically trivial closed loop β.
Then we can define α as an arbitrary non-trivial loop complementary to
β.

We now lift the trajectory γ0 = {H = 0} passing through the point P0 ∈ N
at time t = 0 on the covering space R2 of the torus N . In this covering space
the closed loop α defines a translation, i.e. it is a vector connecting the point
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P0 ∈ [0, 1) × [0, 1) to another point P ′0 in the lattice π−1(P0) ' Z2 where
π : R2 → R2/Z2 ' N is the covering map of N .

Now the proof of this Proposition is completed because of the two following
facts:

• Suppose H(P ′0) = c and hence P ′0 ∈ γc. We can pass from γ0 to γc flowing
for a time t = c along the integral curve of ξ passing through P0 at time
t = 0. So we move to P ′ = Φξc(P0) ∈ γc.

• We can now move from P ′ to P ′0 flowing along the trajectory γc for a
certain time λ̄. So we fix it in such a way that ΦX

λ̄
(P ′) = P ′0. This implies

Φcξ+λ̄X1 (P0) = P ′0.

Since we know that on the 2−torus to transition from P0 to P ′0 means flow-
ing along the closed trajectory α, we get that the vector field ξ̃ satisfies the
Proposition.

We now consider this loop α as a Poincaré section for the transversal vector
field X. Recall the two following facts:

• The trajectory γ0 of X is closed if and only if all the others are,

• If a fixed-point-free flow with a non periodic recurrent orbit on a closed sur-
face admits a closed transversal, then every orbit intersects the transversal.
(Proof in Proposition 14.2.2 at page 458 of [1]).

This means there is a well defined first return map r : S1 → S1 (where α ' S1).
Introduce an angular coordinate h ∈ [0, c) along the closed loop α and define
the function T : [0, c)→ R+ which maps each trajectory γh of X into the time
T (h) required to come back to α. We now reparametrize the time of the flow
along the trajectories of X in such a way that for any h ∈ [0, c) the first return
map is always 1.

Let’s introduce the new time coordinate as follows:

t(τ) =

∫ τ

0

(1 + s(h)ψ(x))dx,

where

s(h) =
T (h)− 1∫ 1

0
ψ(x)dx

.

This choice implies t(1) = T (h), i.e. if in the original time coordinate t we
needed the time T (h) to come back to α moving along γh, now we just need the
time τ = 1 (completely independent on h and hence on the chosen trajectory).

ψ(t) is a classical regularization function and it is necessary to obtain a smooth
change of variable on N . Let’s show the plot of this regularization function and
then check why this specific choice allows t = t(τ) to be a well defined change
of coordinates. In Figure 4.4 there is an example of the kind of function we need.

This is a well defined and smooth change of coordinates on χ because of two
reasons:
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Figure 4.4: Possible choice of smoothing function, built with Geogebra as fol-
lows: https://www.geogebra.org/m/b489nyuw

1. It is invertible since we can make
∫ 1

0
ψ(t)dt as near as we want to 1. This

guarantees s(h) > −1 and hence

t′(τ) = 1 + s(h)ψ(τ) > 0.

From this follows the invertibility of the transformation.

2. It is smooth on N .
∂τ

∂t
(t, h) =

1

1 + s(h)ψ(τ)
,

so in a neighborhood of τ = 0 and τ = 1, having ψ = 0, the first derivative
is continuous and so are higher order derivatives.

Remains to check it is possible to approximate as well as desired this change of
coordinates with a real-analytic function (supposing to have real-analyticity of
the other functions involved in the system). This result is based on one of the
Whitney extension theorems (see [6]).

Theorem 12. Let f : M → R be a smooth function on a real-analytic com-
pact manifold M . Then there exists a real-analytic function g : M → R that
approximates f together with all its derivatives up to a certain order k.

Hence the change of coordinates on the manifold N can be supposed to be real-
analytic. At this point we have a well defined pair of angular coordinates τ
and h which allow to coordinatize the torus. The important thing is that the
trajectories of ∂/∂τ coincide with those of X, but they are covered in different
times so their orbits do not coincide. Namely, ∂/∂τ is a time reparametrization
of X. Therefore, there exists a positive scalar function Φ(τ, h) such that

∂τ = ΦX.

We get two linearly independent commuting vector fields:

[∂h,ΦX] = [∂h, ∂τ ] =
∂2

∂h∂τ
− ∂2

∂h∂τ
= 0.

