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1 Recap one-step numerical methods

In this course we consider initial value problems (IVPs) defined by autonomous
Ordinary Differential Equations (ODEs) of the form{

ẋ(t) = F(x(t)) ∈ Rd

x(0) = x0 ∈ Rd.
(1)

We recall that the non-autonomous case can be reduced to this setting by in-
troducing the additional equation ṫ = 1. We will refer to the vector field F
interchangeably as a function F : Rd → Rd and as a smooth vector field, denot-
ing it as F ∈ X(Rd). F is supposed to be Lipschitz continuous, so that we can
guarantee the existence and uniqueness of the solution to (1).

Notation: In this notes, vectors are represented with bold symbols, like x.
Matrices are denoted with capital letters. For vector fields and sets we will use
calligraphic letters, such as F . To denote the exact flow map of a vector field
F : Rd → Rd we will use interchangeably ϕtF : Rd → Rd and ϕF : R×Rd → Rd,
where ϕtF (x) := ϕF (t,x).

Let us consider the time domain [0, T ], T > 0, and introduce a uniform
grid over it defined as ti = ih, i = 0, ..., N , h = T/N . A one-step numerical
method φh

F : Rd → Rd aims to provide an approximation of the exact flow map
ϕhF : Rd → Rd of the vector field F to which it is applied. Whenever it will be
clear from the context which vector field we are working with, we will omit the
subscript F , and write φh.

Definition 1 (Method of order p). A one-step numerical method φh : Rd → Rd

has order p if, whenever applied to a smooth enough vector field F : Rd → Rd,
it satisfies

φh
F = ϕhF +O(hp+1).

1.1 Runge–Kutta methods

The simplest numerical method one can consider is the explicit Euler method,
defined as

φh
F (x) = x+ hF(x).

By Taylor expanding the exact solution at t = 0, we see that

ϕhF (x) = x+ hF(x) +O(h2),

hence telling us that the explicit Euler method is first-order accurate. A gener-
alisation of this method is provided by the very popular family of Runge–Kutta
methods, with which we will work quite a lot. We provide the definition of these
methods for non-autonomous vector fields so it is presented in full generality.
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Definition 2 (Runge–Kutta method). Let us consider the non-autonomous
differential equation ẋ(t) = F(t,x(t)). A Runge–Kutta method of s stages based
on the tableau (A,b, c), A ∈ Rs×s, b, c ∈ Rs, is a one-step method defined as

xn+1 = xn + h

s∑
i=1

biF(tn + cih,kn,i)

kn,i = xn + h

s∑
j=1

aijF(tn + cjh,kn,j).

We call kn,i, i = 1, ..., s, the hidden stages of the method.

We will generally drop the subscript n in the stages. A Runge–Kutta method
is explicit if the matrix A in the tableau is stricly lower triangular. In this case
there is no need to solve a non-linear algebraic equation at every step of the
method. If the method is implicit, one can approximate the solution of the
non-linear algebraic equation associated to one step by using iterative methods
like Newton, or quasi-Newton schemes.

The study of the order conditions of Runge–Kutta methods is very well
developed, but it is out of the scope of this course. For the interested reader see
[14, 28]. In practice, the order conditions will amount to restrictions over the
tableau (A,b, c).

Even though the order conditions for a generic Runge–Kutta method are not
simple to derive, we can do that for an important subfamily of these methods:
collocation methods. We dedicate the last part of this introduction of one-step
methods to collocation methods because they have an interesting interpretation,
and they will be perfect examples of structure-preserving numerical methods.

1.2 Collocation methods

Let us now consider the differential equation ẋ = F(x), and suppose that we
have just obtained an approximate solution xn ≈ x(tn). We want to approxi-
mate the solution x(t) at time tn+1 = tn + h, so after one time step. To do so,
we make the assumption that in-between time t = tn and tn+1 = tn + h we can
approximate the solution with a polynomial of degree s. Let us call x̃ ∈ Ps(R)
this polynomial.

To characterise it, we enforce that x̃(tn) = xn, and that

˙̃x(tn + cih) = F(x̃(tn + cih)), i = 1, ..., s,

for a choice of s distinct numbers 0 ≤ c1 < c2 < ... < cs ≤ 1. These s + 1
conditions suffice to uniquely characterise a polynomial of degree s. We now
write explicitly the form of ˙̃x(t):

˙̃x(t) =

s∑
i=1

F(x̃(tn + cih))ℓi

(
t− tn
h

)
, (2)
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where ℓi(t) ∈ Ps−1(R) are the elementary Lagrange polynomials such that

ℓi(cj) = δij =

{
1, i = j,

0, i ̸= j.

We recall that these polynomials are defined as

ℓi(t) =

s∏
j=1
j ̸=i

t− cj
ci − cj

.

We now integrate both sides of (2) over the interval [tn, tn + cih] to get

x̃(tn + cih) = xn +

s∑
j=1

F(x̃(tn + cjh))

∫ tn+cih

tn

ℓj

(
t− tn
h

)
dt.

The change of variables t = tn + sh, allows us to rewrite the condition as

x̃(tn + cih) = xn + h

s∑
j=1

F(x̃(tn + cjh))

∫ ci

0

ℓj(s)ds,

which can be rewritten as

ki = xn + h

s∑
j=1

aijF(kj)

if we set

ki := x̃(tn + cih), aij :=

∫ ci

0

ℓj(s)ds.

Integrating (2) over [tn, tn + h], we instead find

x̃(tn + h) = xn + h

s∑
i=1

biF(ki),

where we set bi :=
∫ 1

0
ℓi(s)ds. We thus see that as long as we define x1 =

φh
F (x0) := x̃(t0 + h), we recover a one-step method of the Runge–Kutta type

with a suitably constrained tableau (A,b, c).
An important and common choice for the coefficients c1, ..., cs is the one

provided by Gauss-Legendre quadrature nodes. We call these methods Gauss-
Legendre collocation methods.

Before moving to the derivation of the order conditions, let us recall that a
quadrature rule based on these collocation points writes∫ t0+h

t0

f(t)dt = h

s∑
i=1

ωif(a+ cih) + err(f),

|err(f)| ≤ Ch2s+1 max
t∈[t0,t0+h]

|f (2s)(t)|,

6



where c1, ..., cs ∈ [0, 1] are the zeros of the s−th degree Legendre polynomial,
and ω1, ..., ωs are the weights of the quadrature rule. This quadrature rule is
exact for polynomials of degree 2s − 1, i.e., it is of order 2s. The first three
polynomials of such a kind, defined over [−1, 1], are

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1),

and a way to express them in general is given by Rodigues’ formula

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n.

Theorem 1 (Gauss-Legendre collocation methods). The Gauss-Legendre col-
location methods based on s collocation nodes are of order 2s when applied to a
smooth enough vector field F : Rd → Rd.

To prove this theorem, we need a formula which is very useful also for other
estimates. This is the Gröbner-Alekseev formula:

Proposition 1 (Gröbner-Alekseev Formula [14]). Let us consider the two au-
tonomous initial value problems{

ẋ(t) = F(x(t))
x(0) = x0

,

{
ẏ(t) = F(y(t)) + G(y(t))
y(0) = x0

with F ∈ C1(Rd,Rd), and supposing they both admit a unique solution. Then

y(t)− x(t) =

∫ t

0

∂ϕt−τ
F (z0)

∂z0

∣∣∣∣
z0=y(τ)

G(y(τ))dτ (3)

for every t ≥ 0.

Proof. Since the polynomial approximation x̃(t) is differentiable, it solves the
initial value problem{

˙̃x(t) = F(x̃(t)) +
(
˙̃x(t)−F(x̃(t))

)
˙̃x(tn) = xn

over the time interval [tn, tn+1]. Let us consider the initial value problem with
the same initial condition xn as above, but with the correct vector field F .
Call x the exact solution of this second problem. Using (3) with G(x̃(t)) :=
˙̃x(t)−F(x̃(t)), we can say that

x̃(tn+1)− x(tn+1) =

∫ tn+1

tn

∂ϕ
tn+1−t
F (z0)

∂z0

∣∣∣∣∣
z0=x̃(t)

(
˙̃x(t)−F(x̃(t))

)
dt

= h

∫ 1

0

∂ϕ
tn+1−(tn+sh)
F (z0)

∂z0

∣∣∣∣∣
z0=x̃(tn+sh)

(
˙̃x(tn + sh)−F(x̃(tn + sh))

)
ds.
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The integral on the right-hand side can be approximated with the Gauss-
Legendre quadrature rule associated to the s nodes c1, ..., cs, so to get

x̃(tn+1)− x(tn+1) = h

s∑
i=1

ωi
∂ϕ

tn+1−tn,i

F (z0)

∂z0

∣∣∣∣∣
z0=x̃(tn,i)

G(x̃(tn,i))︸ ︷︷ ︸
(#)

+O(h2s+1),

where ω1, ..., ωs are the Gauss-Legendre quadrature weights, and tn,i = tn+cih.
By the characterisation of the collocation polynomial x̃ in (2), we see that the
term (#) vanishes, and hence we can conclude the proof.

An example of Gauss-Legendre collocation method is the implicit midpoint
method, with tableau

A = 1/2, b = 1, c = 1/2,

and which writes

xn+1 = xn + hF
(
xn + xn+1

2

)
.

See [19, Chapter 3] for more details about collocation methods.

1.3 A-stable Runge–Kutta methods

Apart for the order of a Runge–Kutta method, another important aspect to
consider when to choose which method to implement is stability. There are
several ways to characterise the stability of a method. We now briefly recall the
notion of linear stability, or A-stability. In Section 6 we will also discuss the
non-linear stability or B-stability property.

Lemma 1 (Stability function of a Runge–Kutta method). Let us consider the
linear test equation ẋ(t) = λx(t), λ ∈ C. If we apply the s−stage Runge–Kutta
method φh of tableau (A,b, c) to it, we get the update xn+1 = R(λh)xn where
R(z) = 1+ zb⊤(I− zA)−11 is a rational function (quotient of two polynomials)
called the stability function of the method.

We remark that in the above lemma, 1 ∈ Rs is a vector of all ones.

Proof. We apply the Runge–Kutta method to the test equation to get

ki = xn + hλ

s∑
j=1

aijkj , xn+1 = xn + hλ

s∑
i=1

biki.

Let us define
k =

[
k1 · · · ks

]⊤
,

so that the conditions above turn into

k = xn1+ hλAk, xn+1 = xn + hλb⊤k. (4)
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This derivation allows us to conclude by replacing the expression for k in the
second equation:

xn+1 = xn + hλxnb
⊤(I − hλA)−11 = (1 + hλb⊤(I − hλA)−11)xn =: R(hλ)xn.

To show that R(z) is a rational function, we notice that, based on the Matrix
determinant Lemma [9, Lemma 1.1], R(z) corresponds to the determinant of
the rank-one perturbation of the identity

I + hλ(I − hλA)−11b⊤. (5)

The matrix in (5) can be rewritten as

(I − hλA)−1(I − hλA+ hλ1b⊤).

Thus, we can conclude R(z) is a rational function since

R(z) =
det(I − zA+ z1b⊤)

det(I − zA) . (6)

The rewriting (6) of R(z) as a rational function allows us to easily see that
for explicit methods R(z) is a polynomial of degree s since A ∈ Rs×s is strictly
lower triangular and hence det(I − zA) = 1.

A simple, but very important, consequence of Lemma 1, is that for a Runge–
Kutta method of order p one has

ez = R(z) + Czp+1 +O(zp+2) for z → 0

since x1 = ehλx0 ≈ R(hλ)x0 and x(t) = eλtx0 is the exact solution. The
constant C is usually ̸= 0. If not, we increase p until it becomes ̸= 0. This also
implies that R(z) provides a rational approximation of the exponential function
ez of order p and error constant C. Further, we can say that for an s−stage
explicit Runge–Kutta method of order p, one has

R(z) =

p∑
i=0

zi

i!
.

Exercise 1. Show that when the Runge–Kutta method φh with tableau (A,b, c)
is applied to the linear differential equation ẋ(t) = Bx(t), with B ∈ Rd×d, then
the update writes xn+1 = φh(xn) = R(hB)xn, where R(z) is the stability func-
tion of the Runge–Kutta method. (Hint: The main variation from the previous
proof is that to rewrite the scheme in as a single linear system as in (4), one
needs to use Kronecker products.)

Definition 3 (A-stable Runge–Kutta method). A Runge–Kutta method φh of
tableau (A,b, c) is A-stable if

C− := {z ∈ C : Re(z) < 0} ⊆ {z ∈ C : |R(z)| < 1} =: S.

We remark that since the stability function of explicit Runge–Kutta methods
is a polynomial, these methods can not be A-stable given that the stability region
S must be bounded.
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2 What is geometric integration and why do we
need it?

Geometric numerical integration focuses on preserving the geometric properties
of differential equations when approximating their solutions. These methods
are particularly important in the simulation of systems where properties like
energy, momentum, or phase-space volume need to be conserved for accurate
long-term behaviour.

We have seen in the previous section that Runge–Kutta methods can in
principle provide as accurate solutions as we need. In fact, we could either
restrict the step size h or increase the order of the method as much as we need
to get the desired approximation accuracy. Why do we hence need to look into
particular classes of methods if we can get as close as we need to the target
solution with “general purpose methods”?

In some applications, for example in molecular dynamics or astrophysics,
where one has to make simulations for very long time intervals. In this case, it
is not feasible to increase the cost of the time integrator by reducing its step size
or increasing its order, since the simulations would become excessively expensive.
In other situations, for example when we want to approximate the solutions of a
chaotic Hamiltonian system, where trying to accurately follow the solutions for
relatively long time intervals is essentially impossible due to the high sensitivity
of the solutions to input perturbations. In all these situations, the focus of
numerical methods is often moved to reproducing the qualitative properties of
the target solution, so to gain long-term stability and interpretability.

To provide an analogy, it is also fair to say that the field of dynamical
systems, as started by Poincaré, usually moves its focus to study the qualitative
behaviour of the solutions, rather than a quantitative analysis of them. This is
a similar change of perspective that distinguishes geometric numerical methods
from general purpose numerical methods.

We now motivate even further this need for geometric integrators with a
simple example. We consider the simple harmonic oscillator. This system has
equations

q̈(t) = −q(t) ⇐⇒
[
q̇(t)
ṗ(t)

]
=

[
p(t)
−q(t)

]
. (7)

Such a system is Hamiltonian, and we will study this class of systems later in
Section 5. In particular, this system has the quadratic conserved energy function

H(q, p) =
1

2

(
q2 + p2

)
(8)

since

d

dt
H(q(t), p(t)) = ∂qH(q(t), p(t))q̇(t) + ∂pH(q(t), p(t))ṗ(t)

= q(t)p(t)− p(t)q(t) = 0.
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Let us now consider the explicit Euler method, and analyse how the energy H
varies after doing one step with this method. The step writes

qn+1 = qn + hpn, pn+1 = pn − hqn.

The updated energy thus takes the form

E(qn+1, pn+1) =
1

2

(
q2n + p2n + h2(q2n + p2n) + 2hqnpn − 2hpnqn

)
= E(qn, pn) + h2E(qn, pn) = (1 + h2)E(qn, pn) > E(qn, pn).

Exercise 2. Repeat this calculation with the implicit Euler method, defined as

xn+1 = xn + hF(xn+1).

In general, for a one-step method φh of order p applied to a vector field
F : Rd → Rd having a conserved energy E : Rd → R which is sufficiently
regular, by simple Taylor expansion we have that

E(φh
F (xn)) = E(ϕhF (xn) +O(hp+1)) = E(ϕhF (xn)) +O(hp+1)

= E(xn) +O(hp+1).

