About me

I am Davide Murari, and I am from Italy. I like reading, running and trying to explain what I know online. I’m a second-year PhD student in the group of Differential Equations and Numerical Analysis (DNA) at NTNU, Trondheim, Norway.

Both my Bachelor degree and my Master degree were in Applied Mathematics, at the University of Verona, Italy. During the master, I had the opportunity of attending the Modelling week at Grenoble and spending five months in Nice (at the University of Cote d’Azur) for the Erasmus program. My bachelor thesis was on dynamical billiards, while the master’s one on the theory of integrability of non-Hamiltonian dynamical systems.

During university, I developed a great interest in dynamical systems and geometric mechanics. In the DNA group here at NTNU, I found the opportunity of merging these two interests with the one of numerical implementation. My PhD thesis will focus on

  • analysing deep neural networks from the perspective of dynamical systems and
  • data-driven modelling for mechanical systems.

The current draft of the thesis’ title is “From dynamical systems to deep learning and back: network architectures based on vector fields and data-driven modelling”.

By dynamical systems’ approach to deep learning, I refer to their possible interpretation as non-autonomous parametric ODEs. Indeed, this comes thinking to neural networks having infinitely many layers, where time is considered a measure of the depth of the network, having hence infinitely many layers.  Therefore, for example, we can think of the challenge of binary classification of points of the plane as “learning a vector field whose flow moves the points so that a hyperplane can separate the two labelled groups”.

Mathone

Thanks to this construction, many relevant questions and techniques typical of ODEs and Numerical analysis arise in this research area and make me interested in these problems. Therefore, in this research project, I want to use dynamical systems to study deep learning architectures and attempt to explain their training and reliability as predictive tools.

Such a poweful connections between these fields, goes also in the opposite direction. Indeed, with the increasing amount of data we are able to collect nowadays, it becomes interesting to answer to the two following questions – can we approximate the vector fields generating a set of measured trajectories? – can we approximate the solutions to PDEs and ODEs using hybrid approaches involving data driven techniques and numerical analysis? During my PhD I am to investigate these two questions from different angles, and you can already see some work in this direction in the Academic Works page of the website.

Furthermore, there are many applications where the data are manifold-valued, and hence the forward propagation in the neural network should remain on that manifold. Neural networks on manifolds are still an area with not too many results, but with clear potential, so the plan is to investigate this problem throughout the four years of the PhD.

I created this presonal website to keep track of my research work, improve my writing and share what I learn during the process in the Blog section. I hope to get in touch with many other researchers interested in the topics on which I am working, possibly starting some nice collaborations.