This gives that N is diffeomorphic to T2 since it is a smooth 2−manifold admit-
ting two tangent vector fields which are independent and commute. Proceeding
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exactly as in the local proof of Bogoyavlensky’s Theorem, we get that here the
field ΦX writes

ΦX = λ1
∂

∂α1
+ λ2

∂

∂α2

with λ1, λ2 ∈ R and (α1, α2) ∈ T2 angular coordinates. This allows to conclude:

α̇1 =
λ1

Φ(α1, α2)
, α̇2 =

λ2

Φ(α1, α2)
.

All the constructions done locally on the invariant level set are differentiable.
This means that we can extend in a differentiable way the commuting fields
from an invariant torus to those in a tubular neighbourhood of N . On each
invariant torus the symmetries are:

∂

∂τ
= ΦX,

∂

∂h
= ξ̃ =

1

|∇H|
H + λ̄X.

We can consider an open neighbourhood B = Bn−2(c) of c ∈ Rn−2 and extend
them on F−1(B) = U(N) ' T2 × B (recalling that by Ehresmann’s Theorem
F is a locally-trivial fibration) since they both preserve the first integrals of X.
Considering

θ : R2 × U(N)→ U(N),

the extension of the action studied on N to U(N), we can proceed as in the
semi-global extension of Bogoyavlensky.
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Chapter 5

Comparison between
Bogoyavlensky and
Euler-Jacobi

In this Chapter we are going to study the relations between the two integrability
Theorems presented in Chapters 3 and 4. This comparison is motivated by the
similarities in the assumptions and the outcomes characterizing the two results.
This Chapter is mainly devoted to the analysis of a single question: is there some
sufficient condition ensuring that a system integrable in the sense of Euler-Jacobi
is even B-integrable? Before focusing on this question, we briefly study when
a system integrable in the sense of Bogoyavlensky is integrable in the sense of
Euler-Jacobi, which is an easier problem.

5.1 From Bogoyavlensky to Euler-Jacobi

In this short section we highlight a situation in which broad-integrability implies
the invariance of a volume form, and hence Euler-Jacobi integrability. Indeed,
any (2, n − 2)-integrable system defined on a smooth, orientable manifold of
dimension n is also integrable à la Euler-Jacobi. Consider the system of coor-
dinates

x1 = f1, ..., xn−2 = fn−2, xn−1, xn,

with respect to which the two symmetry fields of the system write

X = X1 ∂

∂xn−1
+X2 ∂

∂xn
,

Y = Y 1 ∂

∂xn−1
+ Y 2 ∂

∂xn
.

X ∧ Y = (X1Y 2 −X2Y 1)
∂

∂xn−1
∧ ∂

∂xn
,

where X1Y 2−X2Y 1 6= 0 since X ∧Y 6= 0 by assumption. To proceed, we need
to make an important remark. There is a 1−1 relation between non-degenerate
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2−vector fields and 2-forms. To be precise,

(dx ∧ dy)(Xf , Xg) =
( ∂
∂x
∧ ∂

∂y

)
(df, dg)

where iXf
(dx∧dy) = −df (and the same for g). Thanks to this identification, we

can interpret the wedge product of the two vector fields X and Y as a differential
2-form. This allows us to consider the following volume form

µ = df1 ∧ ... ∧ dfn−2 ∧X ∧ Y =

= (X1Y 2 −X2Y 1)df1 ∧ ... ∧ dfn−2 ∧ dxn−1 ∧ dxn

and show it is conserved by X:

LXµ =
( n−2∑
i=1

d(X(fi))df1 ∧ ... ∧ dfi−1 ∧ dfi+1 ∧ ... ∧ dfn−2

)
∧X ∧ Y + ...

...+ df1 ∧ ... ∧ dfn−2 ∧ ([X,X] ∧ Y +X ∧ [X,Y ]) = 0.

From this follows that the system is also integrable in the sense of Euler-Jacobi.

Let’s conclude showing that the field

X = px∂x + py∂y −
ypxpy
1 + y2

∂px − y∂py

presented in Section 3.3 is integrable in the sense of Euler-Jacobi by explicitly
finding an invariant measure. Indeed, we already know that this system is
integrable in the sense of Euler-Jacobi, but the construction developed below is
still interesting because we recover the explicit expression of an invariant volume
form for the vector field. This system is defined on the 4−dimensional manifold
M = S1×R×R2. It admits the two first integrals E and J presented previously.
To highlight the existence of a smooth invariant volume form, let’s perform the
following change of coordinates

(x, y, px, py)→ (x, y,mx,my)

where:
mx = (1 + y2)px, my = py.