However, there are some particular classes of methods that exactly conserve
quadratic energy functions like the one in (8). Just to anticipate a method
that we will see more in detail in the upcoming sections, the implicit Midpoint
method preserves exactly such a conserved energy. We can easily verify it for
the simple harmonic oscillator, since it is a linear system. The implicit Midpoint
applied to this equation writes

qn+1 = qn + h(pn + pn+1)/2, pn+1 = pn − h(qn + qn+1)/2.

We can rewrite the above update in the vector form

xn+1 = xn +
h

2
Jxn +

h

2
Jxn+1,

where

J =

[
0 1
−1 0

]
∈ R2×2

is the canonical symplectic matrix that we will study more in detail in Section
5. This leads to (

I − h

2
J
)
xn+1 =

(
I +

h

2
J
)
xn

and hence

xn+1 =

(
I − h

2
J
)−1(

I +
h

2
J
)
xn =:Mxn.

We now have
∥xn+1∥22 = x⊤

nM
⊤Mxn
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where

M⊤ =

(
I +

h

2
J
)⊤(

I − h

2
J
)−T

=J⊤=−J

(
I − h

2
J
)(

I +
h

2
J
)−1

.

This allows us to conclude that

M⊤M =

(
I − h

2
J
)(

I +
h

2
J
)−1(

I − h

2
J
)−1(

I +
h

2
J
)

=

(
I − h

2
J
)[(

I − h

2
J
)(

I +
h

2
J
)]−1(

I +
h

2
J
)

=J2=−I
1

1 + h2/4

(
I − h

2
J
)(

I +
h

2
J
)

=
1

1 + h2/4

(
I − h

2
J+

h

2
J+

h2

4
I

)
= I.

We will see that this is an example of a much broader family of methods having
similar properties.

Figure 1 shows a comparison of different integrators applied to the equations
in (7). As argued above, we see that only the implicit Midpoint method preserves
for long time the conserved quantity (8).

3 Deep neural networks and dynamical systems

Neural networks (NNs) are a class of machine learning methods. They can be
defined as parametric maps that we denote with Nθ, depending on a set of
parameters θ belonging to some space Θ. The space Θ can be a linear space
or a non-linear manifold. Throughout, we will always refer to Nθ as a map
between two linear spaces, i.e., Nθ : Rd → Rc for some c, d ∈ N. NNs are
generally expressed as the composition Nθ = FθL ◦ · · · ◦ Fθ1 , θ = (θ1, ..., θL), of
L parametric maps Fθi : Rdi−1 → Rdi , i = 1, ..., L, where d0 = d and dL = c.
L is the number of layers of the network, and it is usual to have the layers
Fθi to be similarly parametrised. More explicitly, these layers tend to consist
of linear maps after which a scalar function σ : R → R, called the activation
function, is applied to each of the input entries. Common examples of these
activation functions are ReLU(x) = max{0, x}, LeakyReLU(x) = max{ax, x}
for a ∈ (0, 1), the sigmoid function σ(x) = 1/(1 + exp(−x)), and the hyperbolic
tangent σ(x) = tanh(x).

Motivated by the resemblance of these (artificial) neural networks to bi-
ological ones, we call neurons the components of the vectors obtained while
processing the input vector with the network layers. Furthermore, we call neu-
ral network architecture the parametrisation strategy adopted to design the L
layers. Choosing the right architecture for a particular problem is crucial, as it
defines the search space in which the approximate solution to the problem will
be found. When the number of layers L is larger than two, we refer to Nθ as a
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Figure 1: Comparison of four integrators applied to the equation in (7), evaluat-
ing if they preserve the conserved quantity (8). The considered initial condition
is x0 = (1, 0).
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deep neural network. Deep Learning is the area of machine learning focused on
deep networks.

Once a model Nθ is chosen, i.e., an architecture is fixed, one needs to find
a good set of parameters θ that allow for Nθ to solve sufficiently accurately the
task of interest. The selection of the parameters is generally the result of the
approximate solution of an optimisation problem where a cost function, more
commonly called loss function, is minimised. This phase is called neural network
training.

The loss function can combine multiple terms that might or might not de-
pend on data. If the loss depends on data, we refer to the learning task as
supervised learning, otherwise as semi-supervised or unsupervised learning. We
will see both supervised and unsupervised examples throughout this course. The
loss function for each considered problem will be introduced when the problems
are discussed. Just to show a quite common example, let us consider the set-
ting in which we are interested in approximating an unknown target function
F : Rd → Rc of which we only have available some samples. The samples
can be organised into the training set {(xi,yi = F (xi))}i=1,...,N . In this situ-
ation, we define a generic neural network Nθ : Rd → Rc, without focusing on
the architecture for now, and we introduce the mean-squared error (MSE) loss
function

L(θ) = 1

N

N∑
i=1

∥Nθ(xi)− yi∥22 .

Just to fix the ideas, to find a good set of weights θ∗ ∈ Θ ⊂ Rp, we can proceed
with the simplest iterative method to minimise L(θ), i.e. gradient descent. This
method is based on the iteration

θ0 ← Initial guess / Random initialisation, (9)

θk+1 ← θk − τk∇L(θk), k = 0, ..., Nepochs. (10)

We set θ∗ = θNepochs
, and the trained modelNθ∗ can then be used to approximate

F for unseen inputs. The gradient descent algorithm is not used very often by
practitioners, but more efficient variants like Stochastic Gradient Descent (SGD)
or Adam are usually preferred. The problem

min
θ∈Θ
L(θ)

is generally a highly non-convex and high-dimensional optimisation problem
to solve. For this reason, it is also quite hard to mathematically analyse the
optimisation process, and for example determine how to initialise the weights or
which method to use. Some researchers are using dynamical systems theory to
get insights into this aspect of deep learning, thinking for example to the iterates
in (10) as steps with the explicit Euler method applied to the negative gradient
flow θ̇(t) = −∇L(θ). This is the first connection we can highlight between deep
learning and dynamical systems.

Another very relevant connection between dynamical systems and deep learn-
ing can be found in the process of designing new neural network architectures.
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In fact, we will now see that the layers of some architectures can be associated to
steps of a numerical method applied to a specific differential equation. We will
also see how this intuition allows us to build neural networks with some desired
structure, i.e., networks which by construction satisfy some desired property.
More explicitly, we will see in Section 5 how to build symplectic neural net-
works, and in Section 6 how to constrain the Lipschitz constant of a neural
network. Both these constrained networks will be inspired by dynamical sys-
tems and coming from the use of geometric numerical methods suitably used to
approximate their solutions.

Among the broad range of NN architectures, we will focus on Residual Neural
Networks (ResNets). ResNets are based on layers of the form

Fθi (x) = x+ Fθi (x) , (11)

where Fθi is a parametric function preserving the dimension of the input x. In
other words, ResNets rely on layers where the parameters come into play only in
the residual term Fθi (x) = Fθi (x)− x. Due to this restriction on the updates,
one layer of a ResNet has coinciding input and output dimensions. This way of
processing the input has been introduced in [16] to overcome the drawbacks of
feedforward neural networks, for which deeper networks generally tend to lead
to worse performance, contrary to what one would expect.

ResNets can be closely connected with discretisations of initial value prob-
lems. Indeed, one can see the map in (11) as one step of the explicit Euler
method with step size equal to 1 applied to the non-autonomous differential
equation {

ẏ(t) = F (y(t), θ(t))

y(ti) = x
, (12)

where Fθi (·) = F (·, θ(ti)), and ẏ(t) := d
dty(t). This connection between differ-

ential equations and neural network architectures allows us to borrow from the
fields of dynamical systems and numerical analysis to model neural networks be-
having as desired. More explicitly, we can generalise this intuition and consider
ResNet-like architectures defined as

Nθ = φhL

FθL
◦ · · · ◦ φh1

Fθ1
,

where φh
F is a numerical method we can choose and the vector fields Fθ1 , ...,FθL :

Rd → Rd are parametric vector fields we can also choose.
Depending on the choice of the numerical method φh

F : Rd → Rd and how
F is modelled, it is possible to obtain a different neural network architecture.
Furthermore, given that the dynamical system in (12) is only of interest for
modelling purposes, one can assume without loss of generality that θ : R → Θ
is piecewise-constant in time. This assumption leads to a piecewise autonomous
time-switching system.

Neural networks are parametric functions that aim to approximate an un-
known target map F : Rd → Rc. When a property is known to be satisfied
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by F , one may be interested in ensuring that the neural network also satisfies
that property. An example is a neural network approximating the solution of
a differential equation which is known to conserve the linear energy function
I(x) = 1⊤x, where 1 ∈ Rd is a vector of ones. In that case, to increase the
interpretability of the approximation, the network should reproduce this con-
servation property. We will see one way to get this in Section 4.

Furthermore, it might be that one does not know if the target function
has a peculiar structure while still being interested in approximating it with
a constrained map. This situation occurs, for example, when building neural
networks that can classify images while being robust to input perturbations.
In this case, it is not known how the perfect classifier behaves outside of the
training set of input-output labelled pairs. However, in Section 6, we show that
it is beneficial to model the neural network so that it has a small Lipschitz
constant, i.e., a reduced sensitivity to input perturbations.

We now introduce a methodology based on geometric integration to impose
a specific property over networks, i.e., to obtain structured neural networks.
We suppose this property is closed under function compositions as, for example,
when considering symplectic functions, functions from a manifoldM onto itself,
volume-preserving maps, or functions with a Lipschitz constant smaller than 1.
The first step is to design a family of parametric vector fields SΘ whose solutions
satisfy the target property. Here are a few examples:

1. For the preservation of a linear energy function I : Rd → R, one can adopt
the skew-gradient formulation

ẋ(t) = Fθ(x(t)) =
(
Aθ (x(t))−Aθ (x(t))

⊤
)
∇I (x(t)) ,

see [24], where Aθ is a matrix-valued neural network, see Section 4.

2. For symplectic neural networks, one can work with parametric Hamilto-
nian systems like ẋ(t) = Fθ(x(t)) = J∇Hθ (x(t)) ∈ R2d, for example by
setting Hθ (x) = c⊤σ (Ax+ b), A ∈ Rh×2d, b ∈ Rh, and c ∈ Rh, with
θ = (A,b, c), see Section 5.

3. For the 1−Lipschitz property, one can use contractive dynamical systems
like ẋ(t) = Fθ(x(t)) = −A⊤σ (Ax(t) + b), θ = (A,b), see Section 6.

Properly designing the vector fields is not enough. Indeed, one also needs
to choose a numerical method φh

Fθ
which reproduces the desired structure at a

discrete level. We will see how the numerical integrators φh
Fθ

discussed in the
course can be beneficial in this context.

The parametric set SΘ should be chosen so that its elements enable the
design of a network that accurately solves the task at hand. While for more
conventional neural networks many approximation theorems have been devel-
oped [7, 15, 18, 20, 23], less is known for more structured ones. There is ongoing
research in this area, but it goes out of the scope of this course.

For illustration purposes, and also to mention the third connection between
deep learning and dynamical systems, which is illustrated in Figure 2. This
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figure shows the results of a data-driven modelling task. These tasks generally
aim to approximate the flow map or the vector field of an unknown differential
equation based on available (observed) trajectory data and possibly some addi-
tional knowledge on the dynamics. To motivate the study of structured neural
networks, this experiment compares a symplectic neural network built following
this dynamical systems-based approach to an unconstrained ResNet. We train
the two networks, so they approximate the flow map ϕ0.1F of the simple harmonic
oscillator, a planar Hamiltonian system with Hamiltonian H(x) = ∥x∥22/2.

Such a dynamical system conserves the quadratic Hamiltonian function. The
constrained network, being symplectic, almost replicates this conservation law,
see Figure 2, leading to a much more stable long-term behaviour than with the
unconstrained ResNet.
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Figure 2: Comparison of the approximate solutions obtained with an uncon-
strained ResNet (left) and a symplectic neural network (right).

4 Methods conserving first integrals

We can say that there are two classes of one-step numerical methods preserving
first integrals (conservation laws): methods that preserve a broad class of first
integrals without having to know them, and methods that require the knowledge
of the first integral to preserve.

We now briefly introduce what is a differential equation with a first integral.
We then move to Runge–Kutta methods that preserve polynomial first integrals.
After showing a negative result on the existence of Runge–Kutta methods pre-
serving all first integrals of degree higher or equal than three, we will introduce
two other classes of methods that are built to preserve any targeted first integral:
projection and discrete gradient methods.

4.1 ODEs with a first integral

Definition 4 (First integral). A system of differential equations ẋ(t) = F(x(t)),
F ∈ X(Rd), admits a first integral I : Rd → R if and only if the function I
is constant along the solutions of the differential equation, i.e., I(ϕtF (x0)) =
I(x0) for any t ≥ 0 and x0 ∈ Rd. If I is continuously differentiable, we can

17



equivalently characterise a first integral by the condition

d

dt
I(ϕtF (x0)) = ∇I(ϕtF (x0)) ·

d

dt
ϕtF (x0) = ∇I(ϕtF (x0)) · F(ϕtF (x0)) = 0

for every t ≥ 0 and x0.

There are several systems admitting a first integral and they can be written
in the form

ẋ(t) = (A(x(t))−A(x(t))⊤)∇I(x(t)), (13)

since

F(x(t)) = F(x(t))∇I(x(t))
⊤ −∇I(x(t))F(x(t))⊤

∥∇I(x(t))∥22
∇I(x(t)).

For these systems, the level sets Ic = {x ∈ Rd : I(x) = c} are invariant with
respect to the flow map ϕtF , and it is sometimes desirable to have the same
property also at a discrete level. A reason why this could be interesting is for
stability/boundedness purposes, since if the level sets of I are compact and they
are numerically preserved, the discrete solution will also remain bounded. We
will also discuss in more detail a particular class of systems with a first integral,
which are Hamiltonian systems, in Section 5.

4.2 Polynomial invariants

4.2.1 Linear invariants

Theorem 2 (Conservation of linear first integrals). All explicit and implicit
Runge–Kutta methods conserve linear invariants.

Proof. We focus on the differential equation ẋ(t) = F(x(t)), and suppose it
admits the linear first integral I(x) = v⊤x, v ∈ Rd. In other words, we suppose
that v⊤F(x) = 0 for every x ∈ Rd.

Let us define the Runge–Kutta stages

ki = x0 + h

s∑
j=1

aijF(kj),

and the associated one-step update

x1 = x0 + h

s∑
i=1

biF(ki).

The proof can be concluded by the following derivation:

I(x1) = v⊤x0 + h

s∑
i=1

biv
⊤F(ki) = v⊤x0 = I(x0).
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Exercise 3. Implement the Runge–Kutta method you prefer, and verify that
when applied to the equations of the SIR model

Ṡ(t) = −βI(t)S(t),
İ(t) = βI(t)S(t)− γI(t),
Ṙ(t) = γI(t),

it preserves the linear invariant E(S, I,R) = S + I +R.

4.2.2 Quadratic invariants

We now focus on quadratic functions of the form Q(x) = x⊤Cx with C ∈ Rd×d

symmetric. This is a generic enough quadratic function since if we manage to
conserve it, we will also be able to conserve something like Q̃(x) = x⊤Cx+v⊤x
by linearity and Theorem 2.

Remark 1. The theorem and proof we are going to see now are very important
since we will use similar techniques and definitions also for the subsequent topics.

Theorem 3 (Conservation of quadratic first integrals). Let us consider a Runge–
Kutta method with tableau determined by the triple (A,b, c). Let us define the
matrices B = diag(b) and M = BA + A⊤B − bb⊤. If M = 0s×s then the
Runge–Kutta method under consideration conserves quadratic first integrals.

Before moving to the proof, we explicitly write down the entry mij of the
matrix M ∈ Rs×s:

mij = biaij + ajibj − bibj .

Proof. Let us focus on the differential equation ẋ(t) = F(x(t)) and suppose
it admits the first integral Q(x) = x⊤Cx, i.e., that x⊤CF(x) = 0 for every
x ∈ Rd. The hidden stages of the Runge–Kutta method under consideration
write

ki = x0 + h

s∑
j=1

aijF(kj), (14)

leading to the update x1 = x0 + h
∑s

i=1 biF(ki). We now expand Q(x1) to get

Q(x1) = x⊤
1 Cx1 = Q(x0) + h2

s∑
i,j=1

bibjF(ki)
⊤CF(kj) + 2h

s∑
i=1

bix
⊤
0 CF(ki).

(15)
We now notice that, from (14), we can express x0 in s different ways as

x0 = ki − h
s∑

j=1

aijF(kj).
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We replace this i-dependent rewriting in the last term of (15), to get

Q(x1) = x⊤
1 Cx1 = Q(x0) + h2

s∑
i,j=1

bibjF(ki)
⊤CF(kj)

+ 2h

s∑
i=1

bik
⊤
i CF(ki)︸ ︷︷ ︸

=0

−2h2
s∑

i,j=1

biaijF(kj)
⊤CF(ki)

= Q(x0) + h2
s∑

i,j=1

bibjF(ki)
⊤CF(kj)− h2

s∑
i,j=1

biaijF(kj)
⊤CF(ki)

− h2
s∑

i,j=1

bjajiF(ki)
⊤CF(kj)

= Q(x0)− h2
s∑

i,j=1

mijF(ki)
⊤CF(kj) = Q(x0)

if mij = 0 for every i, j ∈ {1, ..., s}.

Example 1. An example of a Runge–Kutta method which preserves quadratic
first integrals is the implicit mid-point method, which has tableau

A = 1/2, b = 1, c = 1/2,

and writes

x1 = x0 + hF
(
x0 + x1

2

)
.

In this case, in fact, one has

M = BA+A⊤B − bb⊤ = 1/2 + 1/2− 1 = 0.

The implicit mid-point is a particular case of a more general family of meth-
ods preserving quadratic first integrals, as we argue in the following proposition.

Proposition 2. All Gauss-Legendre collocation methods preserve quadratic first
integrals.

Proof. The proof does not aim to show that these methods satisfy the assump-
tions of Theorem 3, but we use the main properties of collocation methods.

Let u(t) be the polynomial approximation of the solution provided by the
collocation method over the time interval [tn, tn+1 = tn + h]. Let us consider
the function q(t) := Q(u(t)) = u(t)⊤Cu(t), which has time derivative

d

dt
q(t) = 2u̇(t)⊤Cu(t).

20



We thus have

q(tn+1) = q(tn) +

∫ tn+h

tn

q̇(t)dt (16)

= q(tn) + 2h

∫ 1

0

u̇(tn + sh)⊤Cu(tn + sh)ds (17)

Recalling that Gaussian quadrature rules based on s quadrature nodes are exact
for polynomials up to degree 2s − 1, and that u(t) is of degree s, we conclude
that the integral in (17) can be exactly computed by Gaussian quadrature since
u̇(t)⊤Cu(t) ∈ P2s−1(R). Thus, we get

q(tn+1)− q(tn) = 2h
s∑

i=1

u̇(t0 + cih)
⊤Cu(t0 + cih)

= 2h

s∑
i=1

F(u(t0 + cih))
⊤Cu(t0 + cih) = 0,

which allows us to conclude the proof since q(tn+1) = Q(xn+1) and q(tn) =
Q(xn).

Example 2 (Free rigid body). An interesting example in this case is provided
by the equations of motion of a free rigid body, which can be written as

ẋ(t) =

 0 x3/I3 −x2/I2
−x3/I3 0 x1/I1
x2/I2 −x1/I1 0

x(t),

and hence have the quadratic first integral Q(x) = ∥x∥22. They also conserve
another first integral which is still quadratic: Q̃(x) = x⊤I−1x where I =
diag(I1, I2, I3) ∈ R3×3.

Exercise: Approximate the solution of a free rigid body by using the implicit
Midpoint method and verify that the two first integrals are both preserved. What
does this imply?

4.3 Higher-degree polynomials

PROBLEM: We now show that, for n ≥ 3, there is no Runge–Kutta method
that can conserve all the polynomial invariants of degree n. We will thus need to
look for other families of numerical methods to preserve them and also generic
non-polynomial first integrals.

To prove this result, we need a few preliminary lemmas.

Lemma 2. If trace(B(Y )) = 0 for every Y ∈ Rd×d, then g(Y ) = det(Y ) is a
first integral of the matrix differential equation Ẏ = B(Y )Y , B(Y ), Y ∈ Rd×d.
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Proof. We first notice that, taken h≪ 1, it follows

det(Y + hBY ) = det((I + hB)Y ) = det(I + hB)det(Y )

= (1 + htrace(B) +O(h2))det(Y ).

Thus,

d

dt
g(Y (t)) = lim

h→0

det(Y (t+ h))− det(Y (t))

h

= lim
h→0

det(Y (t) + hB(Y (t))Y (t))− det(Y (t))

h

= trace(B(Y (t))det(Y (t)),

or, more synthetically, g′(Y )(BY ) = trace(B)det(Y ). This derivation implies
that g(Y ) = det(Y ) is a first integral of the differential equation if trace(B(Y )) =
0 for all Y .

We recall that for a matrix Y ∈ Rd×d, g(Y ) = det(Y ) is a polynomial
function of degree d in the entries of Y . We will now show that no Runge–
Kutta method can conserve such a first integral for d ≥ 3.

Lemma 3. Let R(z) be a differentiable function defined in a neighbourhood of
z = 0, and assume that R(0) = 1 and R′(0) = 1. Then, for d ≥ 3, det(R(B)) =
1 for all B ∈ Rd×d with trace(B) = 0 if and only if R(z) = ez.

Proof. Let us first assume R(z) = ez. Then R(tB) = exp (tB) is the exact
time−t solution of the initial value problem Ẏ (t) = BY (t), Y (0) = I. Thus, if
trace(B) = 0 it follows by the previous lemma that

det(R(B)) = det(Y (1)) = det(Y (0)) = det(I) = 1.

For the only if part, we consider matrices of the form

B = diag(µ, ν,−(µ+ ν), 0, ..., 0),

with µ, ν close enough to zero. In this way, we have trace(B) = 0. Applying
R(z) we get

R(A) = diag(R(µ), R(ν), R(−(µ+ ν)), R(0), ..., R(0)).

Assuming that det(R(B)) = 1 implies that

R(µ)R(ν)R(−(µ+ ν)) = 1

for all µ, ν close to zero. We also notice that R(−µ) = 1/R(µ), simply by setting
ν = 0. Thus,

R(µ)R(ν) = R(µ+ ν).

Let us now exploit this derivation to see that

R(µ+ h)−R(µ)
h

=
R(µ)R(h)−R(µ)

h
= R(µ)

R(h)− 1

h
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for µ and h sufficiently close to zero. In conclusion, if we take the limit as h→ 0,
we can conclude that

R′(µ) = lim
h→0

R(µ+ h)−R(µ)
h

= R(µ)R′(0) = R(µ)

for every µ sufficiently close to zero. This implies R(µ) = eµ as desired.

Lemma 4 (Solution to Exercise 1). Let us consider the linear ODE ẋ(t) =
Bx(t), B ∈ Rd×d, and the s-stages Runge–Kutta method of tableau (A,b, c).
Then, the update map φh(x) is defined as φh(x) = R(hB)x, where R is the
stability function of the method.

Proof. We first write in vector form the update. We have

xn+1 = φh(xn) = xn + h
s∑

i=1

biBki, ki = xn + h

s∑
j=1

aijBkj .

We now introduce the vector

k =

k1

...
ks

 ∈ Rds,

which allows us to express the update map φh as follows

(Ids − hA⊗B)k = 1s ⊗ xn =⇒ k = (Ids − hA⊗B)−11s ⊗ xn,

xn+1 = xn + h(b⊤ ⊗B)k = xn + h(b⊤ ⊗B)(Ids − hA⊗B)−11s ⊗ xn

First of all, we notice that in the scalar case, we can also write

R(z) = 1 + (b⊤ ⊗ z)(Is − z ⊗A)−11s,

showing that the expression above can be seen as R(hB). To show this extension
makes sense, let us suppose h∥A⊗B∥ < 1 for some sub-multiplicative norm ∥·∥.
We can thus simplify this expression by using the series expansion

(Ids − hA⊗B)−1 =
∑
k≥0

hk(A⊗B)k =
∑
k≥0

hkAk ⊗Bk,

which, coupled with the property (M1 ⊗ N1)(M2 ⊗ N2) = (M1M2) ⊗ (N1N2),
leads to

xn+1 = xn+
∑
k≥0

hk+1 (b⊤Ak1s)︸ ︷︷ ︸
∈R

⊗Bk+1xn =

1 +
∑
k≥0

(b⊤Ak1s)h
k+1Bk+1

xn.

We can now conclude by noticing that, in the scalar case, if |z| < 1, one has

R(z) = 1 + zb⊤(Is − zA)−11s = 1 + zb⊤∑
k≥0

zkAk1s = 1 +
∑
k≥0

(b⊤Ak1s)z
k+1,

and hence xn+1 = R(hB)xn as desired.
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Theorem 4. For d ≥ 3, no Runge–Kutta method can conserve all polynomial
first integrals of degree d.

Proof. Let us consider the linear matrix differential equation Ẏ = BY , Y ∈
Rd×d, where trace(B) = 0. Based on Lemma 2, we know that g(Y ) = det(Y ) is
a degree d polynomial first integral for the system. If we apply the Runge–Kutta
method of tableau (A,b, c) to this system, we get

Y1 = R(hB)Y0

where R(z) = 1 + zb⊤(I − zA)−11. By Lemma 3 we conclude that it is not
possible to have det(R(hB)) = 1 for all B with trace(B) = 0 because otherwise
we would have R(z) = ez, which is never true. Thus, there is a choice of B for
which det(Y1) ̸= det(Y0).

4.4 Methods preserving generic first integrals

The methods we are going to see now belong two classes: projection methods
and discrete gradient methods. Both of these families of methods rely on the
knowledge of the first integral to be preserved, and the method is built in such
a way that we can preserve the level sets of this target function.

4.4.1 Projection methods

We can reformulate the problem of preserving the invariant function I : Rd → R
into something much more generic. Conserving a first integral indeed means
preserving its level sets. More precisely, let us suppose to start from the initial
condition x0, then what we really want to do is ensure that the updated positions
we get starting there remain on the (non-linear) manifold

Mx0 :=
{
x ∈ Rd : g(x) := I(x)− I(x0) = 0

}
⊂ Rd,

which has dimension d − 1. We can thus interpret this desired result as a
constraint over the numerical method.

After one step starting at x0, a generic one-step method will exit the manifold
Mx0

, but we will not get “too far” from it. We can then project back the
obtained point to the correct level set. This is the main idea behind projection
methods, also illustrated in Figure 3. We now formalise the definition of these
methods and provide an example for a simple conserved quantity.

Let us consider an arbitrary one-step method φh : Rd → Rd of order p, for
example a Runge–Kutta method. We define a projection method based on φh

as follows:
x̃1 = φh(x0), x1 := ΠMx0

(x̃1),

where
ΠMx0

(x̃1) := arg min
y∈Mx0

∥y − x̃1∥2 .
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Figure 3: Illustration of one step of a projection method based on the one-step
method φh : Rd → Rd.

A practical way to compute these terms, is by defining

x1(λ) = x̃1 + λ∇I(x̃1),

and looking for a λ∗ ∈ R such that x1(λ∗) ∈ Mx0 , i.e., I(x1(λ∗)) = I(x0). We
also remark that if I is smooth enough, one has

I (x̃1) = I
(
ϕh(x0) +O(hp+1)

)
= I

(
ϕh(x0)

)
+O

(
hp+1

)
= I (x0) +O

(
hp+1

)
,

and hence λ0 = 0 tends to be a good initial guess for the iterative method we
have to use to solve the (non-linear) algebraic equation to satisfy the constraints.

Example 3. For the case I(x) = ∥x∥22/2, we have ∇I(x) = x, and hence
x1(λ) = (1 + λ)φh(x0). The preservation of the first integral is then equivalent
to

(1 + λ)2
∥∥φh(x0)

∥∥2
2
= ∥x0∥22 ,

which implies

λ = −1± ∥x0∥2
∥φh(x0)∥2

.

Since when h = 0 we would like to recover λ = 0, we choose the plus sign, hence
getting the projection method

x1 =
φh(x0)

∥φh(x0)∥2
∥x0∥2 .

This approach easily extends to more than a single first integral. Let us sup-
pose that the vector field F : Rd → Rd admits n < d functionally independent
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first integrals I = (I1, ..., In) : Rd → Rn. This means that

I(ϕtF (x0)) = I(x0), ∀t ≥ 0,

dim
{
x ∈ Rd : I(x) = c

}
= d− n ∀c ∈ range(I),

or equivalently rank(∂xI(x)) = n for every x where ∂xI(x) is well defined. In
this case, we can define a projection method preserving the level sets of I, i.e.,
the joint level sets of I1, ..., In, as follows:

x̃1 = φh(x0),

x1(λ) = x̃1 + (∂x̃1
I(x̃1))

⊤
λ, λ ∈ Rn.

Lemma 5 (Existence of a λ). Let F : Rd → Rd be a vector field with n
functionally independent first integrals collected in I : Rd → Rn. Consider the
projection method defined above based on the one-step method φh : Rd → Rd.
Then there exists an interval [0, h̄] ⊂ R and a function λ : [0, h̄]→ Rn such that

F (h,λ(h)) := g(x1(λ(h))) = I
(
φh(x0) + ∂xI(φ

h(x0))
⊤λ(h)

)
−I(x0) = 0 (18)

for all h ∈ [0, h̄], and λ(0) = 0.

Proof. The proof is based on the implicit function theorem. We first notice that
F (0, 0) = 0 since x1(λ(0)) = x0. Furthermore,

∂λF (h,λ)|(h,λ)=(0,0) = ∂x0I(x0)∂x0I(x0)
⊤ ∈ Rn×n, (19)

which is invertible by the functional independency assumption. Thus, by the
implicit function theorem, there is an interval [0, h̄] and a function λ = λ(h)
playing the desired role.

Lemma 6 (Order of projection methods). Let F : Rd → Rd be a vector field
admitting n functionally independent first integral collected in I : Rd → Rn. Let
φh : Rd → Rd be an order p one-step method, where h is a small enough step
size so that Lemma 5 ensures the existence of λ = λ(h). Then, the projection
method we defined above still is an order p method.

Proof. Let us expand F , defined as in (18), at λ = 0, to get

F (h,λ∗) = F (h, 0) + (∂λF (h,λ)|λ=0)λ∗ +O(∥λ∗∥22).
We can then notice that

F (h, 0) = I(φh(x0))− I(x0) = O(hp+1),

∂λF (h,λ)|λ=0 = ∂λF (0,λ)|λ=0 +O(h).
Combining these results together with (19), we can conclude that

0 = F (h,λ(h)) = O(hp+1)+λ(h)O(h)+∂x0
I(x0)∂x0

I(x0)
⊤λ(h)+O(∥λ(h)∥22),

which implies that λ(h) ∈ O(hp+1) and hence

x1(λ(h)) = ϕhF (x0) +O(hp+1)

as desired.
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Typically projection methods are not so well seen in the community of geo-
metric integration, because even though effective in preserving the conservation
laws, they tend to break any other property the base method φh might have
had (e.g., preserving linear invariants, being symplectic, or being volume pre-
serving).