So px = mx/(1 + y2) and the first equation becomes

ẋ =
mx

1 + y2
.

The second is simply ẏ = my. Then

ṗx =
ṁx

1 + y2
− 2ymx

ẏ

(1 + y2)2
= − ymxmy

(1 + y2)2

implies ṁx(1 + y2)− 2ymxmy = −ymxmy, i.e.

ṁx =
ymxmy

1 + y2
.
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Moreover, ṁy = ṗy = −y. This means the vector field in the new coordinates
writes

X̃ =
mx

1 + y2
∂x +my∂y +

ymxmy

1 + y2
∂mx
− y∂mx

.

Let’s now check that this vector field admits the following invariant volume
form:

µ =
1√

1 + y2
dx ∧ dy ∧ dmx ∧ dmy = f(y)dx ∧ dy ∧ dmx ∧ dmy.

By Cartan’s magic formula and dµ = 0 we get LX̃µ = d(iX̃µ).

iX̃µ = f(y)
[
iX̃(dx ∧ dy) ∧ dmx ∧ dmy + dx ∧ dy ∧ iX̃(dmx ∧ dmy)

]
=

= f(y)
[ mx

1 + y2
dy ∧ dmx ∧ dmy −mydx ∧ dmx ∧ dmy + ...

..+
ymxmy

1 + y2
dx ∧ dy ∧ dmy − ydx ∧ dy ∧ dmx

]
.

So we get

d(iX̃µ) =
[
myf

′(y) + f(y)
ymy

1 + y2

]
dx ∧ dy ∧ dmx ∧ dmy

=
[
− ymy

(1 + y2)3/2
+

ymy

(1 + y2)3/2

]
dx ∧ dy ∧ dmx ∧ dmy = 0.

This means that since first integrals are preserved by coordinate changes, all the
hypotheses of Euler-Jacobi integrability Theorem hold. Hence the vector field
X is integrable in the sense of Euler-Jacobi.

5.2 From Euler-Jacobi to Bogoyavlensky

In this Section, we recover some sufficient conditions ensuring when a sys-
tem integrable in the sense of Euler-Jacobi is broadly-integrable too. Given
a n−dimensional smooth and orientable manifold M and a smooth vector field
X ∈ X(M) with (n − 2) functionally independent first integrals, is there some
relation between the integrability of X with respect to the two approaches?
The reason why this question is quite natural, is that both the Theorems above
guarantee the quasi-periodicity of the flow on the invariant tori defined by the
fibration via the first integrals, but it may happen that a time reparametrization
of the vector field is required. Having an invariant volume form for the system,
allows to get the hypotheses of Euler-Jacobi’s Theorem. In this case integrability
comes at the cost of reparametrizing in time. On the other hand, the presence
of an additional “interesting” symmetry field Y , allows quasi-periodicity with
no required rescaling of the field X. Here, by interesting symmetry field Y , we
mean a field Y ∈ X(M) such that:

• X ∧ Y 6= 0 on M ,

• [X,Y ] = 0,

• LY fi = 0 for all the first integrals of X.
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The question is if there is some condition we can add to systems integrable in the
sense of Euler-Jacobi to be sure they are even B-integrable. We now consider
the case where M = T2. In this case in principle no first integral is required to
proceed in our analysis, since the dimension of M is n = 2 and n− 2 = 0. Let
now X ∈ X(M) be a smooth vector field which can be expressed in the angular
coordinates (x, y) ∈ S1 × S1 as follows:

X = X1(x, y)∂x +X2(x, y)∂y.

If we see the two components Xi of X as functions from R2 to R, then they
must be 1−periodic in both their entries. Suppose X admits an invariant vol-
ume form ω = p(x, y)dx∧ dy, with p(x, y) 1−periodic in both its entries. Hence
X is integrable in the sense of Euler-Jacobi.

Let’s now study when the conservation of this volume form allows to construct
a second symmetry field of X. There are vector fields where the independent
symmetry does not need any particular work to be found. Let’s define the
generic field X ∈ X(T2):

X = X1(x, y)∂x +X2(x, y)∂y

and list below some of the evident cases:

• If Xi(x, y) = fi(x), with f2(x) 6≡ 0, then Y = ∂y is an independent
symmetry for X.

• If Xi(x, y) = gi(y), with g1(y) 6≡ 0, then Y = ∂x is an independent
symmetry for X.