4.4.2 Discrete gradient methods

The last class of energy preserving methods we are going to see are discrete
gradient methods. These are based on rewriting the vector field F : Rd → Rd

in a convenient way, which is the skew-gradient formulation we have already
mentioned. More explicitly, we rewrite them as

F(x) = S(x)∇I(x), Rd×d ∋ S(x)⊤ = −S(x),

where I : Rd → R is known to be a first integral of F . Discrete gradient methods
are all implicit. They are based on the notion of discrete gradient, which we
now define.

Definition 5 (Discrete gradient). Let I : Rd → R be a scalar valued con-
tinuously differentiable function. A discrete gradient of I is a function ∇I :
Rd × Rd → Rd such that

1. limy→x∇I(x,y) = ∇I(x), for all x ∈ Rd,

2. ∇I(x,y)⊤(y − x) = I(y)− I(x) for all x,y ∈ Rd.

We now provide three examples of discrete gradients:

1. Average Vector Field (AVF) :

∇I(x,y) :=
∫ 1

0

∇I ((1− s)x+ sy) ds, (20)

2. Gonzalez:

∇I(x,y) := ∇I
(
x+ y

2

)
+
I(y)− I(x)− (y − x)⊤∇I

(
x+y
2

)
∥y − x∥22

(y − x),

(21)

3. Itoh-Abe:

∇I(x,y) :=


I(y1,x2,...,xd)−I(x)

y1−x1
I(y1,y2,x3,...,xd)−I(y1,x2,x3,...,xd)

y2−x2

...
I(y)−I(y1,...,yd−1,xd)

yd−xd

 . (22)

Proposition 3 (AVF is a discrete gradient). Let I : Rd → R be a smooth
function. Then the AVF map (20) is a well-defined discrete gradient.
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Proof. First, let us notice that

I(y)− I(x) =
∫ 1

0

d

ds
I((1− s)x+ sy)ds

=

∫ 1

0

∇I((1− s)x+ sy)⊤(y − x)ds = ∇I(x,y)⊤(y − x)

as desired. Furthermore,

lim
y→x
∇I(x,y) =

∫ 1

0

lim
y→x
∇I((1− s)x+ sy)ds = ∇I(x).

Proposition 4 (Gonzalez is a discrete gradient). Let I : Rd → R be a smooth
function. Then the Gonzalez map (21) is a well-defined discrete gradient.

Proof. By direct calculation we see that

∇I(x,y)⊤(y − x) = ∇I
(
x+ y

2

)⊤
(y − x)

+
I(y)− I(x)− (y − x)⊤∇I

(
x+y
2

)
∥y − x∥22

∥y − x∥22

= ∇I
(
x+ y

2

)⊤
(y − x)

+ I(y)− I(x)− (y − x)⊤∇I
(
x+ y

2

)
= I(y)− I(x).

To check the consistency condition, we notice that

I(y) = I(x) + (y − x)⊤∇I(x) +O(∥y − x∥22)

and hence ∣∣∣∣I(y)− I(x)− (y − x)⊤∇I (x)
∥y − x∥22

∣∣∣∣ ≤ c
for some c > 0 as ∥y − x∥2 → 0. This implies that

lim
∥y−x∥2→0

∇I(x,y) = ∇I(x)

as desired.

Proposition 5 (Itoh-Abe is a discrete gradient). Let I : Rd → R be a smooth
function. Then the Itoh-Abe map (22) is a well-defined discrete gradient.
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Proof. We start by calculating

(y − x)⊤∇I(x,y) = (y − x)⊤


I(y1,x2,...,xd)−I(x)

y1−x1
I(y1,y2,x3,...,xd)−I(y1,x2,x3,...,xd)

y2−x2

...
I(y)−I(y1,...,yd−1,xd)

yd−xd


= (I(y1, x2, ..., xd)− I(x))
+ (I(y1, y2, x3, ..., xd)−I(y1, x2, x3, ..., xd))
+ ...

+ (I(y)− I(y1, ..., yd−1, xd)) = I(y)− I(x),
since the mixed terms cancel out, as pointed out for example for the pair in red.

The consistency condition is easy to verify since, if we focus for example on
the i−th entry we have

lim
hi→0

I(x1, ..., xi−1, xi + hi, xi+1, ..., xd)− I(x)
hi

= ∂xi
I(x),

where we wrote yi = xi + hi. Thus, the full vector converges to ∇I(x) given
that its components converge to the correct partial derivatives.

Once we choose a discrete gradient ∇I, we can define the associated discrete
gradient method

xn+1 = xn + hS(xn,xn+1)∇I(xn,xn+1), (23)

where S : Rd×Rd → Rd×d is such that S(x,x) = S(x) and for every x,y ∈ Rd,
one has S(x,y)⊤ = −S(x,y).
Proposition 6. The scheme in (23) conserves the first integral I : Rd → R of
F : Rd → Rd.

Proof. The proof follows by direct calculation. First, by one of the properties
of discrete gradients we see that

I(xn+1)− I(xn) = ∇I(xn,xn+1)
⊤(xn+1 − xn).

Replacing the expression for xn+1 − xn defined by (23), we can see that

I(xn+1)− I(xn)

h
= ∇I(xn,xn+1)

⊤S(xn,xn+1)∇I(xn,xn+1) = 0

by the skew-symmetry of S(xn,xn+1).

Let us focus on a particularly interesting class of systems, i.e., polynomial
differential equations with a polynomial first integral. Fix a skew-symmetric
matrix S ∈ Rd×d and a polynomial function I : Rd → R. Consider then the
dynamics

ẋ(t) = F(x(t)) := S∇I(x(t)). (24)

By construction, I is a first integral of the system.
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Proposition 7. Let b1, ..., bs and c1, ..., cs define a quadrature formula of poly-
nomial order m − 1. Consider the equation (24) with I a polynomial of degree
m. Then the s−stages Runge–Kutta method

xn+1 = xn + h

s∑
i=1

biF(xn + ci(xn+1 − xn))

exactly conserves I.

Proof. Since I is a polynomial of degree m, the vector field F(x) = S∇I(x),
being based on its gradient, will have components which are polynomials of
degree m− 1. Thus,

h

s∑
i=1

biF(xn + ci(xn+1 − xn)) = h

s∑
i=1

biF((1− ci)xn + cixn+1)

=

∫ 1

0

F((1− s)xn + sxn+1)ds.

We can thus rewrite the Runge–Kutta method as

xn+1 = xn + hS∇I(xn,xn+1)

where ∇I is the AVF discrete gradient of I. This allows to conclude the proof.

In this section we have shown how discrete gradient methods can be used to
preserve first integrals. With minor changes, we can also apply these methods
to dissipate some target function along the numerical solution. This could be
useful when minimising a loss function, for example in the training procedure
of a neural network. Let us focus, for simplicity, on the differential equation
leading to the gradient descent updates, i.e., the negative gradient flow

ẋ(t) = −∇V (x(t)),

where V : Rd → R is an L−smooth convex and continuously differentiable
function. For this class of equations, (23) is slightly changed to

xn+1 = xn − h∇V (xn,xn+1),

since instead of conserving the function V : Rd → R we want to dissipate V .
We can in fact immediately verify that

V (xn+1)− V (xn) = ∇V (xn,xn+1)
⊤(xn+1 − xn) = −h

∥∥∇V (xn,xn+1)
∥∥2
2
≤ 0,

and hence the target loss function is guaranteed to be decreased at every step
of the update.
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4.5 Neural networks conserving linear and quadratic first
integrals

A relatively simple property to impose over a ResNet is mass preservation. By
mass preservation, we refer to the conservation of the sum of the components
of a vector (see [3]). This property is typical of semi-discretisations of mass-
preserving PDEs, models for chemical reactions, population dynamics, and ecol-
ogy (see, e.g. [17, 6, 25]). More explicitly, one could be interested in imposing
such a structure if the goal is to approximate a function F : Rd → Rc that is
known to satisfy Tdx :=

∑d
i=1 xi = TcF (x) :=

∑c
j=1 F (x)j . A simple way to

impose such property is by approximating the target function F : Rd → Rc as

F (x) ≈
∑d

i=1 xi∑c
j=1 F̃ (x)j

F̃ (x)

where F̃ : Rd → Rc is any sufficiently expressive neural network. However,
this choice might lead to hard training procedures because of the denominator.
Imposing this structure at the level of network layers is not so intuitive in
general. Hence, we rely again on a suitable ODE formulation. A vector field
F : Rd → Rd whose flow map preserves the sum of the components of the state
vector is one having a linear first integral I(x) = 1⊤x =

∑d
i=1 xi. Thus, we can

design vector fields of the form

ẋ(t) =
(
A(x)−A(x)⊤

)
1, A : Rd → Rd×d, (25)

having exact flow map ϕtF for which I(ϕtF (x0)) = I(x0) for any x0 ∈ Rd and
t ≥ 0. To model these vector fields, we can work with parametric functions like
B2σ(B1x+b1) ∈ Rd(d−1)/2 and use them to build the upper triangular matrix-
valued function A in (25). An alternative parametrisation strategy could be

Fθ(x) = F̂θ(x)−
1

d

(
1⊤F̂θ(x)

)
1,

where F̂θ : Rd → Rd can be any parametric vector field, e.g. any neural network.
This mass conservation could also be extended to weighted-mass conserva-

tion, and we would have to replace 1 with a vector of weights α. However, this
extension does not allow the dimensionality to change from one layer to the next
as easily. Imposing this property at a discrete level is also fairly simple since
every Runge–Kutta method preserves linear first integrals without time-step re-
strictions. Thus, a possible strategy to model mass-preserving neural networks
is based on combining layers of the following types:

1. Lifting layers: L : Rk → Rk+s, L(x1, . . . , xk) = (x1, . . . , xk, 0, 0, . . . , 0),

2. Projection layers: P : Rk+s → Rk, P (x1, . . . , xk, xk+1, . . . , xk+s) = (x1 +
o, . . . , xk + o), with o =

∑s
i=1 xk+i/s,

3. Dynamical blocks: single steps of the explicit Euler method applied to
(25).
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To test this neural network architecture, we focus on the approximation of the
flow map of the SIR model

ẋ =
[
−x1x2 x1x2 − x2 x2

]⊤
= F(x)⊤. (26)

This experiment relates to the research area of data-driven modelling, which
has attracted a high amount of interest in recent years, especially through the
tools provided by machine learning. We model the neural network as discussed
above. We approximate the 1−flow map of (26) working with pairs of the form
{(xi

0,x
i
1 = φ1

F (x
i
0))}i=1,...,N

1. In this context, we suppose it is not possible to
integrate in time the system of ODEs because we have no access to it. What is
provided is just a set of observed trajectories. The plots in Figure 4 represent
the first two components of the solution for the SIR model. All the line seg-
ments connect the components of the initial conditions with those of the time-1
updates. The considerable benefit of mass preservation as a constraint is that
it allows interpretable outputs. Indeed, in this case, the components of x rep-
resent the percentages of three species in the total population, and the network
we train still allows us to get this interpretation to be mass-preserving.

0.0 0.2 0.4 0.6 0.8 1.0
Time
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y 2

Time evolution of y2
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Predicted Position

Figure 4: Plots of the approximation of the time 1−flow map of the SIR model
(26) for 10 test initial conditions. We report the first two components of the
solutions. Each point represents either an initial condition (at time 0), or a
time-1 update.

In a similar fashion, we could also build ResNets based on dynamical systems
that preserve a quadratic first integral. We can for example use the projection
method we derived in Section 4. Following the same procedure seen above,
we can define a parametrised vector field Fθ : Rd → Rd which is tangent to
Euclidean spheres, meaning that it conserves the quadratic energy function
E(x) = ∥x∥22/2. To do so, an option is to model it as

Fθ(x) = F̂θ(x)−
F̂θ(x)

⊤x

1⊤x
1, (27)

1Here with φ1
F (xi

0) we refer to an accurate approximation of the time-1 flow map of F
applied to xi

0
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for an unconstrained parametric vector field F̂θ : Rd → Rd. In fact, with the
parametrisation in (27), we have

x⊤Fθ(x) = x⊤F̂θ(x)−
F̂θ(x)

⊤x

1⊤x
1⊤x = 0.

We could then define a layer of a ResNet by performing one step with a projec-
tion method applied to Fθi , getting

Fθi(x) =
φh
Fθi

(x)

∥φh
Fθi

(x)∥2
∥x∥2,

where for example we could choose φh
Fθi

(x) = x+ hFθi(x).

5 Symplectic methods

5.1 Introduction to Hamiltonian systems

Especially in physics, many systems can be described through the Lagrangian
and Hamiltonian formalisms. We briefly present these two formalisms in the
case of systems defined on a linear space.

The Lagrangian description of a conservative system is based on a La-
grangian function L : TRd → R, where TRd ≃ R2d is the tangent bundle of
Rd. A generic point of TRd is represented by its generalised coordinates (q, q̇).
The equations of motion of Lagrangian systems are defined by the second-order
system

d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) = 0,

which can be obtained following a variational principle. One can then introduce
the Legendre transform

(q,p) := FL (q, q̇) =

(
q,
∂L

∂q̇
(q, q̇)

)
,

which we now suppose is a diffeomorphism, and provide a change of variables
between the tangent bundle TRd ≃ R2d and the cotangent bundle T ∗Rd ≃ R2d,
where the pair (q,p) belongs. This change of variables allows one to define the
conjugate momentum p and introduce the Hamiltonian formalism based on the
Hamiltonian energy

H(q,p) = (p · q̇− L (q, q̇))
∣∣∣
(q,q̇)=(FL)−1(q,p)

.

Several systems admit a Lagrangian function that takes the form

L (q, q̇) =
1

2
q̇⊤M(q)q̇− U(q),
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where M(q) defines a metric on Rd. For these systems, the Hamiltonian reads

H(q,p) =
1

2
p⊤M−1(q)p+ U(q).

The Hamiltonian H is separable if M is independent of q. More generally, a
Hamiltonian function H : T ∗Rd → R is called separable if it is the sum of two
terms depending only on one of the two variables, i.e., either on q or on p.
We will exploit this structure to build some explicit symplectic methods in the
upcoming part of this section.

The Hamiltonian equations of motion with respect to the canonical symplec-
tic structure of R2d are [

q̇
ṗ

]
= J∇H(q,p) =: XH(q,p), (28)

where

J =

[
0 I
−I 0

]
∈ R2d×2d

is the canonical symplectic matrix of R2d, and I, 0 ∈ Rd×d are the identity and
the zero matrices respectively. The equations in (28) could be more abstractly
introduced using the formalism of differential forms. These equations provide
the coordinate representation of those more general equations, and in this sec-
tion we will only use this coordinate representation which is convenient since
we are working with a linear configuration manifold, i.e., Rd.

Hamiltonian systems have several interesting geometric and dynamic proper-
ties. First of all they are in the skew-gradient form (13), hence they conserve the
energy function H. But even more importantly, they preserve a skew-symmetric
bilinear form called the canonical symplectic form Ω : R2d × R2d → R defined
as

Ω(v,w) := v⊤Jw.

A map preserving Ω is said to be symplectic. A matrix A ∈ R2d×2d is symplectic
if and only if it satisfies A⊤JA = J and similarly we say the linear map L(x) =
Ax symplectic. Instead, we say a non-linear differentiable map F : R2d → R2d

to be symplectic if for every x ∈ R2d it holds

F ′(x)⊤JF ′(x) = J, (29)

where F ′(x) ∈ R2d×2d is the Jacobian matrix of F evaluated at x. Equivalently,
F is symplectic if it infinitesimally preserves Ω since (29) is equivalent to say

Ω(F ′(x)v, F ′(x)w) = Ω(v,w), ∀x,v,w ∈ R2d.