This has an important consequence in terms of integrability, indeed these fields
are B-integrable. Apart from these simple cases, we now analyze more general
vector fields. We will consider various approaches starting with some assumption
on the density of the invariant measure. First of all we take into account the
case in which the density function is p(x, y) = c ∈ R. When the field X satisfies
LXω = 0 with this choice of the density function, we can immediately recover
a particular structure for the components of the field. X must be as follows

X = f(y)
∂

∂x
+ g(x)

∂

∂y
,

where f(y) = f(y + 1) and g(x) = g(x+ 1) for any (x, y) ∈ R. This constraint
is mainly due to the 1−periodicity condition. We can check it preserves the
2−form ω = cdx ∧ dy for any c ∈ R since

LXω = d(iXω) = cd(f(y)dy − g(x)dx) = 0.

To show that if X preserves ω, then it has this structure, we proceed by direct
computation as follows:

LXω = c[d(X1(x, y)dy −X2(x, y)dx)] = c
(∂X1

∂x
+
∂X2

∂y

)
dx ∧ dy = 0, (5.1)

which brings to

X1(x, y) = h(y)−
∫ x

0

∂X2(s, y)

∂y
ds
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for an arbitrary 1−periodic function h : R→ R. But X1 must be 1−periodic in
x, so we need to impose X1(x+ 1, y) = X1(x, y).

X1(x+ 1, y) = X1(x, y) +

∫ 1

0

∂X2(s, y)

∂y
ds

implies the condition X2(x, y) = g(x) for some g : R→ R which is 1−periodic.
Then from Equation (5.1) follows X1(x, y) = f(y) for another function f again
1−periodic. A vector field of this kind is integrable in the sense of Euler-Jacobi,
so up to a time reparametrization it takes the form

u̇ =
λ

Φ(u, v)
, v̇ =

µ

Φ(u, v)
,

with Φ a positive 1−periodic function. The question is: is it even B-integrable?
The answer would be yes if we were able to define a second vector field Y which
is independent from X, such that [X,Y ] = 0. The answer is no in general. Let’s
consider this vector field:

X = [sin (2πy) + 2]∂x. (5.2)

Proposition 25. All the vector fields commuting with X depend linearly on it.

Proof. Let Y = f(x, y)∂x + g(x, y)∂y be an arbitrary vector field on M = T2,
hence

f(x+ 1, y + 1) = f(x, y) and g(x+ 1, y + 1) = g(x, y).

Imposing the commutativity property we get

0 = [X,Y ] = [sin (2πy) + 2]
∂f

∂x
∂x + [sin (2πy) + 2]

∂g

∂x
∂y − g

∂(sin (2πy))

∂y
∂x =

= [sin (2πy) + 2]
∂g

∂x
∂y +

(
[sin (2πy) + 2]

∂f

∂x
− 2πg cos (2πy)

)
∂x.

This implies that

[sin (2πy) + 2]
∂g

∂x
= 0,

and hence necessarily g(x, y) = g(y). Since even the first component has to
vanish we get

∂f

∂x
= 2πg(y)

( cos (2πy)

2 + sin (2πy)

)
,

namely

f(x, y) = 2πg(y)
( cos (2πy)

2 + sin (2πy)

)
x+ h(y)

which is 1−periodic in the x variable if and only if g ≡ 0 in fact

f(x+ 1, y)− f(x, y) = 2πg(y)
( cos (2πy)

2 + sin (2πy)

)
(x+ 1) + h(y)− ...

+ 2πg(y)
( cos (2πy)

2 + sin (2πy)

)
x− h(y) =

= 2πg(y)
( cos (2πy)

2 + sin (2πy)

)
= 0

if and only if g ≡ 0.
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This field preserves the measure ω = cdx ∧ dy (c ∈ R) and those with a density
function just depending on y, being hence integrable in the sense of Euler-Jacobi.
Since we can not build a second symmetry for the system, up to looking for first
integrals of the vector field, it is not integrable in the sense of Bogoyavlen-
sky. Actually, this vector field is B-integrable since it admits the first integral
f(x, y) = sin (2πy) satisfying the assumptions of Theorem 8, but this example is
interesting because it suggests that not all the vector fields have symmetries and
hence that in general there is not an immediate relation between Euler-Jacobi
integrability and B-integrability.

Moreover, considering X̃ = [sin (2πx) + 2]∂y ∈ X(M), we see that even the
conservation of a volume form with density just depending on x is not enough
for an Euler-Jacobi integrable system to be B-integrable.

This suggests that imposing some condition on the invariant measure may not
be the best approach to the problem. Clearly, the example above does not give
any information about measures with densities of the type p(x, y) = a(x) + b(y)
or p(x, y) = a(x)b(y) or in general depending on both the angular coordinates.
However, in these cases, computations are quite complicated and due to the
periodicity constraint we usually encounter trivial symmetries.

Up to now we have seen that a vector field preserving an arbitrary smooth mea-
sure with density depending at most on one of the two angular coordinates, is
not sufficient to guarantee the existence of a second symmetry for the system
and hence its B-integrability.

Another immediate consequence of the previous computations is that even when
the invariant volume form ω is exact, i.e. dα = ω for some α ∈ Λ1(M), the field
X is not B-integrable in general or, more precisely, in general it does not have a
linearly independent dynamical symmetry. Indeed, we can set up the following
example:

α = −f(y)dx, with f(y) = f(y + 1),

ω = dα = f ′(y)dx ∧ dy

so that we have a density just depending on y and hence ω is preserved by our
field X defined before in (5.2). This field does not have relevant symmetries, so
exactness is not a sufficient condition giving the missing link between integra-
bility à la Euler-Jacobi and broad-integrability.

Instead of looking at particularly designed density functions p = p(x, y), we now
change our approach to the problem. In the remaining part of this Chapter we
will introduce three conditions without specifying the density function. The for-
mer involves the presence of a first integral of the dynamics, while the other two
are fully based on constructing a linearly independent dynamical symmetry of
the vector field defining the dynamics. Precisely, the second and third conditions
give an answer to the question: is the time reparametrization in Euler-Jacobi
Theorem always required?
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5.2.1 First density independent condition

Suppose there exists a smooth function m : T2 → R such that

LXm = k ∈ R.

Consider now a vector field Y ∈ X(M) such that

iY ω = dm.

Then Y is a symmetry for X. This means that if for example the vector field
X does admit a first integral m ∈ C∞(M), then LXm = 0 and hence if we set
Y as above we get

i[X,Y ]ω = LX(iY ω)− iY (LXω) = LX(dm) = d(LXm) = 0.

This implies that necessarily m gives rise to a symmetry field of X, which is
not in general guaranteed to be independent from X. Let’s explicitly construct
this symmetry field and then conclude with a couple of examples. Suppose
m = m(x, y) is a first integral of X and ω = p(x, y)dx ∧ dy. Then we impose

iY ω = p(x, y)
(
Y 1(x, y)dy − Y 2(x, y)dx

)
=
∂m

∂x
(x, y)dx+

∂m

∂y
(x, y)dy,

and hence we set

Y =
1

p(x, y)

[∂m
∂y

∂x −
∂m

∂x
∂y

]
,

which is a reasonable construction since the density function never vanishes.
The fact that X ∧ Y may or may not be zero, strictly depends on the specific
considered dynamical system. Moreover, the condition

LXm = k ∈ R

does not always degenerate to the case k = 0. This depends on the manifold
where we are working. Suppose for a moment the dynamics is defined on R2,
and consider:

X = xy∂x + ∂y ∈ R2.

The function
m(x, y) = cy

gives
LXm = c ∈ R,

even if in general it is not a first integral of X. The problem for fields defined on
the 2−torus, is again the periodicity constraint. The example built above works
just because we have considered an affine function m. On the other hand, a
function m : T2 → R with dm = adx+ bdy, a, b ∈ R, implies necessarily m ≡ 0.
This is why LXm = k, even if it seems a milder constraint than the one with
k = 0, does not give rise to other classes of B-integrable systems on the 2−torus.

Before moving to the examples, it is important to remark that even if the first
integral m may give rise to a linearly dependent dynamical symmetry, when
such a m does exist and its level sets satisfy the assumption of Theorem 8, the
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vector field is B-integrable. Precisely, since the vector field X is a symmetry for
itself and it admits a first integral, then X is integrable of type (1, 1). The only
problem is that this procedure may not give rise to an independent symmetry.
By the way, since the focus of the analysis we are doing is on the presence of
relevant dynamical symmetries, the following examples show the limits of this
approach in building them.

The construction of first integrals of a vector field X is not a trivial operation.
Some strategies to find them for measure preserving fields (i.e. fields having an
integrating factor) are presented in [8]. We now consider a Hamiltonian vector
field X with respect to the 2−form ω. Let

H = sin (2πx) + cos (2πy),

so XH = f(x, y)∂x + g(x, y)∂y is such that

iXH
[p(x, y)dx ∧ dy] = −dH = −2π[cos (2πx)dx− sin (2πy)dy].