Lemma 7 (Volume preservation). Let F : R2d → R2d be a symplectic diffeo-
morphism. Then F also preserves the canonical volume form of R2d, i.e., for
any Ω ⊂ R2d open we have

vol(F (Ω)) =

∫
F (Ω)

dx1...dx2d =

∫
Ω

dx1...dx2d = vol(Ω).
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Proof. The proof follows directly from the fact that∫
F (Ω)

dx1...dx2d =

∫
Ω

|det(F ′(x))| dx1...dx2d

and hence F is volume preserving if and only if |det(F ′(x))| = 1 for every
x ∈ R2d. By the symplectic property, we have

F ′(x)⊤JF ′(x) = J =⇒ det(F ′(x))2det(J) = det(J),

and hence |det(F ′(x))| ≡ 1 as desired.

Proposition 8. Let H be a twice continuously differentiable function on U ⊂
R2d. Then, for each fixed t ∈ R, the time−t flow map ϕtXH

is symplectic when-
ever it is defined.

We could prove this quickly using the more abstract formulation based on
differential forms and the Cartan’s magic formula, but we now see the typical
proof provided in numerical analysis books.

Proof. We recall that the flow map ϕtXH
: R2d → R2d satisfies

d

dt
ϕtXH

(x0) = XH

(
ϕtXH

(x0)
)

for every t ≥ 0. Differentiating both sides with respect to x0, we get

∂x0

d

dt
ϕtXH

(x0) = J∇2H(ϕtXH
(x0)) ∂x0

ϕtXH
(x0),

where ∇2H is the Hessian matrix of H. Changing the differentiation order on
the left, and calling Sx0

(t) = ∂x0
ϕtXH

(x0), we see that

d

dt
Sx0

(t) = J∇2H(ϕtXH
(x0))Sx0

(t), (30)

which is the variational equation for the Hamiltonian system of ODEs. We can
then compute

d

dt

(
Sx0

(t)⊤JSx0
(t)
)
=

(
d

dt
Sx0

(t)

)⊤
JSx0

(t) + Sx0
(t)⊤J

(
d

dt
Sx0

(t)

)
(30)
=
(
Sx0

(t)⊤∇2H(ϕtXH
(x0))J⊤

)
JSx0

(t) + Sx0
(t)⊤J

(
J∇2H(ϕtXH

(x0))Sx0
(t)
)
.

Since J⊤J = I2d and J2 = −I2d we conclude that the quantity above is 0 and
hence Sx0

(t)⊤JSx0
(t) = Sx0

(0)⊤JSx0
(0). At time 0, we recall that

Sx0
(0) = ∂x0

ϕ0XH
(x0) = ∂x0

x0 = I2d

which allows to conclude Sx0(t)
⊤JSx0(t) = J for every t ≥ 0 as desired.
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Before moving to numerical methods, let us also see that on R2d the flow
map of a vector field is symplectic if and only if the vector field is Hamiltonian.

Lemma 8. Let F : R2d → R2d be a continuously differentiable vector field, and
ϕtF its time−t flow map. ϕtF : R2d → R2d is symplectic for every t for which it
is defined if and only if there exists a twice continuously differentiable function
H : R2d → R such that F(x) = J∇H(x) for every x ∈ R2d.

Proof. One direction follows from Proposition 8. Let us now suppose that ϕtF
is symplectic, and call SF its sensitivity matrix, which we recall solves

ṠF (t) = F ′(x(t))SF (t).

Then, since ϕtF is symplectic, it follows that

0 =
d

dt

(
S⊤
F (t)JSF (t)

)
= Ṡ⊤

F (t)JSF (t) + S⊤
F (t)JṠF (t)

= S⊤
F (t)

(
(F ′(x(t)))⊤J+ JF ′(x(t))

)
SF (t).

Recalling that J⊤ = −J, we thus notice that the Jacobian matrix

∂(JF(x0))

∂x0
∈ R2d×2d

is symmetric for every x0 ∈ R2d. Thus, being R2d simply connected, Lemma 9
ensures that there is a globally defined function H : R2d → R such that

JF(x) ≡ ∇H(x),

which allows to conclude the proof.

Lemma 9 (Integrability lemma). Let F : Rn → Rn be continuously differen-
tiable and with symmetric Jacobian matrix F ′(x) ∈ Rn×n. Then, there exists a
twice-continuously differentiable function H : Rn → R such that F(x) = ∇H(x)
for every x ∈ Rn.

Proof of the integrability lemma. Let us consider the function

H(x) =

∫ 1

0

x⊤F(tx)dt.

The gradient of this function has k−th component given by

∂xk
H(x) = ∂xk

(∫ 1

0

n∑
i=1

xiFi(tx)dt

)
=

∫ 1

0

(
Fk(tx) + t

n∑
i=1

xi
∂Fi(y)

∂yk

∣∣∣∣
y=tx

)
dt

=

∫ 1

0

(
Fk(tx) + tx⊤F ′(tx)ek

)
dt =

∫ 1

0

(
Fk(tx) + tx⊤F ′(tx)⊤ek

)
dt

=

∫ 1

0

(
Fk(tx) + tx⊤∇Fk(tx)

)
dt =

∫ 1

0

d

dt
(tFk(tx)) dt = Fk(x),
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where F(x) =
[
F1(x) . . . Fn(x)

]⊤
, and the red expression is obtained by

the symmetry property F ′(x)⊤ = F ′(x). This derivation allows to conclude the
proof since we get ∇H(x) = F(x) for every x ∈ Rn.

We have seen that the flow map of a Hamiltonian system is a symplectic map.
We would thus like to preserve this symplectic property also when approximating
it numerically. There are several ways to get symplectic methods, but we will
focus on those obtained via splitting methods and on Runge–Kutta methods
which are symplectic.

Definition 6 (Symplectic one-step method). A one-step method φh : R2d →
R2d is symplectic if and only if when applied to a Hamiltonian system the map
φh is symplectic, i.e., (

∂φh(x)

x

)⊤
J
(
∂φh(x)

x

)
= J

for every x ∈ R2d.

5.2 Symplectic splitting methods

In this section we aim to exploit the fact that the flow map of a Hamiltonian
system is symplectic, and approximate the solution of (28) by composing the
exact flows of simpler Hamiltonian systems.

Splitting methods are a class of methods based on writing the target dif-
ferential equation, say ẋ = F(x), as the sum of simpler terms, for example as
F(x) = F1(x) + F2(x), supposing we are able to find the exact solution of the
two differential equations ẋ = F1(x) and ẋ = F2(x). Unfortunately, in general
we have

ϕtF ̸= ϕtF1
◦ ϕtF2

, ϕtF ̸= ϕtF2
◦ ϕtF1

, ϕtF1
◦ ϕtF2

̸= ϕtF2
◦ ϕtF1

. (31)

A simple example to show that (31) is true, can be found by considering the
Hamiltonian vector field

F(q, p) =
[
p
0

]
+

[
0
−q

]
=: F1(q, p) + F2(q, p), q, p ∈ R. (32)

In fact, in this case we have

ϕtF1
(q, p) =

[
q + tp
p

]
, ϕtF2

(q, p) =

[
q

p− tq

]
,

while the equation ẋ = F(x) can be rewritten as the second order differential
equation q̈ = −q, which has a trigonometric solution.

We recall that we are not aiming for an exact representation of ϕtF but for
us it would be sufficient to approximate it after a time step t = h > 0. This
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is by far a more achievable goal. In fact, we can show that as long as h > 0 is
small enough, one has

ϕhF = ϕhF1
◦ ϕhF2

+O(h2), ϕhF = ϕhF2
◦ ϕhF1

+O(h2), (33)

ϕhF = ϕ
h/2
F1
◦ ϕhF2

◦ ϕh/2F1
+O(h3), ϕhF = ϕ

h/2
F2
◦ ϕhF1

◦ ϕh/2F2
+O(h3). (34)

We call (33) the Lie-Trotter splitting method, and (34) the Strang splitting
method.

Proposition 9. The Lie-Trotter splitting method is first-order accurate.

Proof. Supposing enough regularity of F ,F1,F2, we can Taylor expand around
h = 0, and write

ϕhF (x) = x+ hF(x) +O(h2),
and also

ϕhF2

(
ϕhF1

(x)
)
= ϕhF2

(
x+ hF1(x) +O(h2)

)
= x+ hF1(x) + hF2(x) +O(h2).

This implies the desired result, since the local error is proportional to h2.

Exercise 4. Repeat the reasoning in the proof above and prove that, assuming
enough regularity of the vector fields, the Strang splitting method is second-order
accurate.

Coming back to Hamiltonian systems, let us consider Hamiltonian functions
of the following type:

H(q,p) = K(p) + U(q), q,p ∈ Rd. (35)

A Hamiltonian as in (35) is said to be separable. The system of Hamiltonian
equations associated to (28) write{

q̇ = ∂pK(p)

ṗ = −∂qU(q),

and hence we can split the vector field similarly to what we did in (32), i.e., as

XH(q,p) =

[
∂pK(p)
−∂qU(q)

]
=

[
∂pK(p)

0

]
+

[
0

−∂qU(q)

]
=: XK(q,p) +XU (q,p).

The interesting aspect here is that we can solve exactly the Hamiltonian equa-
tions associated to the vector fields XK and XH . In fact, for XK , one has{

q̇ = ∂pK(p)

ṗ = 0

leading to

p(t) = p0, q(t) = q0 +

∫ t

0

∂pK(p(s))ds = q0 + t ∂pK(p)|p=p0
.
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Being the exact flow map of a Hamiltonian system symplectic, we can obtain
first and second-order accurate symplectic methods just as in (33) and (34),
where we set F1 = XK and F2 = XU . In the context of symplectic integration,
the first order method is called Symplectic Euler, and the second order one
is called Störmer-Verlet or Leapfrog.

We remark that the separable expression in (35) is not completely artificial,
since the Hamiltonian of mechanical systems written in cartesian coordinates
generally takes the form

H(q,p) =
1

2
p⊤M−1p+ U(q), M ∈ Rd×d, M⊤ =M, M > 0,

which is exactly as in (35).

5.3 Symplectic Runge–Kutta methods

Some Runge–Kutta methods are symplectic. To understand what kind of con-
dition we need over the tableau defining the method, we need to work with the
variational equation associated to (28). We recall that the variational equation
is a differential equation describing the dynamics of the sensitivity matrix of the
solution, and writes

d

dt
Sx0(t) = J∇2H(x(t))Sx0(t) ∈ R2d×2d, (36)

where x(0) = x0, Sx0
(t) = ∂x0

ϕtXH
(x0) and hence Sx0

(0) = I2d. We also
recall that to prove that ϕtXH

is a symplectic map, we studied the solution of
(36). More explicitly, the map ϕtXH

is symplectic because (36) has the quadratic
conserved energies described by

Sx0(t) ∈
{
A ∈ R2d×2d : A⊤JA = J

}
, t ≥ 0.

This connection between quadratic energy functions and symplectic maps leads
to the following theorem.

Theorem 5 (Symplectic Runge–Kutta methods). A Runge–Kutta method with
tableau (A,b, c) is symplectic if it preserves quadratic first integrals.

We recall that Runge–Kutta methods preserve quadratic first integrals if
M = BA+A⊤B −bb⊤ = 0, where B = diag(b). To prove Theorem 5 we need
the following result.

Proposition 10. Let F : Rn → Rn be a smooth vector field. For a Runge–Kutta

39



method φh : Rn → Rn the following diagram commutes:

ẋ = F(x)
x(0) = x0

ẋ = F(x), x(0) = x0,

Ṡ = F ′(x)S, S(0) = In

x1 = φh
F (x0) x1 = φh

F (x0)

S1 = φh
F ′(S0).

differentiation w.r.t. x0

φh
φh

differentiation w.r.t. x0

Proof of Proposition 10. Let us first write down one step of the Runge–Kutta
method of tableau (A,b, c) applied to F :

ki = x0 + h

s∑
j=1

aijF(kj), x1 = x0 + h

s∑
i=1

biF(ki).

Let us now differentiate both terms with respect to x0:

∂ki

∂x0
= In + h

s∑
j=1

aij
∂F(kj)

∂x0
= In + h

s∑
j=1

aijF ′(kj)
∂kj

∂x0

∂x1

∂x0
= In + h

s∑
i=1

bi
∂F(ki)

∂x0
= In + h

s∑
i=1

biF ′(ki)
∂ki

∂x0
.

(37)

This is result we get following the blue path. We now need to check if we get the
same one following the red one. To verify this, we apply the same Runge–Kutta
method to the variational equation coupled with the original ODE{

ẋ = F(x)
Ṡ = F ′(x)S,

and get

Ki = S0 + h

s∑
j=1

aijF ′ (kj)Kj

S1 = S0 + h

s∑
i=1

biF ′ (ki)Ki.

Recalling that S0 = In, we see that

Ki = In + h

s∑
j=1

aijF ′ (kj)Kj

S1 = In + h

s∑
i=1

biF ′ (ki)Ki.

(38)

We notice that (37) and (38) coincide, and hence we conclude that the diagram
commutes.
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Proof of Theorem 5. The proof is an immediate consequence of Proposition 10.
Indeed, applying a Runge–Kutta method that preserves quadratic invariants,
by the commutativity of the diagram, we immediately have that

S⊤
1 JS1 = J

and, equivalently, that (
∂x1

∂x0

)⊤
J
(
∂x1

∂x0

)
= J.

5.4 Energy preservation and long-term simulations

Theorem 6. Let ẋ = J∇H(x) be a Hamiltonian system with Hamiltonian H
and with no other conserved quantities than H. Let φh be a symplectic and
energy-preserving method for the Hamiltonian system, then φh reproduces the
exact solution up to a time re-parametrisation.

An interpretation of this result is that it is very hard to build a numerical
method which is both symplectic and preserves the Hamiltonian energy H. A
proof of this Theorem can be found in [29].

One class of problems where it is possible to simultaneously preserve the
symplectic structure of the phase space and the energy are linear Hamiltonian
systems. Let us consider a quadratic Hamiltonian energy

H(x) =
1

2
x⊤Cx.

Then the associated Hamiltonian system is linear and writes

ẋ(t) = JCx.

In this case, we know that the Runge–Kutta methods that preserve quadratic
first integrals as H, also preserve the symplectic form. Applying these methods,
like the implicit midpoint method, will lead to approximate solutions that co-
incide with the exact solutions up to a time reparametrisation. In other words,
the numerical solution will live on the correct phase-space orbit, but such a
curve will be covered not at the exact speed.

Even though exact energy conservation is unlikely to be obtained in general,
preserving the symplectic form might be enough to do quite well in terms of
energy conservation. In fact, symplectic methods exactly conserve a modified
Hamiltonian energy, and almost conserve the correct one for exponentially long
times.

These results come from the so-called Backward Error Analysis (BEA) of
numerical methods. BEA is very useful when the qualitative behaviour of nu-
merical methods is of interest, and when statements over very long time intervals
are needed. In contrast to BEA, we recall that a forward error analysis relies on
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the study of the local truncation error ∥φh
F (x0)−ϕhF (x0)∥, and the global error

obtained after n steps with such a method. BEA, instead, looks for a modified
differential equation ẏ(t) = Fh(y(t)), such that

y(nh) =
(
φh
F
)h

(x0) = φh
F ◦ ... ◦ φh

F︸ ︷︷ ︸
n times

(x0),

if y(0) = x0. The modified vector field Fh : Rd → Rd is typically expressed in
terms of a formal power series as

Fh(y) = F(y) + hF2(y) + h2F3(y) + ... ,

meaning that it might not converge, and hence has to be properly truncated.
The goal then becomes to study the difference between the two vector fields
F and Fh, which can give much insight into the qualitative behaviour of the
numerical solution and the global error.

To find the terms F2,F3, ..., we can Taylor expand the exact solution y(t+h)
of the modified equation around h = 0 as follows

y(t+ h) = y(t) + h
(
F(y) + hF2(y) + h2F3(y) + ...

)
+
h2

2

(
F ′(y) + hF ′

2(y) + h2F ′
3(y) + ...

)
+O(h3).

We would like y(t + h) to coincide with φh
F (y(t)), which can typically be ex-

pressed as
φh
F (y(t)) = ϕhF (y(t)) +O(hp+1).

Since the Taylor expansion of ϕhF only involves F , we see that all the other terms
multiplied by hk, with k < p, have to be zero in order for φh

F (y(t)) = y(t+ h).
This implies that the modified equation must be of the form

Fh(y) = F(y) + hpFp+1(y) + hp+1Fp+2(y) +O(hp+2).

This analysis immediately allows us to have, via the Gröbner-Alekseev formula
that

y(x)− x(t) = hpep(t) + hp+1ep+1(t) +O(hp+2),

if ẋ = F(x), which is the first result we can find out of BEA.
Let us now go back to Hamiltonian systems and symplectic methods, to see

what BEA allows us to understand.

Theorem 7 (Theorem 3.1 in Chapter IX.3 [13]). Let φh be a symplectic method
of order p applied to the Hamiltonian system ẋ = J∇H(x) for a smooth Hamil-
tonian H : R2d → R. Then the modified equation is also Hamiltonian, i.e., there
are smooth functions Hp+1, Hp+2, ... : R2d → R such that

Fh(y) = J∇
(
H(y) + hpHp+1(y) + hp+1Hp+2(y) + ...

)
.
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Proof. The proof proceeds by induction. Assume Fi(y) = J∇Hi(y) for i =
p + 1, ..., r. We now want to prove the existence of Hr+1. Let us consider the
truncated modified equation

Fh,r(y) = F(y) + hpFp+1(y) + ...+ hr−1Fr(y).

This is known to be a Hamiltonian vector field, with Hamiltonian function
H(y) + hpHp+1(y) + ... + hr−1Hr(y). We call ϕtr its flow map, and we notice
that

ϕhFh
(y0) = ϕhr (y0) + hr+1Fr+1(y0) +O(hr+2).

The Jacobian of this flow is

(ϕhFh
)′(y0) = (ϕhr )

′(y0) + hr+1F ′
r+1(y0) +O(hr+2). (39)

By induction assumption and symplecticity of the scheme, the red matrices are
symplectic. We also know that

ϕhr (y0) = y0 + hFh,r(y) =⇒ (ϕhr )
′(y0) = I +O(h).

Let us now check what has to happen for the right-hand side in (39) to be
symplectic:

J = (ϕhFh
)′(y0)

⊤J(ϕhFh
)′(y0) = J+ hr+1

(
F ′

r+1(y0)
⊤J+ JF ′

r+1(y0)
)
+O(hr+1).

This derivation implies that necessarily

JF ′
r+1(y0) = −F ′

r+1(y0)
⊤J =

(
JF ′

r+1(y0)
)⊤
,

and hence the matrix JF ′
r+1(y0) is symmetric. On R2d, the only way vector

field has symmetric Jacobian, is that it is a gradient. Thus, Lemma 9 ensures
that there exists a smooth function Hr+1 : R2d → R such that

JFr+1(y) = −∇Hr+1(y)

for every y ∈ R2d. We conclude that Fr+1 is a Hamiltonian vector field since,
by multiplying by J⊤ on both sides, we get

Fr+1(y) = J∇Hr+1(y).

The series expansion for the modified Hamiltonian H̃ can also be divergent.
It is thus meaningful to consider a truncated version

H̃N (y) = H(y) + hpHp+1(y) + ...+ hN−1HN (y). (40)

The following theorem tells us how truncated modified Hamiltonians as the one
in (40) behave along the numerical solution. We do not consider the proof of
this result, since it would require a few more theorems. The proof can be found
in the cited book.

43



Theorem 8 (Theorem 8.1 in Chapter IX.8 [13]). Consider a Hamiltonian sys-
tem with analytic H : D → R, D ⊂ R2d, and apply a symplectic method φh with
step size h > 0. If the numerical solution stays in the compact set K ⊂ D, then
there exist h0 > 0 and N = N(h) such that

H̃N (yn) = H̃N (x0) +O
(
e−h0/2h

)
H(yn) = H(x0) +O(hp)

over exponentially long time intervals nh ≤ eh0/2h.

In the theorem above, N is the largest integer satisfying hN ≤ h0.

5.5 Vanishing gradients and symplectic networks

In this section we discuss the stability of the training procedure of a neural
network. We will use the same notation as in Section 3. We focus on a supervised
learning task, where the goal is to minimise the mean-squared error loss

L (θ) = 1

N

N∑
n=1

∥Nθ (xn)− yn∥22 ,

given a dataset {(xn,yn)}n=1,...,N ⊂ Rd×Rc. The process of training the neural
network Nθ involves the computation of the gradients of the loss function L with
respect to the network weights θ. To allow for more explicit calculations, let us
suppose that the network Nθ has L−layers and is defined as Nθ = FθL ◦ ...◦Fθ1 ,
with θ = (θ1, ..., θL).

We now arrange the weights θ1, ..., θL as vectors, and denote with θij the
i−th component of the j−th weight θj . If the parameters are trained by gradient
descent, then the ith component of the parameter vector of the jth layer θj is
updated as

θk+1
ij = θkij − τk∂θijL (θ) = θkij −

τk
N

N∑
n=1

∂θijLn (θ) (41)

where we used the notation Ln (θ) = ∥Nθ (xn)− yn∥22 and τk is a step-size, also
called learning rate in this context.

We now denote as

xj+1 = Fθj (x
j), j = 1, 2, . . . , L,

and x1 = x. One may notice that especially for the case L is large, the compo-
sitional nature of Nθ can lead to vanishing gradients. Indeed, by the chain rule,
we see that for any n

∂θijLn = ⟨∂xj+1
n
Ln, ∂θijx

j+1
n ⟩ =

〈( L∏
l=j+1

∂xl
n
xl+1
n

)
∂xL+1

n
Ln, ∂θijx

j+1
n

〉
,
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where ⟨x,y⟩ is the Euclidean inner product between two vectors x,y. Together
with the inequality ∥∥∥∥∥

L∏
l=j+1

∂xl
n
xl+1
n

∥∥∥∥∥
2

≤
L∏

l=j+1

∥∥∥∂xl
n
xl+1
n

∥∥∥
2
, (42)

imply that if L is large and the norms on the right of (42) are smaller than 1,
then the gradient ∇θijLn will be very small (or converge to zero for L → ∞),
hence leading to the impossibility of updating the weights in a meaningful way
using gradient information as in (41). This is illustrated in Figure 5 where the
vanishing gradient phenomenon leads to a poor classification result. The layers
of the network leading to these results are of the form Fθj (x) = B⊤

j σ(Ajx+bj),
where the weight θj is constituted by the entries of Aj and bj .
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Figure 5: MLP network with 12 layers trained to distinguish red from blue
points. On the left, the learned decision boundary cannot accurately separate
the points, resulting in a test accuracy of 51%. On the right, the norms of the
Jacobians through the training iterates for a fixed data point, showing a severe
attenuation of information as we progress through the network, an issue known
as the vanishing gradient problem.

Because of this fundamental issue, it is important to suitably design the
layers Fθ1 , . . . , FθL , so that ∥∂xj

n
xj+1
n ∥2 is of moderate size. To do so, we adopt

the dynamical systems-based design procedure introduced in Section 3. Let us
recall that a non-linear continuously differentiable map Fθi : Rdj → Rdj+1 is
symplectic if dj = dj+1 = 2d, for some d ∈ N, and

∂x(Fθj (x))
⊤J∂x(Fθj (x)) = J (43)

for every x ∈ R2d. We adopt a little abuse of notation here by using the letter d,
even though originally Nθ : Rd → Rc, so to remain consistent with the notation
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used for Hamiltonian systems in this section. So, now, the network will go from
R2d to itself. As an immediate consequence of (43), we have that

∥J∥2 ≤
∥∥∂x(Fθj (x))

∥∥2
2
∥J∥2 =⇒

∥∥∂x(Fθj (x))
∥∥
2
≥ 1 (44)

for every x ∈ R2d. Using the notation introduced above, we thus can say that
if the layers in a network are all symplectic, then it holds true that∥∥∥∂xj

n
xj+1
n

∥∥∥
2
=
∥∥∥∂xj

n
(Fθj (x

j
n))
∥∥∥
2
≥ 1,

and hence the vanishing gradient issue is not present anymore in this case.
Now that we have seen the benefits of having symplectic layers to prevent the

vanishing gradient issue, we have to understand what are good ways to enforce
the symplectic condition over a neural network layer. In principle, we could
approach this design problem very generally, trying to find parametrisations of
non-linear symplectic maps. However, a much more natural direction to take
is exploiting the fact that the flow map of a Hamiltonian system is symplectic.

More explicitly, we can design Fθj = ϕ
hj

XHj
for some step size hj and parametric

Hamiltonian function Hj . Given that symplectic methods preserve the sym-
plectic property of the flow, we do not even have to work with the exact flow,
but we could replace with a single step of a symplectic integrator.

We define a symplectic neural network Nθ as a network with j-th layer
defined via a single step of a symplectic method ψh applied to a parametrised
Hamiltonian system with Hamiltonian function Hj . This construction removes
the vanishing gradient problem since Nθ, being the composition of symplectic
maps, satisfies (42). We now conclude this section by providing an explicit
example of an symplectic neural network, and show that this alternative design
strategy leads to considerably improved results on the task in Figure 5.

Theoretically, there is no constraint on how the parametric Hamiltonian
functions should be defined. However, some choices might restrict how expres-
sive the network is or lead to network architectures completely different from
the ones people are used to. A choice for Hj that allows to recover expressive
and commonly used architectures is

Hj (x) = ⟨1, γ (Ajx+ aj)⟩, Aj ∈ R2d×2d, aj ∈ R2d, (45)

where γ : R → R is a differentiable function applied to the entries of its input
vector, and 1 ∈ R2d is a vector of all ones. This parametrisation allows us to
get

J∇Hj (x) = JA⊤
j σ (Ajx+ aj) (46)

where γ′ = σ becomes the activation function of the neural network. After
having defined this parametric vector-valued function, one simple option is to
define the network layers Fθj as explicit Euler steps applied to vector fields as
in (46) to get

Fθj (x) = x+ hJA⊤
j σ (Ajx+ aj) , (47)
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which has a similar structure to common ResNets. For example, to get σ = tanh,
one could set γ = log ◦ cosh. The potential issue with defining the layer maps
as in (47) is that the explicit Euler method is not symplectic and hence (44)
is not guaranteed. Thus, there might still be a vanishing gradient problem. A
solution to this issue is provided, for example, by the symplectic Euler method.
Let us consider a splitting of the variable x ∈ R2d as x = (q,p), q,p ∈ Rd. If
the Hamiltonian function H is separable, meaning that H : Rd × Rd → R is
defined based on two functions K,U : Rd → R as H (q,p) = K (p) + U (q),
then the Hamiltonian dynamical system associated to H writes

q̇(t) = ∇K (p(t))

ṗ(t) = −∇U (q(t))

q(0) = q0, p(0) = p0.

The symplectic Euler method for this problem is explicit and writes

ψh(q,p) =

[
q̂

p− h∇U (q̂)

]
, q̂ = q+ h∇K(p). (48)

In order to make the parametric Hamiltonian in (45) separable, we can
assume Aj ∈ R2d×2d has a block structure as

Aj =

[
0 Bj

Cj 0

]
, Bj , Cj ∈ Rd×d,

and we also write aj =
[
b⊤
j c⊤j

]⊤
, bj , cj ∈ Rd. In this way, using the same

partitioning x = (q,p) as before, we get

Hj (q,p) = ⟨1, γ (Bjp+ bj)⟩+ ⟨1, γ (Cjq+ cj)⟩ =: Kj (p) + Uj (q) ,

where 1 ∈ Rd is the vector with all components equal to 1. To conclude, we can
then get an explicitly defined symplectic neural network with j-th layer

ψj(x) =

[
q̂

p− hC⊤
j σ (Cjq̂+ cj)

]
, q̂ := q+ hB⊤

j σ (Bjp+ bj) , (49)

which does not suffer from vanishing gradient problems.
In the remaining part of this section, we provide a numerical experiment

testing out the architectures we have derived and showing the improvements
in terms of vanishing gradient issues provided by using a symplectic network.
We consider the problem of classifying into two classes the points in the 2D
“Swiss roll” dataset, which can be seen in the top row of Figure 6. The red and
blue colours in the figure represent the two classes. We test different network
architectures. The symplectic network is denoted as HNN, standing for Hamil-
tonian Neural Network, a terminology introduced in [10], where these types of
networks were introduced. The first is the HNN with layers defined as in (49),
the second is a ResNet with layers based on the explicit Euler method and of
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the form Fθj (x) = x + hB⊤
j σ(Ajx + bj), and the third is an MLP with layers

defined as Fθj (x) = B⊤
j σ(Ajx + bj). We consider the HNN and ResNet with

L = 12 hidden layers of the form above (as we did for the MLP in Figure 5),
composed with a final linear layer to adapt the network to the output dimen-
sionality which, in this case, is two. The MLP is also considered for the case of
L = 2 hidden layers. The dataset is embedded in a higher dimensional space of
dimension four in the following way (x1, x2) 7→ (x1, 0, x2, 0). The network layers
then preserve this intermediate fixed dimension.

In Figure 6, we can see that the ResNet and HNN models both perform
accurately on this simple task, leading to a 100% classification accuracy over a
test set. Instead, the MLP with 12 layers does not train appropriately, as we saw
in Figure 5, leading to a classification that is only slightly better than chance.
On the other hand, the MLP with two layers trains slightly better, leading to
around 80% accuracy. These four models have been chosen to illustrate the
issue of having vanishing gradients and, consequently, not being able to train
the network. In the bottom row of Figure 6 we plot the norms of the Jacobian
matrices of the last hidden layer with respect to the previous ones throughout
the training iterations. For each of the four models, a fixed test data point has
been used to evaluate these Jacobian matrices. We see that the ResNet and HNN
models lead to well-behaved Jacobians. On the other hand, the MLP model has
vanishing gradient issues, that lead to the impossibility of training the model
with 12 layers, whereas these issues do not arise when training a network with
just two hidden layers. While the HNN is built so that the norm of the Jacobian
is never smaller than one, as can be seen in the plot, the skip connections in the
ResNet naturally lead to stable behaviour. This is not surprising since residual
connections were introduced precisely to allow the training of deeper networks.

6 Non-expansive numerical methods

6.1 Non-expansive dynamical systems

In this section we will work with the ℓ2 norm, but the theory of non-expansive
dynamical systems extends to other norms, see [4]. We say that a vector field
F : Rd → Rd is non-expansive if its flow map ϕtF : Rd → Rd is non-expansive
for every time t ≥ 0, i.e., ∥ϕtF (x)− ϕtF (y)∥2 ≤ ∥x− y∥2.