This implies

p(x, y)[f(x, y)dy − g(x, y)dx] = −2π[cos (2πx)dx− sin (2πy)dy]

and hence

XH =
2π

p(x, y)

[
sin (2πy)∂x + cos (2πx)∂y

]
.

This vector field preserves ω = p(x, y)dx∧ dy and has even a first integral given
by the function H. The symmetry field Y we can build following the previous
procedure is the one satisfying

iY ω = dH.

We immediately see that [X,Y ] = 0 but Y ∧X = 0 too. Another example which
highlights the limits of this approach is based on the same vector field studied
before:

X = [sin (2πy) + 2]∂x.

Indeed, X admits the first integral m(x, y) = sin (2πy) but since X does not
have linearly dependent symmetries, necessarily m gives rise to non relevant
symmetries. On the other hand, this does not say that X is not B-integrable,
precisely we can say that it is not (2, 0)−integrable but it is (1, 1)−integrable.

5.2.2 Second density independent condition

Let X ∈ X(T2) be a smooth vector field preserving the 2−form ω ∈ Λ2(M) with
M = T2. It admits a symmetry field if and only if it preserves even a 1−form
α ∈ Λ1(M), i.e. LXα = 0. Precisely, setting Y ∈ X(M) in such a way that

iY ω = α,

guarantees that [X,Y ] = 0. This is not in general a sufficient condition for the
B-integrability of X, which now just depends on the linear independence of X
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from Y . Before going on, let’s recall why we are sure to have a symmetry field
for X:

i[X,Y ]ω = LX(iY ω)− iY (LXω) = LX(α) = 0.

Since the term LXω vanishes when ω is an invariant measure for X, each and
every symmetry field of X needs to be such that LX(iY ω) = 0. The problem is
that we may have that, as for the example written above X = [sin (2πy) + 2]∂x,
there is no independent symmetry field. This means that this relation, even if
it is satisfied by some vector field Y , does not necessarily give some interesting
information about the dynamics.

This suggests that the presence of an invariant 1−form for an Euler-Jacobi inte-
grable system is almost the missing piece connecting Euler-Jacobi integrability
with broad-integrability. Let’s specify that the expression describing Y in this
case, supposing α = a(x, y)dx+b(x, y)dy the conserved 1−form, is the following
one

Y =
b(x, y)

p(x, y)
∂x −

a(x, y)

p(x, y)
∂y.

The condition X∧Y = 0 is equivalent to the existence of a function f ∈ C∞(T2)
with Y = fX. Since f stands for a time reparametrization of X, we can even
suppose f > 0. Assume Y = fX, then

α = iY ω = ifXω = fiXω.

Calling g = 1/f , we get iXω = gα. This result implies the following one

d(iXω) = LXω = 0 = d(gα) = dg ∧ α+ gdα = dg ∧ α (5.3)

when dα = 0. Since setting g ≡ const gives a solution to Equation (5.3), when
α is closed we are not sure to find a field Y which does not depend on X.

Proposition 26. Consider a smooth vector field X ∈ X(T2) satisfying the
following properties:

1. LXω = 0 for a smooth measure ω ∈ Λ2(T2),

2. LXα = 0 for some α ∈ Λ1(T2) satisfying one of the two following proper-
ties:

• it is not proportional to β = iXω, i.e. there is no f ∈ C∞(T2) such
that fβ = α or

• it vanishes at a point p ∈ T2 where (dα)p 6= 0.

Then the field Y ∈ X(M) such that iY ω = α, satisfies

1. X ∧ Y 6= 0,

2. [X,Y ] = 0,

and hence X is not just integrable in the sense of Euler-Jacobi, but even inte-
grable in the sense of Bogoyavlensky.
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Proof. First of all let’s show that [X,Y ] = 0. This follows immediately from
this computation:

i[X,Y ]ω = iLXY ω = LX(iY ω)− iY (LXω) = LXα = 0.

Since ω is non-degenerate, necessarily this implies [X,Y ] = 0.

By contradiction let’s assume there exists a function f : T2 → R such that
Y = fX, which by construction must be always different from 0 (being a time
reparametrization). This implies

α = iY ω = ifXω = fiXω.

Calling β = iXω, we have that X is proportional to Y if and only if α is pro-
portional to β. Hence if the form β does not read fα = β for any f , then the
symmetry Y we find is a relevant one as stated in the proposition.

To verify the other condition for α, let’s set g = 1/f . This means gα = iXω.
When this is true, necessarily follows:

diXω = LXω = 0 = d(g ∧ α) = dg ∧ α+ gdα.

If there exists a point p ∈ T2 such that α|p = 0, then this equation at p reads:

g(dα)|p = 0.