Since the flow map is not usually accessible, this definition is not so practical.
However, supposing F is sufficiently smooth, we can get a much more practi-
cal characterisation of non-expansive dynamical systems by Taylor expansion.
Indeed, let us fix a small enough scalar h and consider

ϕt+h
F (x) = ϕtF (x) + hF(ϕtF (x)) +O(h2),
ϕt+h
F (y) = ϕtF (y) + hF(ϕtF (y)) +O(h2),
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Figure 6: A comparison of a 12-layer HNN, a 12-layer ResNet and a 2-layer
MLP on the “Swiss roll” dataset, as previously considered for a 12-layer MLP
in Figure 5. Both the HNN and ResNet attain a test accuracy of 100%, while
the 2-layer MLP has a test accuracy of 79.23%. Note that the Jacobian norms
behave much less extremely than they did for the 12-layer MLP in Figure 5,
resulting in networks that train better.

for an arbitrary pair of points x,y ∈ Rd. Then, we see that∥∥ϕt+h
F (y)− ϕt+h

F (x)
∥∥2
2
=
∥∥ϕtF (y)− ϕtF (x)∥∥22

+ 2h⟨F(ϕtF (y))−F(ϕtF (x)), ϕtF (y)− ϕtF (x)⟩+O(h2),
and hence

d

dt

∥∥ϕtF (y)− ϕtF (y)∥∥22 = lim
h→0

∥∥ϕt+h
F (y)− ϕt+h

F (y)
∥∥2
2
− ∥ϕtF (y)− ϕtF (x)∥

2
2

h

= 2⟨F(ϕtF (y))−F(ϕtF (x)), ϕtF (y)− ϕtF (x)⟩.
This derivation implies that if for every x,y ∈ Rd one has

⟨F(y)−F(x),y − x⟩ ≤ ν∥y − x∥22, (50)

then it follows

d

dt

∥∥ϕtF (y)− ϕtF (y)∥∥22 ≤ 2ν∥ϕtF (y)− ϕtF (x)∥22. (51)

If we define g(t) := ∥ϕtF (y)− ϕtF (y)∥
2
2 and multiply both sides of (51) by the

positive scalar e−2νt, we see that

d

dt

(
e−2νtg(t)

)
= e−2νtġ(t)− 2νe−2νtg(t) ≤ 0.
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We can thus conclude that e−2νtg(t) is monotonically non-increasing, so that
e−2νtg(t) ≤ g(0), and hence we have∥∥ϕtF (y)− ϕtF (x)∥∥2 ≤ eνt ∥y − x∥2 (52)

for every t ≥ 0, x,y ∈ Rd. We remark that the distance between any pair x and
y is not expanded by the flow map ϕtF for t ≥ 0 whenever ν ≤ 0. This analysis
motivates the introduction of the following definition.

Definition 7 (One-sided Lipschitz inequality). The vector field F : Rd → Rd

is one-sided Lipschitz continuous if it satisfies (50) for a scalar ν ∈ R and any
pair x,y ∈ Rd. F is a non-expansive vector field if (50) holds for a ν ≤ 0. If ν
can be taken strictly negative it is contractive.

Before moving on, we remark that contractivity can be a pretty restrictive
assumption on the dynamics. For example, one can see that a contractive
dynamical system has to have a unique asymptotically stable equilibrium point.
To verify this behaviour, let ϕ1F : Rd → Rd be the time-1 flow of the contractive
vector field F : Rd → Rd. Banach’s fixed point theorem guarantees that ϕ1F
admits a unique fixed point x∗ ∈ Rd such that ϕ1F (x

∗) = x∗. In case this is an
equilibrium point of F , it has to be asymptotically stable since for any x ∈ Rd

we have

lim
t→+∞

∥∥ϕtF (x)− x∗∥∥
2
= lim

t→+∞

∥∥ϕtF (x)− ϕtF (x∗)
∥∥
2
≤ lim

t→+∞
eνt∥x− x∗∥2 = 0.

If x∗ is not an equilibrium point, then it has to be part of a periodic orbit of
period 1. This is impossible since the existence of such a periodic orbit would
lead to infinitely many fixed points for ϕ1X , allowing us to conclude that in fact
x∗ must be an equilibrium point.

Even though the condition in (50) is more practical than where we started
from, it can sometimes be hard to verify. For continuously differentiable vector
fields, one can simplify the condition to an equivalent characterisation based on
the Jacobian matrix ∂xF(x) ∈ Rd×d. Indeed, by the mean value theorem, for
every x,y ∈ Rd, there is z = sx+ (1− s)y, for some s ∈ (0, 1), such that

F(y)−F(x) = ∂xF(z)(y − x).

Thus, (50) can be formulated as an equivalent condition

sup
x∈Rd,v∈Rd\{0}

⟨∂xF(x)v,v⟩
∥v∥22

≤ ν,

or, equivalently, as

sup
x∈Rd

λmax

(
∂xF(x)⊤ + ∂xF(x)

2

)
≤ ν, (53)

where λmax(A) is the maximum eigenvalue of some matrix A.
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To get some more familiarity with one-sided Lipschitz continuous functions,
we now focus on a few results that connect it with the more popular notion of
Lipschitz continuity.

We can start with scalar vector fields, so F : R → R. Let us start with
the one-dimensional case. A continuously differentiable function (vector field)
F : R → R is one-sided Lipschitz continuous with constant ≤ ν if F ′(x) ≤ ν
for every x ∈ R. In particular, it defines a non-expansive dynamics if F is
non-increasing.

Lemma 10. An L−Lipschitz continuous function F : Rd → Rd is also one-
sided Lipschitz continuous with constant greater or equal than L.

Proof. The proof is a simple consequence of Cauchy-Schwartz inequality. Let
us consider two arbitrary points x,y ∈ Rd. By Lipschitz continuity we have

⟨F(y)−F(x),y − x⟩ ≤ ∥F(y)−F(x)∥2∥y − x∥2 ≤ L∥y − x∥22.

which concludes the proof.

Lemma 11. Not all the one-sided Lipschitz continuous functions are Lipschitz
continuous.

Proof. Thinking to the one-dimensional case, we just need to find a function
F : R → R which is non-increasing but which is not Lipschitz continuous.
Examples could be F(x) = −x2n+1, n ∈ N, or F(x) = e−x2

.

Before moving to numerical methods, we focus on a particular class of
d−dimensional vector fields that lead to non-expansive and potentially con-
tractive dynamics. We will use these systems to build Lipschitz-constrained
neural networks in the last part of the course. These are negative gradient flows
of convex potentials. By results in convex analysis, it is relatively immediate to
verify the properties we have just derived for these systems.

Theorem 9 (Theorem 2.1.3 in [22]). A continuously differentiable function
V : Rd → R is convex on Rd if and only if for any x,y ∈ Rd we have

⟨∇V (y)−∇V (x),y − x⟩ ≥ 0.

This theorem implies that F(x) = −∇V (x), for V : Rd → R a convex
and continuously differentiable function, is a non-expansive vector field. Under
the assumption that V is twice continuously differentiable, one could equiv-
alently verify this property using (53), since the Hessian of a convex func-
tion is symmetric positive semi-definite (see [22, Theorem 2.1.4]), and hence
λmax(∂xF(x)) = λmax(−∂2xxV (x)) ≤ 0 for all x,y ∈ Rd.

Definition 8 (L-smooth function). A convex and continuously differentiable
function V : Rd → R is L−smooth if its gradient is L−Lipschitz continuous,
i.e.,

∥∇V (y)−∇V (x)∥2 ≤ L ∥y − x∥2 , ∀x,y ∈ Rd.
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The concept of L-smoothness from convex analysis is of particular impor-
tance to us for the applications to deep learning, since this is what will allow
us to derive step size constraints for numerical discretisations of non-expansive
flows. An important result in convex analysis, the so-called Baillon–Haddad
theorem, tells us that this holds if and only if the following inequality holds for
all x,y ∈ Rd:

⟨∇V (x)−∇V (y),x− y⟩ ≥ 1

L
∥∇V (x)− V (y)∥22. (54)

For other equivalent characterisations of L−smoothness, see [22, Theorem 2.1.5].
These dynamics based on negative gradient flows of convex continuously dif-
ferentiable functions are non-expansive. We can similarly obtain contractive
dynamics, by restricting even further the potential function V to continuously
differentiable and strongly convex functions.

Definition 9 (µ−strongly convex functions). A continuously differentiable func-
tion V : Rd → R is called µ−strongly convex on Rd if there exists a constant
µ > 0 such that for any x,y ∈ Rd we have

F(y) ≥ F(x) + ⟨∇F(x),y − x⟩+ µ

2
∥y − x∥22 .

Theorem 10 (Theorem 2.1.9 [22]). The continuously differentiable function
V : Rd → R is µ−strongly convex if and only if

⟨∇V (y)−∇V (x),y − x⟩ ≥ µ ∥y − x∥22 (55)

for every x,y ∈ Rd.

(55) thus guarantees that for any continuously differentiable µ−strongly con-
vex potential V : Rd → R, the vector field F(x) = −∇V (x) is contractive since
F is one-sided Lipschitz continuous with constant ν = −µ < 0.

6.2 Unconditionally non-linearly stable methods

The non-expansivity property of a numerical method is a property one can
use to ensure the non-linear stability of the method. This notion provides an
alternative stability analysis than the A-stability we saw in Section 1. We also
recall that no explicit Runge–Kutta method is A-stable, since for those methods
the function R is a polynomial, and hence the stability region S is bounded.

There have been several other notions of numerical stability introduced in
the literature. The one that refers to non-expansive/contractive vector fields in
a norm ∥ · ∥ generated by an inner product ⟨·, ·⟩ is called B-stability.

Definition 10 (B-stable method). A numerical method φh : Rd → Rd is B-
stable if when applied to any vector field F : Rd → Rd which satisfies∥∥ϕtF (y)− ϕtF (x)∥∥ ≤ ∥y − x∥ , ∀t ≥ 0, (56)

for a norm ∥ · ∥ generated by an inner product ⟨·, ·⟩, we have∥∥φh
F (y)− φh

F (x)
∥∥ ≤ ∥y − x∥ , ∀h > 0.
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This definition tells us that a method φh is B-stable if it preserves the non-
expansive nature of the dynamics at a discrete level.

Restricting to inner product norms allows us to have no barriers on the order
of the methods we declare to be stable or non-expansive. If we were to include
also norms like ℓ1 or ℓ∞, then there would be a maximal reachable order of 1,
see [27].

The conditions we have used to define B-stability are not so practical. We
now provide a very operative procedure to decide if a Runge–Kutta method is
B-stable or not.

Proposition 11 (B-stable Runge–Kutta methods). A Runge–Kutta method
with tableau (A,b, c) is B-stable if and only if said B = diag(b), and M =
BA+A⊤B − bb⊤, one has B ≥ 0 and M ≥ 0.

Proof. Let us consider F : Rd → Rd that satisfies

⟨F(y)−F(x),y − x⟩ ≤ 0

for a fixed inner product ⟨·, ·⟩ : Rd × Rd → R. We consider two generic initial
conditions x0,y0 ∈ Rd, and compute one update with the Runge–Kutta method
having tableau (A,b, c) and step h > 0:

x1 = x0 + h

s∑
i=1

biF(ki), y1 = y0 + h

s∑
i=1

biF(hi),

ki = x0 + h

s∑
j=1

aijF(kj), hi = y0 + h

s∑
j=1

aijF(hj).

We then introduce the notation

δxr := yr − xr, r ∈ {0, 1},
δFi := F(ki)−F(hi), i = 1, ..., s,

δki. = ki − hi, i = 1, ..., s.

We now expand the norm of the difference after the first update to compare it
to the initial norm:

∥δx1∥2 = ⟨δx1, δx1⟩ = ∥δx0∥2 + h2
s∑

i,j=1

bibj⟨δFi, δFj⟩

+ 2h

s∑
i=1

bi⟨δx0, δFi⟩. (57)

As in the proof for Runge–Kutta methods preserving quadratic first integrals,
we compute δx0 in s different ways as

δx0 = δki − h
s∑

j=1

aijδFj , i = 1, ..., s. (58)
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Replacing (58) into (57), we get

∥δx1∥2 = ⟨δx1, δx1⟩ = ∥δx0∥2 + h2
s∑

i,j=1

bibj⟨δFi, δFj⟩

+ 2h

s∑
i=1

bi⟨δki, δFi⟩︸ ︷︷ ︸
≤0, using bi≥0

− 2h2
s∑

i,j=1

biaij⟨δFi, δFj⟩.

Similarly to the proof for quadratic first integrals, we can rewrite the last term
in the previous equation by simmetry of inner products, and end up with

∥δx1∥2 − ∥δx0∥2 = −h2
s∑

i,j=1

mij⟨δFi, δFj⟩, (59)

where mij is an entry of M ∈ Rs×s. From this relation we can conclude by
using the positive semi-definiteness of M . A way to formalise this is to define

δF :=


δF1

δF2

...
δFs

 , M̃ =M ⊗ Id,

with ⊗ which is the Kronecker product, and rewrite the right-hand side of (59)
as

−h2δX⊤M̃δX,

which is non-positive since if M ≥ 0, so is M̃ .

Remark 2. B-stability implies A-stability since one can consider the system

ẋ =

[
α −β
β α

]
x,

equivalent to ẋ = λx, λ = α + iβ, where if α = Re(λ) < 0 we have a non-
expansive vector field. Thus, if a method φh is non-expansive, or non-linearly
stable, it is also A-stable, or linearly stable. It follows that explicit methods can
not be B-stable.

Similarly to what we have seen in Section 4, Gauss-Legendre collocation
methods are B-stable. We state this result and prove it without checking the
condition above, but just by using the definition of collocation methods.

Lemma 12. All Gauss-Legendre collocation methods are B-stable.

Proof. Let u(t) and ũ(t) be the polynomial approximations of the solutions
provided by the collocation method over the time interval [tn, tn+1 = tn+h] with
u(tn) = xn and ũ(tn) = yn. We suppose the collocation method is of s stages.
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Let us consider the squared distance function m(t) = ∥u(t) − ũ(t)∥2 ∈ P2s(R).
At the collocation nodes si = tn + cih we have

m′(si) = 2⟨F(u(si))−F(ũ(si)),u(si)− ũ(si)⟩ ≤ 0.

We can then conclude with the following derivation:

∥xn+1 − yn+1∥2 = m(tn+1) = m(tn) +

∫ tn+1

tn

m′(t)dt

= ∥xn − yn∥2 + h

s∑
i=1

bim
′(si) ≤ ∥xn − yn∥2

since m′(t) ∈ P2s−1(R) is exactly integrated by the Gauss-Legendre quadrature
with s nodes.

6.3 Conditionally non-expansive methods

In the previous subsection, we derived conditions for a Runge–Kutta method to
be non-linearly stable, i.e., non-expansive, regardless of the choice of the time
step h > 0. This, however, led to the exclusion of several numerical methods,
for example all the explicit ones. To motivate this further discussion, let us
consider a simple example. This is the linear negative gradient flow of the
potential function V (x) = ∥x∥22/2, which has equations

ẋ(t) = −x(t).

The analytical solution of this problem, is x(t) = e−tx(0), which is clearly
non-expansive, since

∥y(t)− x(t)∥2 = ∥e−t(y(0)− x(0))∥2 = e−t∥y(0)− x(0)∥2 < ∥y(0)− x(0)∥2.

Let us focus on the simplest Runge–Kutta method, explicit Euler, which leads
to the update

xn+1 = xn − hxn = (1− h)xn.

We do not expect this map to be 1−Lipschitz for every step h > 0, since we
know the method is not B-stable. However, we notice that

∥yn+1 − xn+1∥2 = ∥(1− h)(yn − xn)∥2 = |1− h| · ∥yn − xn∥2,

which is not greater than ∥yn − xn∥ when 0 ≤ h ≤ 2. This suggests that there
might be methods which, despite not being B-stable, can be non-expansive for
small enough time steps.

The theory of circle-contractivity developed in [8] provides a generalisation
of the analysis done in the simple example above. We will not go in the details
of this theory in this course, but will focus on a particular class of dynamical
systems: negative gradient flows.
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We have already seen this family of dynamical systems at the introduction
of this section, but we now want to focus on how to restrict the step size in order
to make the explicit Euler method non-expansive. Let us consider an L−smooth
function V : Rd → R, defining the dynamics

ẋ(t) = −∇V (x(t)) =: F(x(t)). (60)

We have shown before that the vector field F is non-expansive, since, for every
x,y ∈ Rd,

−⟨∇V (y)−∇V (x),y − x⟩ ≤ − 1

L
∥∇V (y)−∇V (x)∥22 ≤ 0.

Let us now compare the updates we get with the explicit Euler method inte-
grating (60) starting from two initial points xn,yn ∈ Rd:

xn+1 = xn − h∇V (xn), yn+1 = yn − h∇V (yn).

We see that

∥yn+1 − xn+1∥22 = ∥yn − xn∥22 − 2h⟨∇V (yn)−∇V (xn),yn − xn⟩
+ h2∥∇V (yn)−∇V (xn)∥22

≤ ∥yn − xn∥22 +
(
h2 − 2h

L

)
∥∇V (yn)−∇V (xn)∥22

≤ ∥yn − xn∥22
if h ≤ 2/L. Thus, the explicit Euler method applied to (60) is non-expansive
if the time step h belongs to the interval [0, 2/L], where L is the Lipschitz
constant of F(x) = −∇V (x). We remark that this is the exact same restriction
we obtained for the specific case V (x) = ∥x∥22/2 in the example above, where
L = 1 and we got h ∈ [0, 2].

This approach to find non-expansive methods, which could be generalised
to other dynamical systems and Runge–Kutta methods, is very appealing when
designing neural networks based on dynamical systems. In fact, in the machine
learning context, one typically has to work with very high-dimensional problems
and using implicit solvers to define the ResNet layers can become prohibitively
expensive. For this reason, a condition like the one above, which is cheap to
evaluate, proves useful when building networks with Lipschitz constant upper
bounded by 1, as we will see in the next section.

6.4 Lipschitz-constrained neural networks

Despite the great successes of deep learning in all areas of science and technology,
most off-the-shelf neural networks show instabilities: tiny perturbations of the
input lead to dramatic consequences in the output. These instabilities may be
exploited in adversarial attacks [11] and are particularly problematic in high-
risk applications like medical imaging [1]. In this section we will study stable
neural network architectures based on dynamical systems.
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The simplest notion of stability is Lipschitz continuity. We call a neural
network Nθ stable if it is ℓ-Lipschitz continuous, i.e., there exists a constant
ℓ ≥ 0 such that

∥Nθ(x)−Nθ(y)∥2 ≤ ℓ∥x− y∥2. (61)

Due to the layered structure of deep neural networks, we can relate the Lipschitz
constant ℓ to the Lipschitz constants of the individual layers ℓi as ℓ ≤ Πℓ

i=1ℓi [12].
It was argued in [5] that such an estimate is pessimistic and hinders practical
usefulness.

Stability of neural networks is desirable in many contexts such as the sta-
ble solution to inverse problems, classification that is robust to errors, efficient
training of deep neural networks. It also used in the context of generative models
and frequently used for (Wasserstein) GANs to regularise the discriminator [2],
for instance via spectral normalisation [21].

6.4.1 The problem of robust classification

We now consider the problem of classifying the points in a compact set X ⊂ Rd

into some number c ∈ N of classes. A standard approach to this problem is
to model the classifier using a neural network Nθ : Rd → Rc and predict the
class for an input x as argmaxk∈{1,...,c}Nθ(x)k. The outputs of Nθ may be

interpreted as logits, meaning that exp(Nθ(x)k)/
∑c

i=1 exp(Nθ(x)i) is treated
as a probability that x is of class k. Regardless of the interpretation, Lipschitz
continuity of Nθ can be used to certify the robustness of the predictions.

Associated with Nθ, we can define the predicted class k̂ : X → {1, . . . , c} as
k̂(x) = argmaxk∈{1,...,c}Nθ(x)k and the margin m : Rd → R as

m(x) = Nθ(x)k̂(x) − max
k∈{1,...,c}\{k̂(x)}

Nθ(x)k.

One can think of the margin as some wiggle room in the accuracy of the pre-
diction. Even if the predicted value shrinks up to the margin, the prediction of
the model is still the same. If the classifier is stable, then this means that there
can be errors in the data which do not alter the classification result.

Proposition 12. Let us consider an ℓ-Lipschitz continuous neural network Nθ :
Rd → Rc. Then, for every y ∈ Rd with

∥x− y∥2 <
m(x)√

2ℓ
,

the prediction provided by the network would be of the same class as x, i.e.,
k̂(x) = k̂(y).

This result can be used to give robustness guarantees for existing classifiers,
but can also be used to motivate the training of robust classifiers, as long as we
can upper bound the Lipschitz constant of a neural network.

To prove this proposition, we first need the following lemma.
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Lemma 13. Let x,y ∈ Rc be two vectors. Then, it holds∣∣∣∣max
k ̸=k̂

xk −max
k ̸=k̂

yk

∣∣∣∣ ≤ max
k ̸=k̂
|xk − yk| .

Proof. Without loss of generality, we can assume maxk ̸=k̂ xk ≥ maxk ̸=k̂ yk. We
define j = argmaxk ̸=k̂ xk. It then follows∣∣∣∣max

k ̸=k̂
xk −max

k ̸=k̂
yk

∣∣∣∣ = max
k ̸=k̂

xk −max
k ̸=k̂

yk

= xj −max
k ̸=k̂

yk

≤ xj − yj since yj ≤ max
k ̸=k̂

yk

≤ max
k ̸=k̂
|xk − yk| .

Proof of Proposition 12. We start by considering the target margin, and show
it is non-negative:

Nθ(y)k̂(x) − max
k ̸=k̂(x)

Nθ(y)k

= Nθ(y)k̂(x) − max
k ̸=k̂(x)

Nθ(y)k+Nθ(x)k̂(x) −Nθ(x)k̂(x)

+ max
k ̸=k̂(x)

Nθ(x)k − max
k ̸=k̂(x)

Nθ(x)k

= Nθ(y)k̂(x) −Nθ(x)k̂(x) +Nθ(x)k̂(x) − max
k ̸=k̂(x)

Nθ(x)k

−
(

max
k ̸=k̂(x)

Nθ(y)k − max
k ̸=k̂(x)

Nθ(x)k

)
≥ −

∣∣∣Nθ(y)k̂(x) −Nθ(x)k̂(x)

∣∣∣+Nθ(x)k̂(x) − max
k ̸=k̂(x)

Nθ(x)k

− max
k ̸=k̂(x)

|Nθ(y)k −Nθ(x)k|

≥ Nθ(x)k̂(x) − max
k ̸=k̂(x)

Nθ(x)k − max
a,b∈R

{
|a|+ |b| :

√
a2 + b2 ≤ ℓ∥y − x∥2

}
> Nθ(x)k̂(x) − max

k ̸=k̂(x)
Nθ(x)k − max

a,b∈R

{
|a|+ |b| :

√
a2 + b2 ≤ m(x)√

2

}
≥ Nθ(x)k̂(x) − max

k ̸=k̂(x)
Nθ(x)k −m(x) = 0,

which allows to conclude that Nθ(y)k̂(x) −maxk ̸=k̂(x)Nθ(y)k > 0, and hence y
gets assigned to the same class as x.
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6.4.2 Building the neural network

In subsection 6.3, we discussed how one can restrict the time step of the explicit
Euler method to get non-expansive maps approximating the time−h flow of
some negative gradient flows. This is the reasoning resented in [26]. We now
use this theory to develop 1−Lipschitz neural networks based on dynamical
systems. Before doing so, however, we want to motivate the need for “cleverly”
designed neural networks in order to force them to be 1−Lipschitz. Let us
consider the standard ResNet layer based on the explicit Euler method, which
writes

x 7→ x+ hB⊤
i σ(Aix+ bi) = Fθi(x).

We can upper bound the Lipschitz constant of Fθi as

∥Fθi(y)− Fθi(x)∥2 =
∥∥y − x+ hB⊤

i (σ(Aiy + bi)− σ(Aix+ bi))
∥∥
2

≤ (1 + h∥Ai∥2∥Bi∥2Lip(σ)) ∥y − x∥2,
(62)

where Lip(σ) is the Lipschitz constant of σ, which for typical activation functions
it is Lip(σ) = 1. The derivation in (62) tells us that, for generic ResNets, it can
be hard to have a layer with Lipschitz constant upper bounded by 1. To get
this, we will modify the parametric update, relying on a parametrised negative
gradient flow.

Let us consider the parametric scalar valued function

V (x) = 1⊤γ(Ax+ b), (63)

where

γ(x)i =

{
1
2x

2
i if xi > 0,

α
2 x

2
i else,

α ∈ (0, 1), 1 ∈ RH is a vector of ones, and A ∈ RH×d,b ∈ RH are free
parameters. An Euler step with F(x) = −∇V (x) leads to the layer

x 7→ ψh
F (x) := x− hA⊤σ(Ax+ b), (64)

where σ(x)i = max{αxi, xi} is the Leaky ReLU activation function.

Lemma 14. The function in (63) is continuously differentiable, convex, and
L-smooth.

Proof. Continuously differentiable: V is the composition of continuously
differentiable functions, and hence it is continuously differentiable.

Convex: γ is convex, thus all the components of the function γ(Ax + b)
are convex scalar valued functions since they are the composition of a convex
function with a linear function. Finally, the 1⊤ takes a linear combination of
the components of a convex function with positive weights, hence leading to a
convex scalar valued function.

L-smooth: Being L−smooth means that the gradient

∇V (x) = A⊤σ(Ax+ b)
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is L−Lipschitz continuous. Following the same argument done above, we see
that Lip(∇V ) ≤ ∥A∥22, which allows us to conclude the proof.

Based on this analysis, and the derivations in subsection 6.3, we can conclude
that the Euler step in (64) is 1-Lipschitz if

h ≤ 2/∥A∥22. (65)

As we will see in subsection 6.4.3, we can easily satisfy this constraint during
training, using the power method to keep track of ∥A∥2. Of course, since non-
expansive maps compose to give non-expansive maps, we can now compose any
number of layers as in (64) to get a non-expansive neural network.

6.4.3 Testing it on a simple classification task

We implement a non-expansive neural network following the principles presented
above. Each network layer corresponds to an explicit Euler step of a suitable
vector field. More explicitly, the layers are based on the expression in (64). The
implementation for this experiment can be found in the Jupyter notebook titled
adversarial robustness.ipynb.

A non-expansive neural network can be obtained by composing several of
gradient steps we built before. To enforce the non-expansivity of the Euler
step, we need to implement a suitable step size constraint, which requires us to
estimate the spectral norms of the linear layers. This is done with the power
method. Let us consider a matrix A ∈ Rd×c defining the linear layer of interest.
The power method is implemented as

x0 ∈ Rc

xi+1 =
A⊤Aui
∥A⊤Axi∥2

∈ Rc, i = 0, . . . , k.
(66)

The vector x0 could either be an initial estimate of the first right singular vector
of A or a random vector. If x0 is not orthogonal to the target right singular
vector, this iteration computes xk which usually approximates the first right
singular vector of A, and

√
∥A⊤Axk∥2 converges to ∥A∥2 as k →∞.

Before training, we run many iterations of the power method and save the
resulting estimates of the top right singular vectors of the linear layers. Much of
the usual training loop for neural networks remains the same for networks built
using non-expansive blocks: we load a minibatch of data and pass it through the
network, we evaluate the network’s predictions using the loss function, and we
backpropagate and perform a gradient update. Before passing to the next mini-
batch, however, we update our estimates of the spectral norms of the weights
using the power method. Since we have a good estimate of the top right sin-
gular vector, we use it to warm-start the power method, making it possible
to use just a single iteration of the power method. After this, n steps of the
Euler method are computed, where n steps is the smallest integer such that
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h = T/n steps (with T the total integration time) satisfies the step size con-
straint, i.e., it is smaller than 2/∥A∥22. That is to say, we adapt the step size
as necessary to preserve non-expansiveness when the Lipschitz constant of the
vector field grows.

We work with the Fashion MNIST dataset, consisting of images of items
from Zalando, along with a label denoting one of ten possible classes. It is
based on a training set of 60,000 images and a test set of 10,000 images. Each
is a greyscale image of size 28× 28. Figure 7 shows five images in the training
set with their associated labels.

Trouser Shirt Pullover Coat T-shirt/top

Figure 7: 5 example images from the Fashion MNIST dataset.

Once the network is trained, we can test its robustness to adversarial attacks.
We consider the ℓ2-PGD attack, standing for Projected Gradient Descent based
on the ℓ2-norm. The algorithm defining this attack is implemented in the note-
book, but let us describe the mechanics of the attack in some more detail here.
This attack aims to maximise the loss function loss fn, which we provide as
input, by perturbing the input image image. The correct label for the input
image is target, and the perturbation of the input image we allow has ℓ2-norm
smaller than epsilon. To build this perturbation, we perform n iter iterations
of the following procedure. Let us consider the function

F (delta) := loss fn(image+ delta, target).

Each of the n iter iterations consists of one step of size step size in the
direction of ∂deltaF (delta)/ ∥∂deltaF (delta)∥2 followed by a projection over
the ℓ2-ball of radius epsilon centered at the origin. Finally, delta is added to
image to get the perturbed image.

In Figure 8 we show an example of an image attacked with the ℓ2-PGD
attack with 100 iterations. The attack is displayed in different magnitudes, and
one can see that the image looks increasingly distinct from the first one on the
left, i.e., the clean image. The network we attack to obtain these perturbations
is a ResNet trained to classify the test images with around 89% accuracy.

We have now discussed all the necessary methods to evaluate the robustness
of a non-expansive network architecture and compare it to that of an uncon-
strained ResNet. This comparison relies on two steps: training both networks
on clean images and testing their accuracy on adversarial images built for the
specific weights obtained after training. To have a code that takes five to ten
minutes to train locally, we restrict the training and test sets to 30,000 and
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ε = 0
Sneaker

ε = 0.1
Sandal

ε = 0.5
Sandal

ε = 1
Sandal

ε = 2
Sandal

ε = 20
Sandal

Figure 8: The first row displays the attacked images with increasing perturba-
tion magnitudes. The second row displays the difference between the attacked
and clean images. The titles specify the norm of the perturbation ε and the
ResNet prediction when given that image as an input.

1,000 images, respectively. The non-expansive network and the ResNet reach a
similar test accuracy of around 88− 89%. We train both models for 30 epochs,
again to benefit in terms of speed. When the training is completed, we freeze
their parameters and build adversarial examples. The examples are obtained
with 100 iterations of the ℓ2-PGD attack, and we generate them for different
perturbation magnitudes. We consider eight attack magnitudes smaller than
one and compare them with the clean accuracy corresponding to ε = 0. Gen-
erating the attack for the 1,000 images takes around five to ten minutes. We
plot the results obtained following this procedure in Figure 9. We see a very
small drop in performance for this relatively simple dataset when constraining
the Euler steps to be 1-Lipschitz. At the same time, robust accuracy improves
over that of unconstrained layers. The gain in robustness is also expected for
other datasets, while typically, the clean accuracy tends to decrease a bit more
compared with the unconstrained model.
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Figure 9: Comparison of the classification accuracy of a non-expansive network
and a ResNet trained on 30,000 training images of the Fashion MNIST dataset.
We then attack 1,000 of the test images with 100 iterations of ℓ2-PGD of varying
intensity ε. The attack magnitude is represented on the horizontal axis, with ε =
0 corresponding to the clean images. The vertical axis displays the classification
accuracy obtained with the attacked images.
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