Having (dα)p 6= 0, necessarily g(p) = 0. This is not possible in our case since
g(p) = 1/f(p) can not be 0. Hence this implies there is no global solution
f ∈ C∞(T2). We conclude the symmetry Y is independent from X, which is
hence B-integrable.

Let’s now check that in one of the cases where the symmetry is evident (those
listed above), one of the two conditions in the Theorem holds. We can consider
for example a field of the kind

X = f(y)∂x + λ∂y, λ 6= 0,

which admits the symmetry field Y = ∂x. This field preserves the volume form
ω = dx ∧ dy and the form

α = iY ω = [Y 1dy − Y 2dx] = −dx.

Moreover, β = iXω = [X1dy−X2dx] = [f(y)dy−λdx]. Hence in this case there
is no rescaling factor which allows to pass from α to β or vice versa. Another
meaningful example, is the following. Consider the 1−form

α = sin (2πx)dy ∈ Λ1(M).

This vanishes on the whole set A = {(0, y) : y ∈ S1)} ∪ {(1/2, y) : y ∈ S1)} but,
computing its exterior derivative we get

dα = 2π cos (2πx)dx ∧ dy,
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which does not vanish on A. Let’s now take ω = dx∧dy. At this point consider
a vector field X preserving both ω and α. A simple choice is the field

X = c∂y,

in fact the following result holds:

LXα = LX(sin (2πx))dy + sin (2πx)d(LX(y)) = LX(sin (2πx))dy + sin (2πx)d(c) =

= LX(sin (2πx))dy = 0.

Even if we already know that this field admits for example the symmetry field
Y = ∂x, let’s show how the procedure given in the proposition allows to recover
a similar relevant symmetry. We set Y ∈ X(M) in such a way that iY ω = α,
namely

Y 1dy − Y 2dx = sin (2πx)dy,

so Y = sin (2πx)∂x. This is a relevant symmetry for X since X ∧ Y 6= 0 and
[X,Y ] = 0. Moreover, we have found it with a systematic approach.

5.2.3 Third density independent condition

This third condition is based on the results presented in the book [9]. Consider
a vector field X ∈ X(T2), with no singular points, which reads

X = F1(x, y)
∂

∂x
+ F2(x, y)

∂

∂y
.

Recall that these two functions are 1−periodic in both their entries when seen
as functions from R2 to R. Moreover, assume there is an invariant volume form
ω = p(x, y)dx ∧ dy with LXω = 0.

Theorem 13. There exists an infinitely differentiable change of coordinates

u = u(x, y), v = v(x, y)

conjugating the field X into

X̃ = F (u, v)
∂

∂u
+ αF (u, v)

∂

∂v
(5.4)

where α ∈ R and F is a positive function.

The proof of this theorem can be found in [9]. To proceed, let’s remark that a
constant vector field admits a symmetry field. Hence, if we are able to conjugate
the vector field X̃ to a constant field

X̂ = λ1
∂

∂z
+ λ2

∂

∂t
, λ1, λ2 ∈ R,

then we can consider one of the following symmetries:

• Y = ∂/∂z if λ2 6= 0 or

• Z = ∂/∂t if λ1 6= 0.
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Figure 5.1: Construction of commuting fields with this closed curve γ

Indeed, when the vector field X̃ can be conjugated to X̂, then X is not just
integrable in the sense of Euler-Jacobi, but even B-integrable. A sufficient con-
dition which guarantees we can do that, is the existence of a closed curve γ
such that each of its points return to that curve at one and the same time. The
existence of such a curve is discussed in [9] starting from page 94.

Supposing the existence of such a closed curve, we could eventually use it even
in the proof of Euler-Jacobi instead of the arbitrary non-homotopically trivial
closed loop we have built before. With this choice, we don’t need to rescale the
vector field X̃ because the parameter moving along its orbits is already a well
set coordinate. Hence we have [X̃, Y ] = 0 as in the proof of Euler-Jacobi since
X̃ = ∂s, Y = ∂r are coordinate fields and they naturally commute.

5.2.4 Semi-global extension of these conditions

The aim of this section is to extend the constructions done on a single invari-
ant torus to a tubular neighbourhood. Consider an orientable, connected and
smooth n−dimensional manifold M and let V be a smooth vector field defined
on it. Assume there is a submersion F = (f1, ..., fn−2) : M → Rn−2 whose com-
ponents are first integrals of V and an invariant volume form µ = pdx. Assume
V does not vanish on each invariant regular level set

N = {m ∈M : F (m) = c ∈ Rn−2},

which is then diffeomorphic to T2 . Restricting the vector field V and the form
µ to N , we get exactly the local situation analyzed in the previous sections.
Let’s consider a point m ∈M with F (m) = c. For a small-enough open neigh-
bourhood F ⊂ Rn−2 of c we can define on U(N) = F−1(F) the coordinate
system

(f1, ..., fn−2, x, y) ∈ Rn−2 × T2.

In these coordinates, the vector field V defining the dynamics takes the form

V |U(N) = V 1(f1, ..., fn−2, x, y)
∂

∂x
+ V 2(f1, ..., fn−2, x, y)

∂

∂y

since
dfi(V ) = LV fi = 0 ∀i = 1, ..., n− 2.

When we consider its local restriction to N , we get

V |N = X = V 1(c, x, y)
∂

∂x
+ V 2(c, x, y)

∂

∂y
.
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All the approaches presented in the previous section provide conditions under
which this local field X admits a symmetry. The problem is if we can extend
the analysis done up to now to a tubular neighbourhood U(N) of this torus.
The last construction we have done, the third one with the closed curve γ, can
be extended semi-globally exactly as for Euler-Jacobi Theorem. What actually
changes from that Theorem, is just the closed curve we consider on the invariant
torus.

To conclude this Chapter, let’s analyze the semi-global version of the second
condition. The smooth 1−form α ∈ Λ1(N) preserved by X can be smoothly
extended to the whole U(N). Let

α = a(c, x, y)dx+ b(c, x, y)dy,

then we can extend it to U(N) as

α̂ = α ∧ df1 ∧ ... ∧ dfn−2 ∈ Λn−1(M).

This (n − 1)−form is preserved even by the whole vector field V ∈ X(U(N)).
Indeed,

LV α̂ = LV (α ∧ df1 ∧ ... ∧ dfn−2) = LV (α) ∧ df1 ∧ ... ∧ dfn−2 = 0

since on each invariant level set we have LXα = 0. Hence setting Y ∈ X(U(N))
in such a way that iY µ = α̂, guarantees:

i[V,Y ]µ = LV (iY µ)− iY (LV µ) = LV (iY µ) = LV α̂ = 0.

This shows that when we are able to build the symmetry of the field X on
N through the second approach, then we can follow the same idea to build
a semi-global symmetry field and hence get broad-integrability hypotheses on
U(N).
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Appendix A

Poincaré-Hopf Theorem

In this Appendix, we briefly define the notions required to state the Poincaré-
Hopf Theorem and then write its statement for a general compact and oriented
manifold.

Definition 15 (Index of a vector field on Rn). Let X ∈ X(U) be a vector field
on U ⊂ Rn. If X(P ) = 0 for some P ∈ U , we can define the index of X at P ,
indP (X), as the degree of ψ : D → Sn−1 defined as ψ(x) = X(x)/|X(x)|, where
D ⊂ U is a sphere around P containing just the stationary point P of X.

This definition can be extended to a vector field X defined on a smooth manifold
M of dimension n simply by choosing a local chart (U,ϕ). Indeed, if ϕ : U → Rn
is a smooth local chart, then we define

indPX := indϕ(P )(ϕ∗X).

The index of a vector field on a smooth manifold is independent on the choice
of the local chart.

Theorem 14 (Poincaré-Hopf). Consider a smooth, oriented and compact man-
ifold M and a vector field X ∈ X(M) with a finite number of critical points
P1, ..., Pk ∈ M . Then the sum of their indexes fully characterize the Euler
characteristic of M , indeed

χ(M) =

k∑
i=1

indPiX.

To conclude this Appendix, let’s notice that this result holds even in the case of
2−dimensional manifolds, i.e. the one we are interested in for the proof of Euler-
Jacobi integrability Theorem. Moreover, connected 2−dimensional manifolds
(i.e. surfaces) admit a quite general classification which allows to recover the
Proposition 22. Without presenting the whole classification, let’s just highlight
that smooth, orientable, connected and compact 2−dimensional manifolds are
homeomorphic either to S2 or to the connected sum of g 2−dimensional tori,
where g is the genus of M . Moreover, we know that

χ(M) = 2− 2g
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and since, in Euler-Jacobi integrability Theorem, the considered vector field is
supposed to be non-vanishing, follows that by Poincaré-Hopf Theorem χ(M) =
0. This implies that 2g = 2, i.e. g = 1. In particular, M is homeomorphic to
T2 ' S1 × S1.
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